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Abstract: The paper focuses on GARCH-type models for analysing and forecasting S&P500 stock
market index. The aim is to empirically evaluate and compare alternative forecast combinations across
estimation windows for directly dealing with possible structural breaks in the observed time series. In
the in-sample analysis, alternative conditional volatility dynamics, suitable to account for stylized facts,
have been considered along with different conditional distributions for the innovations. Moreover, an
analysis of structural breaks in the unconditional variance of the series has been performed. In the
out-of-sample analysis, for each model specification, the proposed forecast combinations have been
evaluated and compared in terms of their predictive ability through the model confidence set. The
results give evidence of the presence of structural breaks and, as a consequence, of parameter instability
in S&P500 series. Moreover, averaging across volatility forecasts generated by individual forecasting
models estimated using different window sizes performs well, for all the considered GARCH-type
specifications and for all the implemented conditional distributions for the innovations and it appears
to offer a useful approach to forecasting S&P500 stock market index.
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1. Introduction

In finance, knowledge of the stochastic process underlying stock returns is essential for making
correct investment decisions as it provides essential information about the riskiness of investments.
Many of the recent theories are concerned with the conditional variance, or volatility, which is a
measure of the intensity of unpredictable changes in the returns, and so it could be interpreted as a
random variable that follows a stochastic process.

Forecasting volatility is an important issue in research and application area and, to this aim, over
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the past decades, much effort has been addressed to develop and improve forecasting models.
Traditional approaches are based on the univariate GARCH-type class of models which have been
intensely studied in the literature as risk models of many financial time series. The key underlying
assumption of most financial models is the stability of the model but, unfortunately, this assumption is
typically not satisfied as financial returns may contain structural breaks due to legislative, institutional
or technological changes as well as shifts in economic policy, or large macroeconomic shocks. The
presence of breaks may affect the performance of forecasting due to the varying nature of the
dynamics with time.

To accommodate potential structural breaks, an approach based on the adjustment of the
estimation window for the forecasting model can be used. In this case, instead of using all available
observations, only a fixed number of the most recent data are used to estimate the parameters of the
forecasting model. However, the forecasting performance of this scheme is sensitive to the choice of
the window size i.e. the number of the recent observations used in estimation [1]. For GARCH-type
models the selection of a single estimation window remains an open issue and in many empirical
studies, it is arbitrarily determined. For example, in [2, 3], different specifications for this parameter
have been proposed; in particular, in the analysis, the estimation window size is fixed to one-half and
one-quarter of the length of the in sample period. An alternative approach, which avoids the
uncertainty surrounding the identification of the optimal window size, is based on combinations of
multiple individual forecasts. In the last decades, there has been a growing interest, in the
econometric literature, for the combinations of forecasts which, nowadays, are a well-established and
well-tested approach for improving forecasting accuracy. Generally, this approach is obtained by
estimating a number of alternative models over the same sample period [4] as a way for improving the
forecasting accuracy focusing, in particular, on model misspecification, instability and estimation
error. When dealing with structural breaks, it is more suitable to refer to forecast combinations across
estimation windows. This approach, proposed in [5] in a regression framework [6, 7] , has been
fruitfully applied in macroeconomic forecasting, in particular in the context of vector autoregressive
models with weakly exogenous regressors [8, 9], in the context of GDP growth on the yield curve [10]
and in the context of HAR-type models [11]. In [12] the theoretical advantages of using such
combinations have been discussed, considering random walks with breaks in the drift and volatility
and a linear regression model with a break in the slope parameter. It has been shown that averaging
forecasts over different estimation windows leads to a lower bias and root mean square forecast error
than forecasts based on a single estimation window for all but the smallest breaks. Similar results are
reported in [13] in which it has been highlighted that, in presence of structural breaks, averaging
forecasts obtained by using all the observations in the sample and forecasts obtained by using a
window can be useful for forecasting.

All the discussed approaches are feasible for linear regression models and moderate sample size.
However, when dealing with GARCH-type models, they became not suitable because of the
estimation of thousands models just to obtain a single forecast. In this context, some forecast
combination schemes have been recently proposed. For example, in [2], two simple methods, the
mean and the trimmed mean, for combining the forecasts obtained by considering different and fixed
number of the most recent data have been analysed and compared in the case of a GARCH (1,1) with
Normal distribution. The usefulness of these combinations in forecasting under structural breaks has
been empirically highlighted, in the case of BRICS daily returns, also in [14]. This approach has been
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extended to GJR-GARCH (1,1) with Normal distribution for the errors, in [3].
More recently, in [15], in the context of a GARCH (1,1) with Normal distribution, the individual

forecasts entering into the combination are obtained by expanding the length of an initial estimation
window backwards of a fixed number of observations v. The length of the initial window is
introduced to allow a convergent estimation of the GARCH model whereas the parameter v,
governing the number of individual forecasts, is determined by simulation. Simulation results show
that forecast combinations with high values of v are able to perform better then alternative schemes
proposed in the literature.

The aim of this paper is to empirically verify that the approach proposed in [15] can be extended to
the general GARCH-type class of models. In particular, using daily returns for the S&P500 stock
market index, alternative conditional volatility dynamics, suitable to account for stylized facts, usual
observed in financial time series, have been considered along with different conditional distributions
for the innovations. For each model specification, some forecast combinations have been evaluated
and compared in terms of their predictive ability through the model confidence set, proposed in [16].
The paper is organized as follows. Section 2 briefly describes the class of GARCH-type models and
provides a quick overview of some forecast combinations. Section 3 presents and discusses the
empirical results on S&P500 stock market index and shows the better performance of the proposed
methodology. Some final remarks close the paper.

2. Forecast combinations in GARCH-type models

Let {at} be the one dimensional stochastic process of the daily returns and assume that its dynamic
can be modelled by using a GARCH-type model defined as:

at = µ + σtεt t ∈ N

σ2
t = h(σ2

t−1, . . . , σ
2
t−q′ , ε

2
t−1, . . . , ε

2
t−p′ , ψσ),

(2.1)

where µ is the unconditional mean of {at}, {εt} is a sequence of independent and identically distributed
random variables such that E(εt) = 0 and E(ε2

t ) = 1 and σt is the conditional standard deviation of
εt. The function h(·) refers to one of the ARCH-type dynamics and the vector ψσ contains all the
conditional variance dynamic parameters, its specification depending on the structure in the data, such
as leverage effects and asymmetry. We assume that the conditional variance is well defined, i.e. σ2

t is
positive, and the process εt is stationary and ergodic. Sufficient conditions under which it is guaranteed
can be derived by specifying the conditional volatility function h(·).

Let at a time series of daily returns observed at times t = 1, . . . ,T . Generally, in the estimation
procedure of the GARCH process 2.1, assumptions about stability in volatility have been explicitly or
implicitly made in the vast majority of studies. However, because financial markets are closely linked
to regime shifting in the economy, structural breaks or parameter shifts can occur causing instability
of parameters. In the context of GARCH-type models, the presence of structural breaks could distort
the persistence estimation toward a spurious value, as pointed out in [17] and than confirmed, among
others, in [18] and [19]. Moreover, lack of awareness of structural breaks makes forecasts inaccurate
and constitutes one of the major reasons for poor out-of-sample forecasting performance. A way for
improving the forecasting accuracy is to consider an approach based on averaging across volatility
forecasts generated by individual models estimated using different window sizes.
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This approach allows not to deal with the uncertainty surrounding the identification of a single
estimation window size which, generally, is arbitrarily determined and could be not pertinent for the
size and the location of the last break. Moreover, it incorporates the trade-off between the bias and the
variance of forecasting errors since windows of earlier data are commonly used in the combinations.

In [2], in the context of GARCH (1,1) model with Normal distribution, two simple methods for
combining the forecasts have been considered. The first combines four individual forecasts obtained
using different estimation windows: an expanding window which uses all the available observations,
two windows with size equal to one-quarter and one-half of the length of the in-sample period and a
window considering the observations after the identified last break. It is defined as:

σ̂2
T+1 =

1
4

[
σ̂2 [1:T ]

T+1 + σ̂2 [0.75T :T ]
T+1 + σ̂2 [0.50T :T ]

T+1 + σ̂2 [Tb:T ]
T+1

]
(2.2)

where σ̂2 [τ:T ]
T+1 denotes the one-step-ahead forecast obtained by using the observations from τ to T and

Tb is the last break date. Note that, in this combination, the last individual forecast is based on a
window containing the observations after the identified last break. It does not necessarily outperform
combinations that use no information on break dates. This is because estimated break dates can be
imprecise, and the use of inaccurate estimates of the break dates can harmful rather than helpful when
choosing estimation windows. The second combination used in [2] is a trimmed version of the
previous one obtained excluding the highest and lowest forecasts trying to avoid, in this way, possible
implausible forecasts.

In [3], the same forecast combinations have been analysed and discussed in the context of
GJR-GARCH (1,1) model, with the same distribution on the errors. More recently, in [15], the
individual forecasts entering into the combination are obtained by expanding the length of an initial
estimation window backwards of a fixed number of observations v.

In this scheme, the forecast combination at time T + 1 is obtained by averaging across forecasts
generated by increasing recursively, of a fixed number v, the minimum estimation window ω. More
precisely, it is:

σ̂2
T+1 =

k−1∑
τ=0

cτσ̂
2 [T−w−τv:T ]
T+1 (2.3)

where σ̂2 [T−w−τv:T ]
T+1 is the one-step-ahead forecast obtained by using the observations from (T −w− τv)

to T ; cτ are combination weights and

k =

⌈T − ω
v

⌉
(2.4)

being dxe the smallest integer greater than or equal to x.
In equation (2.3), the last ω observations are used in all the forecasts, whereas the observations at

the beginning of the sample are used less.
The proposed forecast combination scheme depends on the parameters ω and v and on the weights

cτ.
The parameter ω is the size of the minimum estimation window which should be fixed in such a

way that allows the parameter estimation of the forecasting model to converge. For example, when
using a GARCH (1,1), the estimates of the parameters are significantly negatively biased in small
samples and, in many cases, converged estimates are not possible with non-negativity conditions, as
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showed in [20]. In this context, considering the size of biases and convergence errors, ω should be
setting at least equal to 500.

The parameter v controls the number of observations which are added to the minimum estimation
window ω and, as a consequence, to the number of individual forecasts which enters in the
combination. The lower the value of v, the more individual forecasts enter in the combination.
Moreover if the location of the last break is near to the end of the sample, the higher the value of v, the
less the number of windows containing many pre-break observations are in the combination scheme.
This could be advantageous since the forecasts generated by using many pre-break observations could
be biased especially when the size of the breaks is high. The logic behind this approach is similar to
that proposed in [5] in a regression context. In this latter case, the parameter v is set equal to 1 since
the number of observations is generally not so high and the linearity of the models ensures the
feasibility, in term of computational costs, of the generation of the many individual forecasts involved.
In the case of GARCH-type models, the choice of v = 1 is unrealistic; in this context, a value for v
should guarantee the effectiveness of the forecast combination in accounting for possible structural
breaks in the series and, at the same time, it should ensure not too high computational costs.

The selection of an optimal value of v is an open issue. However, in [15] it has been proved, by
simulations, that weighting scheme based on an high value of v (v = 800 or v = 900) outperforms all
the other forecast combinations with low or moderate values of v.

As it is usual in the literature of forecast combinations, the weights c0, c1, . . . , ck−1 are assumed to
verify the following constrains:

c0 ≥ c1 ≥ . . . ≥ ck−1 ≥ 0 and
k−1∑
τ=0

cτ = 1 (2.5)

being cτ the weight associated to the forecast obtained by using the observations from (T − w − τv)
to T . Although all the sequences satisfying the previous assumptions can be used in the equation 2.3,
we have considered two well known choices. The first one is based on fixing equal weights for all the
individual forecasts entering the combination. In this case, it is:

cτ =
1
k

τ = 0, 1, . . . , k − 1 (2.6)

As a consequence, the proposed forecast combination (2.3) is defined as :

σ̂2
T+1 =

1
k

k−1∑
τ=0

σ̂2 [T−w−τv:T ]
T+1 (2.7)

This scheme is easy to compute and often has performance as good as more complicated schemes,
also when there is uncertainty about the presence of structural breaks in the data.

Another possible choice is to use constant weights proportional to the location of τ in the sample.
In this case, it is:

cτ =
k − τ∑k−1

τ=0(k − τ)
=

2(k − τ)
k(k + 1)

τ = 0, 1, . . . , k − 1 (2.8)

As a consequence, the proposed forecast combination (2.3) is defined as:
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σ̂2
T+1 =

1∑k−1
τ=0(k − τ)

k−1∑
τ=0

(k − τ)σ̂2 [T−w−τv:T ]
T+1 (2.9)

In this scheme, the weights are heavier for forecasts that use more recent information.
In [15], it has been verified that forecast combinations with location weights and with an high value

of v seem to better perform also with respect to some alternative forecast combinations proposed in the
literature. This result is particularly evident when the location of the structural break is near the end of
the sample.

3. Empirical analysis on S&P500 stock market index

An empirical analysis has been performed on the volatility of the S&P500 stock market index. This
index includes 500 stocks of US companies with the largest capitalization; it is widely diversified and
actively traded on the markets. The data set covers the period from 03-01-2000 to 04-12-2017; the
plot of the series is reported in Figure 1 and summary statistics in Table 1. The data presents the usual
well-known stylized facts about financial time series, that is a small mean, a large standard deviation
and evidence of non normality as pointed out by the Jarque-Bera test. This feature is essentially due to
an excess of kurtosis that highlights the presence of a large number of significant shocks.
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Figure 1. S&P500 daily returns from 03-01-2000 to 04-12-2017 and two-standard-deviation
bands for the regimes defined by the structural breaks identified by the binary segmentation
with K2 test.
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Table 1. Summary statistics of S&P500 daily returns from 03-01-2000 to 04-12-2017

Summary statistics
Min - 0,09351 Std.Dev 0,01159
Mean 0,00010 Skewness - 0,17478
Median 0,00052 Kurtosis 8,14877
Max 0,10220 JB Test 12430 [2.2E-16]

3.1. In-sample analysis

In order to capture the stock market volatility and the different conditional heteroskedasticity
patterns of the S&P 500 stock market index, three models belonging to the GARCH-type class of
models (2.1) have been considered. The simplest conditional volatility dynamics is the GARCH (1, 1)
specification, introduced in [21] for analysing financial time series:

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1. (3.1)

with α0 > 0, 0 < α1 < 1 and 0 < β < 1. The persistence measure for the GARCH (1,1) model is given
by α1 + β and the condition α1 + β < 1 ensures that the model is covariance-stationary. The GARCH
(1,1) model assumes that the conditional variance responds symmetrically to positive and negative
shocks, so that only the size, and not the sign, of the shock matters. However, it is well established that
stock returns and volatility are negatively correlated. In order to allow for asymmetry in the response
of conditional volatility to return shocks, several non linear generalizations of this model have been
introduced in the literature.

Here, we focus on two of the most used specifications which could be suitable to account for the
stylised facts usual observed in S&P500 stock market index. The first one is the EGARCH (1, 1)
model, introduced in [22]. It assumes the following conditional volatility dynamics:

log(σ2
t ) = α0 +

[
α1zt−1 + γ(|zt−1| − E|zt−1|)

]
+ β log(σ2

t−1), (3.2)

where zt = εt/σt.
The exponential nature of the model ensures that the conditional variance is always positive even

if the parameter values are negative, thus no positivity constraints on the parameters are required.
The parameter γ captures the asymmetric effect. If γ = 0, the model is symmetric; when γ < 0,
positive shocks (good news) generate less volatility than negative shocks (bad news). When γ > 0,
it implies that positive innovations are more destabilizing than negative innovations. The condition
for the EGARCH (1,1) to be covariance-stationary is β < 1, where β is the persistence measure. The
second GARCH generalization we consider is the GJR-GARCH (1, 1) model [23] which assumes that
the conditional volatility dynamics is:

σ2
t = α0 +

(
α1 + γI{εt−i<0}

)
a2

t−1 + βσ2
t−1, (3.3)

where I{εt−i<0} assumes value one if εt−1 < 0 and zero otherwise. This specification accounts for the
leverage effect by including a dummy variable which discriminates positive and negative lagged
shocks. When γ = 0, it is clear that positive and negative shocks have symmetric effects on volatility
and, in this case, (3.3) reduces to (3.1). The persistence measure for the GJR-GARCH (1,1) model is
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given by (α1 + β + γ/2) and the condition (α1 + β + γ/2) < 1 ensures that the model is
covariance-stationary.

Moreover, for each model specification, several conditional distributions for the innovations have
been considered. Valid choices are the standardized Normal distribution, the standardized Student−T
distribution with ν degrees of freedom and the standardized Generalized Error Distribution (GED)
with shape parameter κ [24]. The last two distributions might better characterize the error process for
S&P500 stock market index which presents very high and very low returns suggesting a fatter-tailed
distribution then the Standard Normal. Besides fat tails, empirical distributions of financial time series
may also be skewed. To handle this additional characteristic of S&P500 stock market index, we have
also considered the asymmetric skewed extensions of the previous distributions, that is the skew
Normal, the skew Student-T and the skew GED distribution. They are obtained by introducing a
parameter S kew regulating the skewness to the corresponding distributions. Therefore in our analysis
we have considered three GARCH specifications and six error distributions, for a total of eighteen
models.

In Table 2 the estimation results are reported. The log-likelihood (LL) and the Bayesian
Information Criterion (BIC) do not provide evidence about the best model to fit the data. Moreover,
the persistence of all the models are very close to one. This is related to the presence of structural
breaks, as pointed out in [17], and, as a consequence, of parameter instability. This feature is
confirmed by the Nyblom test [25] which provides a means of testing for parameter instability for
models estimated by methods other than OLS. It is a Lagrange multiplier test in which the distribution
of the test statistic is non-standard. Critical values, computed by simulation in [26], are reported in
parenthesis. It is evident that, for all the models and for all the considered distributions for the
innovations, the hypothesis of a stable model is always rejected. Note that the test is not informative
about the date or type of structural changes.

3.2. Structural breaks analysis

In order to confirm whether a non stable GARCH-type process governs the conditional volatility of
S&P500, a CUSUM of squares test, designed for testing for variance changes, has been considered.
The variance is, in fact, a functional of GARCH-type parameters and, as a consequence, by examining
the existence of the variance change, it is possible to detect parameter changes.

In particular, we have implemented a test proposed in [27] which takes into account both the fourth
order moment of the process and persistence in the variance. The test is based on the following statistic:

K2 = sup
k
|T−1/2Gk| (3.4)

where Gk = ω̂−1/2
4 [Ck − (k/T )CT ], being Ck =

∑k
t=1 a2

t for k = 1, . . . ,T the cumulative sum of squares
of at, and ω̂4 is a consistent estimator of ω4, the long-run fourth order moment of at.

The statistic K2 makes adjustments to the classical IT statistic proposed in [28] and allows at to
obey a wide class of dependent processes, including GARCH processes, under the null.

A consistent estimator of the long-run fourth order moment of at, has been obtained by using a non
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Table 2. Quasi-maximum likelihood estimation results for GARCH-type models. Standard
errors are given in round brackets. Critical values of the Nyblom test in square brackets.

µ α0 α1 β γ ν κ S kew Persistence LL BIC Nyb. Test

GARCH (1,1) NORM
0,00040

(0.0001)

1,07E-06

(1,03E-06)

0,09724

(0, 0173)

0,89505

(0, 0170)
0,99229 14740,90 - 6,57472

105,66

[1, 24]

GARCH (1,1) STD
0,00054

(9,97E-05)

5,88E-07

(6,42E-07)

0,09765

(0, 0120)

0,90135

(0, 0111)

6,71025

(0, 5435)
0,99900 14832,97 - 6,61395

219,43

[1, 47]

GARCH (1,1) GED
0,00054

(0, 0001)

7,17E-07

(7,91E-07)

0,09968

(0, 0150)

0,89865

(0, 0140)

1,32512

(0, 0296)
0,99833 14840,87 - 6,61748

187,93

[1, 47]

GARCH (1,1) SNORM
0,00032

(0, 0001)

9,30E-07

(1,07E-06)

0,09747

(0, 0187)

0,89569

(0, 0183)

0,86683

(0, 0158)
0,99316 14772,47 - 6,58694

147,24

[1, 47]

GARCH (1,1) SSTD
0,00038

(0, 0001)

5,70E-07

(6,37E-07)

0,09927

(0, 0123)

0,89973

(0, 0113)

7,10138

(0, 6029)

0,89925

(0, 0175)
0,99900 14847,84 - 6,61872

225,07

[1, 68]

GARCH (1,1) SGED
0,00031

(0, 0001)

6,74E-07

(7,62E-07)

0,09960

(0, 0144)

0,89834

(0, 0135)

1,35145

(0, 0309)

0,90030

(0, 0162)
0,99793 14858,49 - 6,62347

202,67

[1, 68]

EGARCH (1,1) NORM
0,00010

(9,00E-05)

- 0,18700

(0, 0020)

- 0,13689

(0, 0076)

0,97990

(7,20E-05)

0,12791

(0, 0042)
0,97990 14844,47 - 6,61909

2,09

[1, 47]

EGARCH (1,1) STD
0,00029

( 9,00E-05)

- 0,13009

(0, 0045)

- 0,14202

(0, 0102)

0,98673

(0, 0005)

0,12703

(0, 0132)

7,42558

(0, 9195)
0,98673 14917,88 - 6,64999

4,74

[1, 68]

EGARCH (1,1) GED
0,00032

(9,93E-05)

- 0,15217

(0, 0024)

- 0,13905

(0, 0081)

0,98451

(1,44E-05)

0,12937

(0, 0085)

1,40065

(0, 0402)
0,98451 14917,59 - 6,64987

4,52

[1, 68]

EGARCH (1,1) SNORM
4,57E-06

(8,64E-05)

- 0,18274

(0, 0022)

- 0,14014

(0, 0074)

0,98024

(4,62E-05)

0,12411

(0, 0043)

0,84100

(0, 0158)
0,98024 14887,80 - 6,63656

2,44

[1, 68]

EGARCH (1,1) SSTD
0,00007

(2,17E-05)

- 0,15350

(0, 0064)

- 0,14937

(0, 0096)

0,98383

(0, 0010)

0,12912

(0, 0266)

8,09396

(1, 1151)

0,86362

(0, 0165)
0,98383 14943,84 - 6,65971

4,69

[1, 90]

EGARCH (1,1) SGED
0,00004

(9,67E-05)

- 0,17404

(0, 0027)

- 0,14763

(0, 0080)

0,98167

(1,52E-05)

0,12974

(0, 0069)

1,43205

(0, 0436)

0,86517

(0, 0158)
0,98167 14948,67 - 6,66186

4,10

[1, 90]

GJR-GARCH (1,1) NORM
0,00010

(8,36E-05)

1,46E-06

(5,87E-07)

4,98E-08

(0, 0027)

0,89814

(0, 0063)

0,17253

(0, 0111)
0,98440 14826,91 - 6,61125

49,91

[1, 47]

GJR-GARCH (1,1) STD
0,00033

(9,74E-05)

8,57E-07

(6,24E-07)

8,54E-08

(0, 0024)

0,90452

(0, 0124)

0,17571

(0, 0086)

7,29426

(0, 6320)
0,99237 14900,44 - 6,64221

193,99

[1, 68]

GJR-GARCH (1,1) GED
0,00035

(9,91E-05)

1,07E-06

(1,71E-06)

7,82E-10

(0, 0103)

0,90099

(0, 0309)

0,17571

(0, 0086)

1,38851

(0, 0251)
0,98778 14902,60 - 6,64317

146,85

[1, 68]

GJR-GARCH (1,1) SNORM
0,00001

(8,74E-05)

1,39E-06

(4,84E-07)

5,27E-08

(0, 0029)

0,89824

(0, 0068)

0,17571

(0, 0085)

0,84883

(0, 0158)
0,98284 14866,44 - 6,62702

50,53

[1, 68]

GJR-GARCH (1,1) SSTD
0,00010

(0, 0001)

9,94E-07

(1,16E-06)

1,02E-08

(0, 0081)

0,90028

(0, 0225)

0,17571

(0, 0086)

7,85673

(0, 3629)

0,86753

(0, 0172)
0,98915 14925,16 - 6,65137

160,36

[1, 90]

GJR-GARCH (1,1) SGED
0,00006

(0, 0001)

1,19E-06

(1,40E-06)

6,17E-08

(0, 0098)

0,89733

(0, 0212)

0,17571

(0, 0403)

1,41704

(0, 0528)

0,87047

(0, 0158)
0,98470 14931,54 - 6,65422

107,67

[1, 90]

Note: NORM, STD and GED indicate the standardized Normal distribution, the standardized Student−T distribution and the standardized Generalized
error distribution for the innovations, respectively. SNORM, SSTD and SGED are the asymmetric skewed extensions.

parametric approach based on the Bartlett kernel [27]. In particular it is:

ω̂4 = γ̂0 + 2
m∑

l=1

[1 − l(m + 1)−1]γ̂l (3.5)

where

γ̂l = T−1
T∑

t=l+1

(ε2
t − σ̂

2)(ε2
t−1 − σ̂

2) (3.6)

and σ̂2 = T−1CT . The bandwidth m has been obtained by using the procedure in [29]. Under quite
general conditions, in [27] it has shown that:

K2
A
→ supr|W∗(r)| (3.7)

where W∗ = W(r) − rW(1) is a Brownian bridge and W(r) is a standard Brownian motion.
Finite-sample critical values for the test can be determined by simulation.
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The statistic k2 has been applied in a sequential manner to identify and test for multiple volatility
changes of S&P500 stock market index. In particular, we have used a binary segmentation in which,
in the first step, the entire sample is tested for the presence of a single break in volatility. If a
significant structural break is detected, the data are split into two segments and the detection method
is applying to each of them. The procedure continues until no further change-points are detected. To
avoid the identification of spurious break points, due to the presence of extreme observations which
can be erroneously interpreted as being change points [30], a final step has been included in the binary
segmentation procedure. It consists of a re-evaluation and a re-estimation of the break points, in the
spirit of the ICCS algorithm proposed in [28].

Moreover, to avoid the problem of using the asymptotic critical value for any segments, which may
distort the performance of the iterative procedure especially when the length of the subsamples can
quickly become quite small, we have used the finite sample critical values estimated through
simulation using the response surfaces methodology [31].

Figure 1 shows the two-standard-deviation bands for each of the regimes defined by the structural
breaks whose dates are reported in Table 3.

Table 3. Structural break dates identified by the binary segmentation with K2 test.of S&P500
daily returns from 03-01-2000 to 04-12-2017

Structural breaks dates

28-04-2003 09-07-2007 12-09-2008 05-12-2008

21-04-2009 26-04-2010 01-09-2010 01-08-2011

20-12-2011 19-08-2015 01-03-2016 09-11-2016

All of the identified structural breaks correspond to significant changes in the unconditional variance
across regimes and they are related not only to global but also to specific financial, economic, social
and political events. It is evident, for example, the impact on the analysed series of events such as the
”internet bubble bursting”, in the first years of 2000; the subprime mortage crisis in mid 2007, which
lead to the global financial crisis of 2008–2009; the ”August 2011 stock market fall” due to fears of
the contagion of the European Sovereign debt crisis; the ”2015–2016 stock market sell-off” linked to
the Chinese stock market turbulence, the fall in petroleum prices, the Greek debt default, the effect to
the end of quantitative easing and the ”Brexit referendum”.

3.3. Out-of-sample analysis

In this section we have analysed and compared the forecasting performances of the forecast
combinations proposed in Section 2, by looking at their ability to predict future values of the series.
We have divided the analysis in two steps. In the first, we have compared the forecast combinations
for each the considered GARGH-type model, in order to understand which of them, produce better
results than a stable model. In the second step, we have compared all the models and the forecast
combinations, in order to deduce if it is possible, in the considered dataset, to identify which model
and which forecast combination is better able to predict future values of S&P500 stock market index.

In the analysis,we have divided the observations into an estimation period, composed of the data
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from t = 1 to t = R, and an evaluation period. The models and the forecast combinations are estimated
using the first R intra-day observations and, for each of them, the one-step-ahead out-of-sample
forecast is produced. The sample is increased by one, the model is re-estimated and one-step-ahead
forecasts are produced. The procedure continues until the end of the available out-of-sample period.
In the following R has been fixed such that the number of out-of-sample observations is 500.

In order to evaluate the effect of different values of the parameter v on the proposed forecast
combinations, the following different values v ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900} have
been considered. For each value of v, the proposed forecast combinations with equal weights, defined
in (2.7) and with location weights defined in (2.9) have been considered. Moreover, when it is
reasonable, a trimmed version, obtained by excluding the individual forecasts with the lowest and the
highest value respectively has been also included in the analysis. Moreover, to assess the effectiveness
of the proposed combinations, a benchmark forecasting method has been introduced in the analysis. It
is the expanding window method, which uses all the available observations in the estimation sample
to produce the forecasts. As pointed out in [5], this choice is optimal in situations in which no breaks
are present in the sample and, as a consequence, it is appropriate for forecasting when the data is
generated by a stable model. For each class of models, this method produces out-of-sample forecasts
using a recursive expanding estimation window. Moreover the forecast combination proposed in [2]
and reported in (2.2) and its trimmed version have also been considered. Table 4 lists the considered
forecasting schemes, together with the used acronyms.

We assess the statistical significance of differences in the forecasting performance of the models
by using the Model Confidence Set (MCS) proposed in [16]. This procedure consists of a sequence of
tests which allows the construction of a Set of Superior Models (SSM), where the null hypothesis of
equal predictive ability is not rejected at a specified confidence level α. The test statistic can be
evaluated for any arbitrary loss function whose choice depends on the nature of the candidate models.
Here we have considered, for t = R + 1, . . . ,T the following five loss functions:

QLIKEt =

[σ̃2
t

σ̂2
t
− log

(σ̃2
t

σ̂2
t

)
− 1

]
(3.8)

MS Et = (σ̃2
t − σ̂

2
t )2 (3.9)

MAEt =
∣∣∣σ̃2

t − σ̂
2
t

∣∣∣ (3.10)
MADt = (σ̃t − σ̂t)2 (3.11)

MS Dt =
∣∣∣σ̃t − σ̂t

∣∣∣ (3.12)

where σ̃2
t is some volatility measure and σ̂2

t is the punctual volatility forecast. In this context, squared
returns have been used as a proxy for the latent volatility.

The first two loss functions are the most popular and used in the econometric literature since they
provide robust ranking of the models in the context of volatility forecasts [32]. The QLIKE loss is a
simple modification of the Gaussian log-likelihood in such a way that the minimum distance of zero is
obtained when σ2

t = σ̂2
t . Moreover, according to [32], it is able to better discriminate among models

and it is less affected by the most extreme observations in the sample. The MSE loss function has the
tendency to penalize large forecast errors more severely than other common accuracy measures and
therefore is considered as the most appropriate measure to determine which methods avoid large
errors.
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Table 4. Typology of the empirical specifications used in the paper.

Acronym Forecasting methods

Expanding Wind Expanding Window forecast. This method uses all the available observations.

Mean Wind E v Mean window forecast combination with equal weights and tuning parameter
v (Eq (2.7)).

Mean Wind L v Mean window forecast combination with location weights and tuning
parameter v (Eq (2.9)).

Mean Wind T v Trimmed mean window forecast combination with location weights and
tuning parameter v.

RS Mean Forecast combination which averages individual forecasts obtained with four
different estimation windows (Eq (2.2)).

RS Mean Trim Trimmed version of the RS Mean obtained excluding the highest and lowest
forecast.

Tables 5–10 show the results of the model confidence set for each considered GARCH-type
specification. For each method, the mean loss of the expanding window method, which has been
considered as a benchmark, has been reported along with the ratio of the mean loss for each
combination to the mean loss for the expanding window method. Obviously, a value of the ratio below
unit indicates that the forecasting method beats the benchmark according to the loss function metric.
Bold entries denote the forecast combinations in the superior set of models at a confidence level
α = 0.15. The asterisk is in correspondence of the smallest mean loss among the forecasting methods.

For the GARCH (1,1) with symmetric error distributions (Table 5), it is evident that almost all the
considered combinations have a ratio of the mean loss to the mean loss for the expanding window
method less then one, indicating a better forecasting performance with respect to the benchmark.
Moreover, the expanding window is always excluded from the SSM while the mean window
combination with v = 900 and location weights enters the SSM, for all the distributions and for all the
five considered loss functions. In same cases, also the mean window combinations with location
weights and high values of v, i.e. v = 700 and v = 800, are included in SSM. The results for GARCH
(1,1) with Normal innovations confirm the findings in [15]. Note that for all the distributions and for
all the loss functions, the smallest mean loss value is in correspondence of the mean window
combination with v = 900 and location weights. When the distribution of the errors are skewed (Table
6), similar results hold. The only exception is the GARCH (1,1) with skew Student−T distribution in
which, the combination ”RS Mean” is in the SSM but, only for MSE and MAD loss functions, it has
the smallest mean loss value.

For the EGARCH (1,1) with symmetric distributions for the innovations (Table 7), the mean
window combinations with v = 700, both with location and equal weights, are in SSM for all the five
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Table 5. Out-of-sample volatility forecasting results for GARCH (1,1) with symmetric
distributions: Loss functions

GARCH (1,1) NORM GARCH (1,1) STD GARCH (1,1) GED

QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD

Expanding Wind 0,6315 0,2095 0,3732 0,1305 0,3028 0,6098 0,2011 0,3584 0,1232 0,2916 0,6180 0,2040 0,3639 0,1259 0,2958

RS Mean 0,9911 0,9742 0,9835 0,9808 0,9883 0,9954 0,9842 0,9894 0,9906 0,9932 0,9934 0,9777 0,9859 0,9851 0,9906

RS Mean Trim 0,9971 0,9902 0,9933 0,9939 0,9957 0,9981 0,9944 0,9951 0,9975 0,9970 0,9981 0,9916 0,9942 0,9960 0,9966

Mean Wind E 100 0,9951 0,9819 0,9889 0,9877 0,9927 0,9991 0,9917 0,9948 0,9971 0,9975 0,9964 0,9850 0,9905 0,9908 0,9941

Mean Wind T 100 0,9974 0,9884 0,9928 0,9930 0,9956 1,0008 0,9978 0,9982 1,0016 0,9998 0,9983 0,9911 0,9941 0,9955 0,9967

Mean Wind L 100 0,9917 0,9736 0,9827 0,9806 0,9882 0,9978 0,9873 0,9913 0,9943 0,9953 0,9938 0,9781 0,9853 0,9853 0,9903

Mean Wind E 200 0,9946 0,9808 0,9881 0,9867 0,9921 0,9985 0,9905 0,9938 0,9960 0,9968 0,9959 0,9839 0,9897 0,9897 0,9934

Mean Wind T 200 0,9969 0,9875 0,9921 0,9922 0,9951 1,0006 0,9970 0,9977 1,0010 0,9995 0,9980 0,9903 0,9936 0,9949 0,9963

Mean Wind L 200 0,9911 0,9722 0,9816 0,9792 0,9873 0,9969 0,9855 0,9899 0,9925 0,9942 0,9930 0,9765 0,9841 0,9836 0,9894

Mean Wind E 300 0,9942 0,9797 0,9875 0,9856 0,9916 0,9982 0,9899 0,9933 0,9952 0,9964 0,9955 0,9830 0,9891 0,9888 0,9930

Mean Wind T 300 0,9967 0,9862 0,9915 0,9914 0,9947 1,0005 0,9961 0,9972 1,0005 0,9992 0,9979 0,9893 0,9930 0,9942 0,9959

Mean Wind L 300 0,9904 0,9707 0,9808 0,9777 0,9866 0,9962 0,9846 0,9891 0,9911 0,9934 0,9923 0,9754 0,9832 0,9822 0,9886

Mean Wind E 400 0,9942 0,981 0,9877 0,9862 0,9917 0,9981 0,9907 0,9935 0,9955 0,9964 0,9954 0,984 0,9892 0,9892 0,9930

Mean Wind T 400 0,9964 0,9861 0,9909 0,9909 0,9942 1,0001 0,9956 0,9966 0,9998 0,9987 0,9975 0,9890 0,9924 0,9937 0,9954

Mean Wind L 400 0,9904 0,9725 0,9811 0,9784 0,9866 0,9961 0,9858 0,9892 0,9914 0,9934 0,9922 0,9769 0,9834 0,9827 0,9886

Mean Wind E 500 0,9935 0,9786 0,9861 0,9843 0,9905 0,9976 0,9893 0,9923 0,9942 0,9955 0,9948 0,9822 0,9878 0,9875 0,9919

Mean Wind T 500 0,9958 0,9850 0,9899 0,9899 0,9934 0,9998 0,9954 0,9961 0,9995 0,9984 0,9971 0,9883 0,9917 0,9930 0,9949

Mean Wind L 500 0,9898 0,9703 0,9794 0,9765 0,9855 0,9956 0,9845 0,9879 0,9900 0,9924 0,9916 0,9752 0,9819 0,9809 0,9875

Mean Wind E 600 0,9926 0,9764 0,9849 0,9823 0,9895 0,9967 0,9869 0,9907 0,9919 0,9943 0,9939 0,9799 0,9865 0,9854 0,9909

Mean Wind L 600 0,9883 0,9668 0,9774 0,9733 0,9839 0,9938 0,9806 0,9853 0,9860 0,9903 0,9900 0,9716 0,9797 0,9775 0,9857

Mean Wind E 700 0,9909 0,9735 0,9823 0,9790 0,9874 0,9945 0,9837 0,9876 0,9879 0,9916 0,9920 0,9769 0,9838 0,9818 0,9885

Mean Wind L 700 0,9862 0,9633 0,9745 0,9693 0,9813 0,9910 0,9767 0,9815 0,9810 0,9870 0,9876 0,9680 0,9764 0,9731 0,9828

Mean Wind E 800 0,9907 0,9742 0,9827 0,9792 0,9875 0,9944 0,9843 0,9883 0,9882 0,9920 0,9918 0,9775 0,9843 0,9821 0,9888

Mean Wind L 800 0,9858 0,9636 0,9747 0,9690 0,9813 0,9908 0,9771 0,9820 0,9810 0,9871 0,9872 0,9682 0,9767 0,9728 0,9829

Mean Wind E 900 0,9905 0,9719 0,9822 0,9787 0,9875 0,9949 0,9828 0,9880 0,9882 0,9922 0,9918 0,9749 0,9833 0,9810 0,9883

Mean Wind L 900 0,9858∗ 0,9608∗ 0,9738∗ 0,9679∗ 0,9810∗ 0,9905∗ 0,9743∗ 0,9808∗ 0,9795∗ 0,9865∗ 0,9867∗ 0,9649∗ 0,9752∗ 0,9708∗ 0,9820∗

Note: The entries for the GARCH (1,1) expanding window method give the mean loss for this model. The entries for the combinations give the ratio of
the mean loss for each of them to the mean loss for the GARCH (1,1) expanding window method. A bold entry denotes the models in the Superior Set
of Models. The asterisk is in correspondence of the smallest mean loss among the forecasting methods.The forecasting methods are described in Table
4. NORM, STD and GED indicate the standardized Normal distribution, the standardized Student−T distribution and the standardized Generalized error
distribution for the innovations, respectively.

loss functions and for all the distributions. Moreover, although in the case of Student−T and GED
distributions, the SSM sometimes includes the expanding window method, the ratio of the mean loss
with v = 800 and v = 900 to the mean loss of the expanding window method is almost always less
then one. Furthermore, the smallest mean loss value is in correspondence of the mean window
combinations with v = 700, with location or equal weights, for all the distributions and for all the loss
functions. When considering EGARCH (1,1) with skewed distributions (Table 8), again, the mean
window combination with v = 700 and location weights seems to have good forecasting performance
being always in the SSM. Moreover, it always has the smallest mean loss value with the exception of
the EGARCH (1,1) with skew Student−T distribution for MAE and MSD loss functions.

For the GJR-GARCH (1,1) with symmetric error distribution (Table 9), the expanding window is
always excluded from the SSM while the mean window combination with v = 900 and location
weights always enters, for all the distributions and for all the five considered loss functions. In most
cases, the SSM includes also the mean window combinations with v = 700 and v = 800 and location
weights Note that the smallest mean loss value is in correspondence of the mean window combination
with v = 900 and location weights with the only exception of the MSE loss function for the
GJR-GARCH (1,1) with Student−T distribution; in this case the smallest values is in correspondence
of the mean window combination with v = 800 and location weights. Similar results hold for the
GJR-GARCH (1,1) with skewed error distributions (Table 10). Note that, for Student−T and GED
distribution, in the case of MSE loss function, also the ”RS-mean” combination seems to have the
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Table 6. Out-of-sample volatility forecasting results for GARCH (1,1) with skewed
distributions: Loss functions

GARCH (1,1) SNORM GARCH (1,1) SSTD GARCH (1,1) SGED

QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD

Expanding Wind 0,6253 0,2066 0,3688 0,1283 0,2996 0,6104 0,2015 0,3587 0,1234 0,2919 0,6158 0,2032 0,3623 0,1252 0,2947

RS Mean 0,9889 0,9705 0,9804 0,9762 0,9856 0,9903 0,9755∗ 0,9830 0,9805∗ 0,9876 0,9891 0,9711 0,9805 0,9768 0,9858

RS Mean Trim 0,9956 0,9879 0,9913 0,9908 0,9939 0,9941 0,9881 0,9904 0,9897 0,9928 0,9956 0,9876 0,9910 0,9907 0,9937

Mean Wind E 100 0,9947 0,9826 0,9886 0,9875 0,9922 0,9994 0,9950 0,9959 0,9990 0,9981 0,9961 0,9866 0,9907 0,9912 0,9939

Mean Wind T 100 0,9973 0,9894 0,9930 0,9933 0,9955 1,0017 1,0016 0,9999 1,0042 1,0010 0,9985 0,9931 0,9949 0,9966 0,9970

Mean Wind L 100 0,9911 0,9747 0,9822 0,9804 0,9874 0,9977 0,9911 0,9921 0,9959 0,9955 0,9928 0,9796 0,9848 0,9848 0,9895

Mean Wind E 200 0,9941 0,9816 0,9878 0,9865 0,9916 0,9988 0,9938 0,9949 0,9978 0,9973 0,9955 0,9855 0,9898 0,9901 0,9932

Mean Wind T 200 0,9969 0,9885 0,9923 0,9926 0,9950 1,0014 1,0007 0,9993 1,0036 1,0005 0,9981 0,9922 0,9942 0,9959 0,9966

Mean Wind L 200 0,9903 0,9733 0,9810 0,9788 0,9865 0,9967 0,9892 0,9906 0,9940 0,9943 0,9920 0,9781 0,9835 0,9832 0,9885

Mean Wind E 300 0,9937 0,9806 0,9871 0,9854 0,9910 0,9985 0,9933 0,9944 0,9971 0,9969 0,9952 0,9848 0,9892 0,9892 0,9928

Mean Wind T 300 0,9966 0,9873 0,9917 0,9917 0,9946 1,0013 1.0001 0,9989 1,0032 1,0003 0,9980 0,9913 0,9937 0,9953 0,9962

Mean Wind L 300 0,9896 0,9721 0,9801 0,9774 0,9857 0,9960 0,9885 0,9897 0,9926 0,9934 0,9913 0,9772 0,9826 0,9818 0,9877

Mean Wind E 400 0,9936 0,9817 0,9872 0,9857 0,9910 0,9983 0,9937 0,9943 0,9970 0,9967 0,9950 0,9856 0,9892 0,9894 0,9927

Mean Wind T 400 0,9962 0,9872 0,9911 0,9911 0,9940 1,0007 0,9990 0,9980 1,0021 0,9996 0,9975 0,9908 0,9930 0,9946 0,9956

Mean Wind L 400 0,9894 0,9737 0,9802 0,9777 0,9855 0,9957 0,9893 0,9896 0,9925 0,9932 0,9911 0,9785 0,9827 0,9821 0,9876

Mean Wind E 500 0,9930 0,9798 0,9858 0,9842 0,9930 0,9978 0,9926 0,9931 0,9958 0,9959 0,9944 0,9841 0,9879 0,9879 0,9917

Mean Wind T 500 0,9960 0,9866 0,9904 0,9906 0,9936 1,0007 0,9993 0,9978 1,0022 0,9995 0,9974 0,9908 0,9926 0,9944 0,9953

Mean Wind L 500 0,9889 0,9719 0,9787 0,9761 0,9845 0,9952 0,9882 0,9883 0,9911 0,9922 0,9906 0,9772 0,9813 0,9805 0,9865

Mean Wind E 600 0,9918 0,9771 0,9841 0,9816 0,9886 0,9966 0,9901 0,9914 0,9933 0,9944 0,9933 0,9816 0,9863 0,9855 0,9904

Mean Wind L 600 0,9870 0,9680 0,9762 0,9722 0,9824 0,9932 0,9840 0,9854 0,9869 0,9898 0,9887 0,9734 0,9788 0,9767 0,9844

Mean Wind E 700 0,9902 0,9746 0,9818 0,9786 0,9866 0,9945 0,9870 0,9883 0,9894 0,9918 0,9915 0,9788 0,9836 0,9821 0,9881

Mean Wind L 700 0,9849 0,9648 0,9733 0,9684 0,9799 0,9905 0,9803 0,9817 0,9820 0,9866 0,9864 0,9713 0,9756 0,9725 0,9817

Mean Wind E 800 0,9899 0,9750 0,9821 0,9785 0,9866 0,9943 0,9873 0,9887 0,9895 0,9920 0,9913 0,9793 0,9841 0,9822 0,9883

Mean Wind L 800 0,9845 0,9650 0,9736 0,9680 0,9799 0,9902 0,9805 0,9820 0,9819 0,9867 0,9861 0,9702 0,9759 0,9723 0,9818

Mean Wind E 900 0,9899 0,9729 0,9812 0,9778 0,9863 0,9950 0,9869 0,9888 0,9901 0,9924 0,9914 0,9776 0,9833 0,9816 0,9880

Mean Wind L 900 0,9841∗ 0,9623∗ 0,9723∗ 0,9665∗ 0,9792∗ 0,9899∗ 0,9787 0,9810∗ 0,9809 0,9861∗ 0,9855∗ 0,9676∗ 0,9745∗ 0,9706∗ 0,9809∗

Note: The entries for the GARCH (1,1) expanding window method give the mean loss for this model. The entries for the combinations give the ratio of
the mean loss for each of them to the mean loss for the GARCH (1,1) expanding window method. A bold entry denotes the models in the Superior Set of
Models. The asterisk is in correspondence of the smallest mean loss among the forecasting methods. The forecasting methods are described in Table 4.
SNORM, SSTD and SGED indicate the standardized skew Normal distribution, the standardized skew Student−T distribution and the standardized skew
Generalized error distribution for the innovations, respectively.

same forecasting performance.
In the second step of the out-of-sample analysis, a comparison, in term of forecasting accuracy,

among the considered GARCH-type models and the best forecast combinations identified in the
previous analysis has been performed. Again, the model confidence set has been used at a confidence
level α = 0.15. The results are reported in Table 11 in which the entries give the ratio of the mean loss
for each of the selected forecasting method to the mean loss for the GARCH (1,1) expanding window
method with Normal error distribution. It is evident that the all the forecast combinations involving
the GJR-GARCH model and the EGARCH with skewed distributions of the innovations are always
excluded from the SSM. Moreover, the smallest value of the MSE and MAE loss functions is obtained
in correspondence of the GARCH (1,1) Student−T - mean window combination with v = 900 and
location weights; for QLIKE and MAD loss functions, it is in correspondence of the EGARCH (1,1)
Student−T - mean window combination with v = 700 and, again, with location weights; for MSD loss
function, it is in correspondence of the EGARCH (1,1) Student−T - mean window combination with
v = 700 and with equal weights. Once again, this result confirms the findings in [15] that a high value
of the parameter v and a forecasting scheme with location weights seem the best choice in forecasting
time series with structural breaks.
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Table 7. Out-of-sample volatility forecasting results for EGARCH (1,1) with symmetric
distributions: Loss functions

EGARCH (1,1) NORM EGARCH (1,1) STD EGARCH (1,1) GED

QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD

Expanding Wind 0,6421 0,2151 0,3802 0,1345 0,3081 0,6231 0,2075 0,3664 0,1278 0,2979 0,6310 0,2106 0,3721 0,1306 0,3021

RS Mean 1,0055 0,9978 1,0036 1,0063 1,0050 1,0056 1,0004 1,0063 1,0091 1,0070 1,0051 0,9985 1,0049 1,0071 1,0058

RS Mean Trim 1,0090 1,0175 1,0111 1,0188 1,0097 1,0087 1,0187 1,0126 1,0202 1,0108 1,0087 1,0179 1,0119 1,0194 1,0102

Mean Wind E 100 1,0043 1,0051 1,0046 1,0079 1,0044 1,0057 1,0166 1,0101 1,0148 1,0078 1,0043 1,0099 1,0070 1,0101 1,0056

Mean Wind T 100 1,0051 1,0135 1,0068 1,0122 1,0055 1,0068 1,0268 1,0129 1,0197 1,0091 1,0053 1,0191 1,0096 1,0149 1,0069

Mean Wind L 100 1,0072 1,0084 1,0095 1,0126 1,0085 1,0086 1,0208 1,0166 1,0201 1,0128 1,0070 1,0135 1,0124 1,0147 1,0098

Mean Wind E 200 1,0042 1,0044 1,0044 1,0075 1,0044 1,0054 1,0153 1,0096 1,0140 1,0075 1,0041 1,0089 1,0067 1,0095 1,0054

Mean Wind T 200 1,0056 1,0141 1,0075 1,0131 1,0061 1,0071 1,0270 1,0134 1,0204 1,0096 1,0057 1,0196 1,0102 1,0157 1,0075

Mean Wind L 200 1,0068 1,0068 1,0090 1,0114 1,0081 1,0078 1,0181 1,0155 1,0180 1,0119 1,0063 1,0113 1,0115 1,0131 1,0092

Mean Wind E 300 1,0038 1,0029 1,0037 1,0065 1,0039 1,0050 1,0136 1,0088 1,0127 1,0069 1,0037 1,0074 1,0059 1,0084 1,0049

Mean Wind T 300 1,0054 1,0118 1,0068 1,0120 1,0057 1,0070 1,0245 1,0126 1,0191 1,0092 1,0056 1,0174 1,0095 1,0145 1,0071

Mean Wind L 300 1,0061 1,0049 1,0076 1,0096 1,0071 1,0069 1,0157 1,0137 1,0157 1,0106 1,0056 1,0094 1,0100 1,0112 1,0080

Mean Wind E 400 1,0044 1,0053 1,0051 1,0081 1,0048 1,0053 1,0144 1,0096 1,0135 1,0075 1,0041 1,0090 1,0069 1,0096 1,0056

Mean Wind T 400 1,0056 1,0123 1,0075 1,0124 1,0063 1,0067 1,0231 1,0123 1,0184 1,0090 1,0055 1,0170 1,0097 1,0144 1,0073

Mean Wind L 400 1,0067 1,0081 1,0094 1,0117 1,0082 1,0071 1,0166 1,0146 1,0167 1,0111 1,0060 1,0113 1,0113 1,0126 1,0088

Mean Wind E 500 1,0040 1,0010 1,0035 1,0061 1,0040 1,0051 1,0120 1,0089 1,0123 1,0072 1,0037 1,0055 1,0056 1,0078 1,0049

Mean Wind T 500 1,0061 1,0118 1,0076 1,0130 1,0066 1,0072 1,0246 1,0135 1,0197 1,0099 1,0059 1,0172 1,0102 1,0151 1,0078

Mean Wind L 500 1,0061 1,0021 1,0076 1,0086 1,0072 1,0068 1,0126 1,0131 1,0145 1,0104 1,0054 1,0062 1,0094 1,0099 1,0078

Mean Wind E 600 1,0036 0,9994 1,0025 1,0046 1,0032 1,0047 1,0095 1,0077 1,0105 1,0063 1,0034 1,0037 1,0046 1,0063 1,0042

Mean Wind L 600 1,0048 0,9986 1,0051 1,0051 1,0053 1,0053 1,0080 1,0103 1,0103 1,0082 1,0042 1,0025 1,0070 1,0063 1,0058

Mean Wind E 700 0,9981 0,9881 0,9949∗ 0,9936 0,9969∗ 0,9991 0,9973 0,9994∗ 0,9988 0,9994∗ 0,9981 0,9921 0,9968∗ 0,9953 0,9978∗

Mean Wind L 700 0,9979∗ 0,9842∗ 0,9951 0,9913∗ 0,9970 0,9983∗ 0,9921∗ 0,9996 0,9954∗ 0,9996 0,9975∗ 0,9877∗ 0,9970 0,9924∗ 0,9978∗

Mean Wind E 800 0,9990 0,9900 0,9966 0,9960 0,9983 0,9993 0,9968 0,9999 0,9996 1,0001 0,9986 0,9928 0,9979 0,9969 0,9987

Mean Wind L 800 0,9994 0,9879 0,9976 0,9952 0,9991 0,9989 0,9932 1,0009 0,9975 1,0007 0,9985 0,9899 0,9990 0,9952 0,9994

Mean Wind E 900 1,0031 0,9947 1,0023 1,0031 1,0033 1,0038 1,0028 1,0065 1,0077 1,0057 1,0027 0,9978 1,0037 1,0041 1,0038

Mean Wind L 900 1,0029 0,9913 1,0026 1,0008 1,0034 1,0023 0,9964 1,0060 1,0031 1,0051 1,0017 0,9929 1,0035 1,0005 1,0034

Note: The entries for the EGARCH (1,1) expanding window method give the mean loss for this model. The entries for the combinations give the ratio of
the mean loss for each of them to the mean loss for the EGARCH (1,1) expanding window method. A bold entry denotes the models in the Superior Set
of Models. The asterisk is in correspondence of the smallest mean loss among the forecasting methods. The forecasting methods are described in Table
4. NORM, STD and GED indicate the standardized Normal distribution, the standardized Student−T distribution and the standardized Generalized error
distribution for the innovations, respectively.

4. Concluding Remarks

In this paper, focusing on GARCH-type class of models, we have empirically investigated the
effectiveness in forecasting of some combinations able to take into account possible structural breaks
in the observed time series. In particular, the combinations proposed in [15] have been evaluated and
compared to some alternatives suggested in [2, 3], focusing on S&P500 stock market index. In the
in-sample analysis, some alternative conditional volatility dynamics have been considered along with
different conditional distributions for the innovations. The Nyblom test evidences the presence of
parameter instability in S&P500 stock market index, in all the models and for all the assumed
distributions for the innovations. This result has been confirmed by analysing the unconditional
variance of the series; the k2 test, implemented with a binary segmentation search, has actually
identified structural breaks. In the out-of-sample analysis, for each model specification and for all the
considered distributions for the innovations, the proposed forecast combinations have been evaluated
and compared in terms of their predictive ability by using the model confidence set with five different
loss functions. The analysis has highlighted that, in general, the combinations offer a suitable
approach for forecasting in presence of structural breaks, confirming the findings in [2, 14].
Moreover, the combinations proposed in [15] seem to have better performance, especially when the
parameter v assumes high values and a forecasting scheme with location weights. By comparing the
considered GARCH-type models and the best forecast combinations identified in the previous
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Table 8. Out-of-sample volatility forecasting results for EGARCH (1,1) with skewed
distributions: Loss functions

EGARCH (1,1) SNORM EGARCH (1,1) SSTD EGARCH (1,1) SGED

QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD

Expanding Wind 0,6361 0,2121 0,3756 0,1322 0,3048 0,6225 0,2076 0,3661∗ 0,1277 0,2976∗ 0,6284 0,2098 0,3704 0,1297 0,3008

RS Mean 1,0028 0,9945 1,0000 1,0018 1,0018 1,0032 1,0003 1,0036 1,0054 1,0041 1,0021 0,9962 1,0013 1,0020 1,0022

RS Mean Trim 1,0075 1,0151 1,0089 1,0159 1,0079 1,0072 1,0176 1,0112 1,0174 1,0092 1,0066 1,0151 1,0093 1,0151 1,0078

Mean Wind E 100 1,0032 1,0042 1,0035 1,0066 1,0034 1,0074 1,0251 1,0141 1,0200 1,0104 1,0043 1,0133 1,0081 1,0115 1,0061

Mean Wind T 100 1,0043 1,0123 1,0059 1,0111 1,0048 1,0088 1,0352 1,0175 1,0253 1,0122 1,0058 1,0225 1,0113 1,0167 1,0079

Mean Wind L 100 1,0048 1,0061 1,0068 1,0092 1,0060 1,0094 1,0296 1,0201 1,0242 1,0145 1,0057 1,0160 1,0124 1,0140 1,0090

Mean Wind E 200 1,0029 1,0032 1,0030 1,0058 1,0031 1,0070 1,0236 1,0137 1,0189 1,0101 1,0039 1,0121 1,0076 1,0106 1,0057

Mean Wind T 200 1,0046 1,0126 1,0064 1,0116 1,0052 1,0089 1,0351 1,0177 1,0256 1,0125 1,0059 1,0225 1,0116 1,0170 1,0082

Mean Wind L 200 1,0041 1,0041 1,0059 1,0075 1,0052 1,0084 1,0264 1,0185 1,0216 1,0133 1,0049 1,0135 1,0112 1,0120 1,0080

Mean Wind E 300 1,0026 1,0019 1,0024 1,0049 1,0026 1,0065 1,0221 1,0127 1,0176 1,0093 1,0036 1,0109 1,0070 1,0096 1,0052

Mean Wind T 300 1,0044 1,0102 1,0055 1,0103 1,0046 1,0087 1,0328 1,0167 1,0243 1,0119 1,0056 1,0202 1,0107 1,0157 1,0077

Mean Wind L 300 1,0034 1,0024 1,0046 1,0058 1,0042 1,0074 1,0242 1,0167 1,0193 1,0119 1,0042 1,0118 1,0098 1,0102 1,0070

Mean Wind E 400 1,0028 1,0034 1,0032 1,0057 1,0031 1,0066 1,0217 1,0131 1,0177 1,0096 1,0037 1,0115 1,0075 1,0101 1,0055

Mean Wind T 400 1,0041 1,0095 1,0054 1,0097 1,0046 1,0083 1,0303 1,0159 1,0230 1,0114 1,0053 1,0189 1,0103 1,0148 1,0074

Mean Wind L 400 1,0036 1,0044 1,0056 1,0067 1,0048 1,0073 1,0235 1,0169 1,0192 1,0120 1,0041 1,0124 1,0103 1,0106 1,0072

Mean Wind E 500 1,0028 1,0003 1,0022 1,0046 1,0028 1,0064 1,0203 1,0127 1,0170 1,0094 1,0036 1,0091 1,0068 1,0090 1,0053

Mean Wind T 500 1,0051 1,0105 1,0066 1,0115 1,0057 1,0090 1,0330 1,0178 1,0248 1,0127 1,0061 1,0204 1,0115 1,0164 1,0084

Mean Wind L 500 1,0036 0,9997 1,0045 1,0048 1,0044 1,0071 1,0203 1,0157 1,0175 1,0115 1,0040 1,0084 1,0089 1,0088 1,0066

Mean Wind E 600 1,0017 0,9973 1,0001 1,0015 1,0011 1,0056 1,0169 1,0109 1,0143 1,0080 1,0028 1,0062 1,0051 1,0064 1,0040

Mean Wind L 600 1,0013 0,9945 1,0006 0,9994 1,0012 1,0051 1,0146 1,0120 1,0122 1,0085 1,0021 1,0034 1,0056 1,0039 1,0039

Mean Wind E 700 0,9964 0,9864 0,9927 0,9909 0,9949 1,0002 1,0045 1,0028 1,0028 1,0014 0,9977 0,9946 0,9974 0,9957 0,9978

Mean Wind L 700 0,9945∗ 0,9805∗ 0,9912∗ 0,9859∗ 0,9935∗ 0,9982∗ 0,9981∗ 1,0015 0,9975∗ 1,0001 0,9956∗ 0,9883∗ 0,9959∗ 0,9903∗ 0,9962∗

Mean Wind E 800 0,9971 0,9879 0,9943 0,9931 0,9962 1,0001 1,0033 1,0027 1,0029 1,0016 0,9979 0,9949 0,9981 0,9967 0,9984

Mean Wind L 800 0,9960 0,9837 0,9937 0,9896 0,9955 0,9987 0,9987 1,0025 0,9991 1,0011 0,9965 0,9902 0,9975 0,9927 0,9975

Mean Wind E 900 1,0013 0,9931 1,0001 1,0005 1,0014 1,0050 1,0112 1,0103 1,0124 1,0079 1,0024 1,0012 1,0047 1,0050 1,0040

Mean Wind L 900 0,9994 0,9871 0,9986 0,9952 0,9998 1,0022 1,0028 1,0076 1,0052 1,0055 0,9998 0,9937 1,0024 0,9984 1,0018

Note: The entries for the EGARCH (1,1) expanding window method give the mean loss for this model. The entries for the combinations give the ratio of
the mean loss for each of them to the mean loss for the GJR-GARCH (1,1) expanding window method. A bold entry denotes the models in the Superior Set
of Models. The asterisk is in correspondence of the smallest mean loss among the forecasting methods. The forecasting methods are described in Table 4.
SNORM, SSTD and SGED indicate the standardized skew Normal distribution, the standardized skew Student−T distribution and the standardized skew
Generalized error distribution for the innovations, respectively.

analysis, it has been highlighted that all the forecast combinations involving the GJR-GARCH model
and the EGARCH with skewed distributions of the innovations are always excluded from the SSM.
Furthermore, the EGARCH (1,1) model with Student−T innovations and GARCH (1,1) model with
the same error distribution, associated to forecast combinations with high values of v seem to have
better forecasting performance.

In any case, several different aspects should be further explored in future research to get a better
insight into the usage of the proposed forecast combinations. The procedure should be compared with
a component GARCH model, such as Spline GARCH, which is able to capture lower frequency
variations on the volatility like seasonality and trends, or GARCH-MIDAS, which allows to link the
daily observations on stock returns with macroeconomic variables, sampled at lower frequencies, in
order to examine directly the macroeconomic variables impact on the stock volatility.

Moreover, an application of the proposed methodology to forecast various risk measures such as
Value-at-Risk (VaR), Conditional VaR and coherent Expected Shortfall would also be of interest.
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Table 9. Out-of-sample volatility forecasting results for GJR-GARCH (1,1) with symmetric
distributions: Loss functions

GJR-GARCH (1,1) NORM GJR-GARCH (1,1) STD GJR-GARCH (1,1) GED

QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD

Expanding Wind 0,6123 0,2060 0,3627 0,1254 0,2941 0,5991 0,2028 0,3538 0,1211 0,2869 0,6046 0,2040 0,3575 0,1229 0,2899

RS Mean 0,9874 0,9793 0,9862 0,9763 0,9874 0,9917 0,9945 0,9951 0,9876 0,9936 0,9884 0,9854 0,9895 0,9801 0,9894

RS Mean Trim 0,9973 0,9992 0,9982 0,9961 0,9978 1,0002 1,0102 1,0050 1,0042 1,0024 0,9979 1,0033 1,0007 0,9986 0,9993

Mean Wind E 100 0,9892 0,9822 0,9886 0,9794 0,9895 0,9931 1,0008 0,9979 0,9912 0,9954 0,9897 0,9898 0,9918 0,9828 0,9910

Mean Wind T 100 0,9938 0,9908 0,9943 0,9886 0,9945 0,9976 1,0095 1,0038 1,0002 1,0005 0,9943 0,9981 0,9976 0,9919 0,9961

Mean Wind L 100 0,9823 0,9745 0,9817 0,9674 0,9827 0,9874 0,9998 0,9942 0,9831 0,9906 0,9829 0,9851 0,9859 0,9720 0,9847

Mean Wind E 200 0,9884 0,9809 0,9877 0,9780 0,9887 0,9922 0,9994 0,9968 0,9896 0,9945 0,9889 0,9884 0,9908 0,9813 0,9901

Mean Wind T 200 0,9930 0,9896 0,9934 0,9872 0,9936 0,9968 1,0086 1,0030 0,9989 0,9997 0,9935 0,9971 0,9967 0,9905 0,9952

Mean Wind L 200 0,9813 0,9727 0,9804 0,9654 0,9816 0,9861 0,9975 0,9925 0,9805 0,9891 0,9817 0,9831 0,9845 0,9698 0,9834

Mean Wind E 300 0,9879 0,9802 0,9872 0,9769 0,9881 0,9917 0,9994 0,9964 0,9887 0,9940 0,9883 0,9882 0,9903 0,9804 0,9896

Mean Wind T 300 0,9927 0,9887 0,9931 0,9863 0,9933 0,9966 1,0084 1,0028 0,9984 0,9995 0,9932 0,9965 0,9964 0,9898 0,9950

Mean Wind L 300 0,9806 0,9720 0,9796 0,9641 0,9807 0,9852 0,9974 0,9916 0,9792 0,9881 0,9810 0,9829 0,9837 0,9685 0,9826

Mean Wind E 400 0,9875 0,9803 0,9868 0,9763 0,9877 0,9910 0,9978 0,9954 0,9873 0,9932 0,9878 0,9874 0,9896 0,9793 0,9890

Mean Wind T 400 0,9917 0,9879 0,9921 0,9846 0,9924 0,9953 1,0056 1,0012 0,9959 0,9981 0,9921 0,9949 0,9951 0,9878 0,9938

Mean Wind L 400 0,9801 0,9721 0,9790 0,9632 0,9801 0,9843 0,9952 0,9902 0,9772 0,9870 0,9802 0,9818 0,9827 0,9671 0,9817

Mean Wind E 500 0,9867 0,9777 0,9855 0,9743 0,9867 0,9903 0,9969 0,9946 0,9859 0,9924 0,9870 0,9857 0,9885 0,9776 0,9880

Mean Wind T 500 0,9915 0,9868 0,9916 0,9840 0,9921 0,9955 1,0069 1,0015 0,9964 0,9983 0,9920 0,9951 0,9949 0,9876 0,9936

Mean Wind L 500 0,9792 0,9694 0,9776 0,9611 0,9791 0,9836 0,9943 0,9893 0,9758 0,9861 0,9794 0,9801 0,9815 0,9653 0,9807

Mean Wind E 600 0,9854 0,9753 0,9837 0,9718 0,9852 0,9892 0,9947 0,9930 0,9836 0,9910 0,9858 0,9833 0,9868 0,9752 0,9866

Mean Wind L 600 0,9774 0,9658 0,9751 0,9574 0,9769 0,9818 0,9909 0,9868 0,9722 0,9841 0,9777 0,9766 0,9791 0,9618 0,9786

Mean Wind E 700 0,9834 0,9718 0,9811 0,9679 0,9830 0,9871 0,9909 0,9903 0,9794 0,9887 0,9839 0,9801 0,9844 0,9714 0,9845

Mean Wind L 700 0,9747 0,9611 0,9715 0,9524 0,9739 0,9790 0,9855 0,9829 0,9665 0,9807 0,9751 0,9719 0,9755 0,9568 0,9756

Mean Wind E 800 0,9830 0,9715 0,9809 0,9675 0,9827 0,9859 0,9892 0,9891 0,9777 0,9876 0,9831 0,9790 0,9837 0,9704 0,9838

Mean Wind L 800 0,9746 0,9614 0,9717 0,9526 0,9740 0,9779 0,9842∗ 0,9819 0,9651 0,9797 0,9744 0,9714 0,9751 0,9561 0,9751

Mean Wind E 900 0,9835 0,9720 0,9818 0,9680 0,9834 0,9865 0,9917 0,9906 0,9790 0,9885 0,9833 0,9801 0,9843 0,9706 0,9842

Mean Wind L 900 0,9743∗ 0,9607∗ 0,9714∗ 0,9515∗ 0,9736∗ 0,9775∗ 0,9846 0,9816∗ 0,9641∗ 0,9792∗ 0,9738∗ 0,9708∗ 0,9744∗ 0,9546∗ 0,9744∗

Note: The entries for the GJR-GARCH (1,1) expanding window method give the mean loss for this model. The entries for the combinations give the ratio
of the mean loss for each of them to the mean loss for the GJR-GARCH (1,1) expanding window method. A bold entry denotes the models in the Superior
Set of Models. The asterisk is in correspondence of the smallest mean loss among the forecasting methods. The forecasting methods are described in
Table 4. NORM, STD and GED indicate the standardized Normal distribution, the standardized Student−T distribution and the standardized Generalized
error distribution for the innovations, respectively.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7195–7216.



7212

Table 10. Out-of-sample volatility forecasting results for GJR-GARCH (1,1) with skew
distributions: Loss functions

GJR-GARCH (1,1) SNORM GJR-GARCH (1,1) SSTD GJR-GARCH (1,1) SGED

QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD

Expanding Wind 0,6081 0,2041 0,3596 0,1238 0,2918 0,6001 0,2038 0,3547 0,1215 0,2874 0,6039 0,2044 0,3572 0,1228 0,2896

RS Mean 0,9867 0,9813 0,9861 0,9759 0,9868 0,9889 0,9940∗ 0,9920 0,9836 0,9903 0,9871 0,9867 0,9884 0,9784 0,9879

RS Mean Trim 0,9978 1,0011 0,9992 0,9972 0,9984 0,9981 1,0092 1,0028 1,0013 1,0001 0,9976 1,0041 1,0006 0,9982 0,9989

Mean Wind E 100 0,9890 0,9853 0,9896 0,9804 0,9897 0,9947 1,0095 1,0016 0,9964 0,9977 0,9903 0,9955 0,9938 0,9857 0,9921

Mean Wind T 100 0,9944 0,9937 0,9960 0,9906 0,9956 0,9997 1,0182 1,0081 1,0061 1,0034 0,9956 1,0037 1,0003 0,9956 0,9979

Mean Wind L 100 0,9815 0,9792 0,9827 0,9683 0,9825 0,9889 1,0114 0,9983 0,9890 0,9928 0,9831 0,9927 0,9881 0,9751 0,9855

Mean Wind E 200 0,9881 0,9840 0,9886 0,9788 0,9888 0,9937 1,0081 1,0004 0,9946 0,9967 0,9894 0,9941 0,9927 0,9841 0,9911

Mean Wind T 200 0,9935 0,9925 0,9950 0,9890 0,9946 0,9987 1,0174 1,0071 1,0046 1,0024 0,9946 1,0026 0,9992 0,9940 0,9968

Mean Wind L 200 0,9803 0,9774 0,9812 0,9661 0,9812 0,9875 1,0089 0,9964 0,9863 0,9912 0,9819 0,9905 0,9865 0,9726 0,9841

Mean Wind E 300 0,9876 0,9835 0,9880 0,9778 0,9882 0,9932 1,0085 1,000 0,9939 0,9961 0,9889 0,9942 0,9923 0,9833 0,9906

Mean Wind T 300 0,9931 0,9916 0,9945 0,9880 0,9942 0,9986 1,0176 1,0071 1,0043 1,0023 0,9943 1,0023 0,9990 0,9934 0,9966

Mean Wind L 300 0,9796 0,9769 0,9803 0,9647 0,9803 0,9866 1,0091 0,9955 0,9851 0,9902 0,9811 0,9907 0,9857 0,9715 0,9832

Mean Wind E 400 0,9869 0,9832 0,9874 0,9768 0,9876 0,9924 1,0061 0,9988 0,9920 0,9951 0,9882 0,9929 0,9913 0,9818 0,9897

Mean Wind T 400 0,9919 0,9908 0,9935 0,9860 0,9931 0,9970 1,0139 1,0050 1,0011 1,0006 0,9929 1,0002 0,9973 0,9908 0,9951

Mean Wind L 400 0,9787 0,9764 0,9794 0,9633 0,9794 0,9854 1,0057 0,9936 0,9824 0,9888 0,9801 0,9887 0,9843 0,9694 0,9820

Mean Wind E 500 0,9863 0,9811 0,9862 0,9751 0,9867 0,9917 1,0056 0,9980 0,9908 0,9944 0,9875 0,9918 0,9904 0,9805 0,9890

Mean Wind T 500 0,9918 0,9901 0,9931 0,9857 0,9929 0,9973 1,0159 1,0055 1,0019 1,0009 0,9930 1,0010 0,9974 0,9910 0,9951

Mean Wind L 500 0,9780 0,9743 0,9782 0,9615 0,9785 0,9847 1,0052 0,9927 0,9810 0,9879 0,9795 0,9876 0,9833 0,9680 0,9812

Mean Wind E 600 0,9847 0,9785 0,9841 0,9721 0,9848 0,9905 1,0035 0,9964 0,9885 0,9929 0,9861 0,9891 0,9885 0,9777 0,9873

Mean Wind L 600 0,9759 0,9704 0,9752 0,9573 0,9759 0,9829 1,0018 0,9901 0,9773 0,9856 0,9776 0,9837 0,9806 0,9641 0,9788

Mean Wind E 700 0,9827 0,9752 0,9816 0,9683 0,9826 0,9883 0,9995 0,9935 0,9840 0,9905 0,9842 0,9857 0,9861 0,9739 0,9852

Mean Wind L 700 0,9731 0,9659 0,9717 0,9523 0,9729 0,9801 0,9960 0,9861 0,9714 0,9822 0,9750 0,9789 0,9770 0,9591 0,9758

Mean Wind E 800 0,9821 0,9747 0,9812 0,9677 0,9823 0,9870 0,9973 0,9921 0,9821 0,9892 0,9833 0,9845 0,9852 0,9727 0,9844

Mean Wind L 800 0,9729 0,9661 0,9719 0,9523 0,9729 0,9788 0,9944 0,9850∗ 0,9698 0,9812 0,9743 0,9783∗ 0,9766 0,9583 0,9754

Mean Wind E 900 0,9825 0,9757 0,9821 0,9682 0,9829 0,9880 1,0018 0,9943 0,9845 0,9906 0,9837 0,9868 0,9864 0,9736 0,9851

Mean Wind L 900 0,9724∗ 0,9657∗ 0,9713∗ 0,9511∗ 0,9723∗ 0,9786∗ 0,9964 0,9853 0,9697∗ 0,9811∗ 0,9737∗ 0,9787 0,9761∗ 0,9572∗ 0,9747∗

Note: The entries for the GJR-GARCH (1,1) expanding window method give the mean loss for this model. The entries for the combinations give the
ratio of the mean loss for each of them to the mean loss for the GJR-GARCH (1,1) expanding window method. A bold entry denotes the models in
the Superior Set of Models. The asterisk is in correspondence of the smallest mean loss among the forecasting methods. The forecasting methods are
described in Table 4. SNORM, SSTD and SGED indicate the standardized skew Normal distribution, the standardized skew Student−T distribution and
the standardized skew Generalized error distribution for the innovations, respectively.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7195–7216.



7213

Table 11. Out-of-sample volatility forecasting results for GARCH-type models: Loss
functions

QLIKE MSE MAE MAD MSD QLIKE MSE MAE MAD MSD

GARCH (1,1) NORM - Mean Wind L 700 0,9862 0,9745 0,9693 0,9813 EGARCH (1,1) SSTD - Mean Wind E 700 0,9505 0,9771 0,9529 0,9506

GARCH (1,1) NORM - Mean Wind L 800 0,9858 0,9747 0,9690 0,9813 EGARCH (1,1) SSTD - Mean Wind L 700 0,9486 0,9708 0,9517 0,9289 0,9494

GARCH (1,1) NORM - Mean Wind L 900 0,9858 0,9608 0,9738 0,9679 0,9810 EGARCH (1,1) SSTD - Mean Wind E 800 0,9504 0,9759 0,9529 0,9508

GARCH (1,1) STD - Mean Wind L 700 0,9570 0,9424 0,9504 EGARCH (1,1) SSTD - Mean Wind L 800 0,9491 0,9714 0,9526 0,9304 0,9503

GARCH (1,1) STD - Mean Wind L 800 0,9568 0,9505 EGARCH (1,1) SSTD - Mean Wind L 900 0,9754 0,9575

GARCH (1,1) STD - Mean Wind L 900 0,9565 0,9353∗ 0,9417∗ 0,9244 0,9499 EGARCH (1,1) SGED - Expanding Wind 0,9564

GARCH (1,1) GED - Mean Wind L 900 0,9657 0,9395 0,9508 0,9364 0,9593 EGARCH (1,1) SGED - Mean Wind E 700 0,9542 0,9546 0,9541

GARCH (1,1) SNORM - Mean Wind L 700 0,9695 EGARCH (1,1) SGED - Mean Wind L 700 0,9522 0,9643 0,9531 0,9314 0,9526

GARCH (1,1) SNORM - Mean Wind L 800 0,9750 0,9695 EGARCH (1,1) SGED - Mean Wind E 800 0,9544

GARCH (1,1) SNORM - Mean Wind L 900 0,9746 0,9492 0,9607 0,9501 0,9688 EGARCH (1,1) SGED - Mean Wind L 800 0,9531

GARCH (1,1) SSTD - RS Mean 0,9572 0,9384 0,9448 0,9273 0,9519 GJR - GARCH (1,1) NORM - Mean Wind L 700 0,9912 0,9869 0,9897 0,9814 0,9909

GARCH (1,1) SSTD - Mean Wind L 700 0,9574 0,9430 0,9436 0,9288 0,9509 GJR - GARCH (1,1) NORM - Mean Wind L 800 0,9911 0,9872 0,9899 0,9816 0,9910

GARCH (1,1) SSTD - Mean Wind L 800 0,9571 0,9432 0,9439 0,9286 0,9510 GJR - GARCH (1,1) NORM - Mean Wind L 900 0,9908 0,9865 0,9895 0,9804 0,9906

GARCH (1,1) SSTD - Mean Wind L 900 0,9569 0,9415 0,9429 0,9277 0,9504 GJR - GARCH (1,1) STD - Mean Wind L 700 0,9762 0,9649

GARCH (1,1) SGED - Mean Wind L 900 0,9611 0,9388 0,9460 0,9309 0,9545 GJR - GARCH (1,1) STD - Mean Wind E 800 0,9798

EGARCH (1,1) NORM - Mean Wind E 700 0,9678 0,9716 0,9669 0,9544 0,9682 GJR - GARCH (1,1) STD - Mean Wind L 800 0,9649 0,9749 0,964 0,9454 0,9638

EGARCH (1,1) NORM - Mean Wind L 700 0,9676 0,9679 0,9671 0,9522 0,9684 GJR - GARCH (1,1) STD - Mean Wind L 900 0,9645 0,9753 0,9636 0,9444 0,9633

EGARCH (1,1) NORM - Mean Wind E 800 0,9687 GJR - GARCH (1,1) GED - Mean Wind L 700 0,9770 0,9727

EGARCH (1,1) STD - Expanding Wind 0,9488 0,9679 0,9479 0,9279 0,9475 GJR - GARCH (1,1) GED - Mean Wind E 800 0,9841

EGARCH (1,1) STD - RS Mean 0,9683 GJR - GARCH (1,1) GED - Mean Wind L 800 0,9764 0,9722

EGARCH (1,1) STD - Mean Wind E 700 0,9480 0,9652 0,9473 0,9267 0,9469∗ GJR - GARCH (1,1) GED - Mean Wind L 900 0,9732 0,9759 0,9715 0,9552 0,9723

EGARCH (1,1) STD - Mean Wind L 700 0,9472* 0,9602 0,9475 0,9236∗ 0,9471 GJR - GARCH (1,1) SNORM - Mean Wind L 700 0,9781 0,9777 0,9647 0,9793

EGARCH (1,1) STD - Mean Wind E 800 0,9482 0,9648 0,9478 0,9275 0,9475 GJR - GARCH (1,1) SNORM - Mean Wind L 800 0,9801 0,9782 0,9779 0,9647 0,9793

EGARCH (1,1) STD - Mean Wind L 800 0,9478 0,9614 0,9488 0,9255 0,9481 GJR - GARCH (1,1) SNORM - Mean Wind L 900 0,9796 0,9778 0,9773 0,9635 0,9787

EGARCH (1,1) STD - Mean Wind L 900 0,9644 GJR - GARCH (1,1) SSTD - Expanding Wind 0,9913

EGARCH (1,1) GED - Expanding Wind 0,9575 0,9739 0,9575 GJR - GARCH (1,1) SSTD - RS Mean 0,9853

EGARCH (1,1) GED - Mean Wind E 700 0,9557 0,9663 0,9547 0,9372 0,9553 GJR - GARCH (1,1) SSTD - Mean Wind L 700 0,9873

EGARCH (1,1) GED - Mean Wind L 700 0,9551 0,9619 0,9550 0,9345 0,9553 GJR - GARCH (1,1) SSTD - Mean Wind E 800 0,9886

EGARCH (1,1) GED - Mean Wind E 800 0,9562 0,9669 0,9558 0,9562 GJR - GARCH (1,1) SSTD - Mean Wind L 800 0,9648 0,9857 0,9663 0,9489 0,9643

EGARCH (1,1) GED - Mean Wind L 800 0,9561 0,9641 GJR - GARCH (1,1) SSTD - Mean Wind L 900 0,9647 0,9877 0,9666 0,9488 0,9642

EGARCH (1,1) GED - Mean Wind L 900 0,9670 GJR - GARCH (1,1) SGED - RS Mean 0,9883

EGARCH (1,1) SNORM - Mean Wind E 700 0,9564 GJR - GARCH (1,1) SGED - Mean Wind L 700 0,9805 0,9696

EGARCH (1,1) SNORM - Mean Wind L 700 0,9577 0,9555 0,9550 0,9353 0,9573 GJR - GARCH (1,1) SGED - Mean Wind E 800 0,9862

EGARCH (1,1) SSTD - Expanding Wind 0,9503 0,9727 0,9503 0,9313 0,9493 GJR - GARCH (1,1) SGED - Mean Wind L 800 0,9695 0,9800 0,9692 0,9524 0,9688

EGARCH (1,1) SSTD - RS Mean 0,973 0,9538 GJR - GARCH (1,1) SGED - Mean Wind L 900 0,9690 0,9803 0,9687 0,9513 0,9682

Note: The entries for the combinations give the ratio of the mean loss for each of them to the mean loss for the GARCH (1,1) NORM expanding
window method. A bold entry denotes the models in the Superior Set of Models. The asterisk is in correspondence of the smallest mean loss among
the forecasting methods. The forecasting methods are described in Table 4. NORM, STD and GED indicate the standardized Normal distribution, the
standardized Student−T distribution and the standardized Generalized error distribution for the innovations, respectively. SNORM, SSTD and SGED are
the asymmetric skewed extensions.
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