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Abstract: To eradicate plant diseases and maintain the number of infected plants below an economic
threshold, two impulsive plant-disease models with periodic and state-dependent nonlinear cultural
control are established. We focus on saturated nonlinear roguing (identifying and removing infected
plants), with three situations for healthy plants: constant replanting, proportional replanting and
proportional incidental removal. The global dynamics of the model with periodic impulsive effects
are investigated. We establish conditions for the existence and stability of the disease-free periodic
solution, the existence of a positive periodic solution and permanence. Latin Hypercube Sampling
is used to perform a sensitivity analysis on the threshold of disease extinction to determine the
significance of each parameter. Disease extinction will follow from increasing the harvesting rate,
increasing the intervention period or decreasing the replanting number. The global behavior of the
model with an economic threshold is established, including the existence and global stability of
periodic solutions. The results imply that the control methods have an important effect on disease
development, and the density-dependent parameter can decelerate extinction and accelerate the growth
of healthy plants. These findings suggest that we can successfully eradicate the disease or maintain
the infections below a certain level under suitable control measures. The analytic methods developed
here provide a general framework for exploring plant-disease models with nonlinear impulsive control
strategies.
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1. Introduction

Plant diseases, such as fungal, viral and bacterial diseases, are a key constraint in yield and quality
of cultivated crops worldwide, which often result in considerable economic losses and increased
poverty unless appropriate control measures are taken [1–3]. It is possible to influence the course of
disease development by applying curative chemicals. However, deleterious side effects may arise
from overuse of insecticides, such as buildup of toxic residues and loss of beneficial natural enemies
of vectors that could render the control ineffective [4]. Therefore plant pathologists and
climatologists, in collaboration with other researchers, have developed and implemented
economically and environmentally acceptable strategies to manage plant-disease development [5].
Such experiences have led to the development of integrated disease management (IDM) for plant
diseases that combines various methods such as chemical, cultural and biological tactics that function
effectively to minimize losses and maximize returns [3, 6, 7]. It has been recognized that one of the
main cultural strategies of IDM — control of crop sanitation through replanting healthy plants and
roguing infectious plants — has proven to be successful and is now a widely adopted control
strategy [8–12]. Diseases such as citrus tristeza disease, cocoa swollen shoot, plum pox and peach
mosaic have been successfully controlled by roguing [8, 13–16].

Based on IDM, mathematical models have become an increasingly important tool in the quantitative
and qualitative study of epidemic dynamics and disease progress [2, 5, 7, 9, 14, 17–21]. For example,
Madden et al. [22] proposed a number of ordinary differential equation (ODE) models that simulate the
spatial and temporal patterns of plant pathogens to understand, compare and summarize the population
dynamics of plant diseases in crops. A model of vegetatively propagated plant disease with continuous
roguing and replanting strategy established by van den Bosch et al. [23] reads as follows:

dS (t)
dt

= σ − βS (t)I(t) − ηS (t)

dI(t)
dt

= βS (t)I(t) − ηI(t) − ωI(t),
(1.1)

where S (t) and I(t) represent the numbers of susceptible and infected plants at time t, respectively; σ
is the continual replanting rate for the susceptible plants; η is the death or harvest rate; β denotes the
transmission rate, which is mediated by insects or other vectors; and ω represents the roguing rate for
the infected plants. The authors used the above model to determine the effect of disease-control
methods on the selection of virus strains. This model is a macro model, with the biological
mechanism as follows: the pathogen parasitizes in infected plants; the vector carries the pathogen
after contacting the infected plants and then brings the pathogen to the susceptible plants, so the
susceptible plants are then infected and transformed into infected plants, which can be cleared. A
common assumption for system (1.1) is that control occurs continuously. However, regular pulses
provide a more natural description for the control behaviour [24–26]. For instance, periodic removal
of infected plants was used in 1983 when Fishman et al. [14] analyzed a mathematical model for
citrus tristeza disease and determined the effectiveness of the eradication procedure. On the basis of
(1.1), Tang et al. [27] considered the cultural control in a periodic way, whose results implied that the
infected plants can be completely eradicated if the control period is relatively large.

Previous work considering the cultural control strategy for plant diseases has mainly focused on
models with constant roguing rates. However, the roguing rate is not always unchanged [28] but
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rather depends on a variety of factors such as the number of infected plants. In this case, the roguing
rate becomes a function of the number of infections, which leads to a nonlinear roguing rate. The
second aspect related to the cultural strategy is that not only is constant replanting feasible but also
that proportional replanting makes sense [7]. In addition, when infected plants are rogued, some
incidental susceptible plants may be removed accidentally (or deliberately), which we will consider
here. Little is known about the dynamics of plant diseases with consideration of the nonlinear
management, proportional replanting rate and incidental removal. Hence the first purpose of this
study is to extend model (1.1) by implementing periodic removing and replanting at critical times,
investigating disease dynamics analytically, seeking the main determinants of epidemic development
and evaluating whether current cultural control for plant diseases is effective enough to prevent further
spread of the disease.

IDM admits an economically viable threshold under which crop damage can be acceptable [3, 29,
30]. So the control criterion usually relates to the number of infections passing a threshold value
called the economic threshold (ET). The control strategy can only be implemented when the number
of infected individuals reaches the ET. This threshold policy satisfies both biological and economical
conditions and is thus used to make justified and strategic decisions [27]. The second aim of our
study is to further improve the model with a periodic control measure by taking the ET into account
in order to maintain the number of infections under the ET, to understand how disease spreads from a
theoretical point of view, to determine the impact of control strategies on disease progress and to show
the frequency of interventions if the plants exhibit regular and periodic development.

This paper is organised as follows. In Section 2, the impulsive model with periodic control is
established. The conditions under which the disease-free periodic solution is locally and globally
stable, and the system is persistent, are deduced; the existence conditions of positive periodic solution
are obtained by bifurcation theory. Partial rank correlation coefficients are used to assess the impact
of parameters on the threshold value that determines the dynamics of the system. In Section 3, we
investigate the existence and global stability of one- and two-periodic solutions of the state-dependent
impulsive differential model with the ET, where a fold bifurcation occurs. The period of the solution
is derived, and the effects of control methods are examined. Finally, some biological conclusions are
discussed.

2. The plant-disease model with periodic control strategy

In this section, we extend model (1.1) by replacing the continuous cultural control measure with a
periodic pulse strategy, since the latter is more realistic. Hence the plant-disease model with impulsive
removing and replanting strategy at fixed moments is as follows:

dS (t)
dt

= −βS (t)I(t) − ηS (t) t , nT

dI(t)
dt

= βS (t)I(t) − ηI(t) t , nT

S (nT +) = pS (nT ) + σ t = nT

I(nT +) =

(
1 −

ω

1 + αI(nT )

)
I(nT ) t = nT,

(2.1)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7022–7056.



7025

where α denotes density dependence, T represents the period of deploying control, σ is the constant
replanting parameter and n ∈ N. The parameter p has different meanings in different ranges. If p = 1,
there is only constant replanting. If p > 1, then it represents the proportional replanting rate. If
0 < p < 1, then it represents the proportional removal residual rate, which accounts for the fact that,
when the infected plants are rogued, some susceptible plants will be removed accidentally. There are
two reasons for this. On the one hand, the susceptible plants near infected plants are at greater risk
of infection. Therefore, in order to prevent the spread of disease, when we rogue infected plants, we
may choose to remove some nearby susceptible plants at the same time as a precaution. On the other
hand, if the infected plants are rogued by mechanical operation, it is likely that some of the nearby
susceptible plants will be removed incidentally.

The nonlinear roguing function is chosen to reflect the effect of saturation. If the number of infected
plants is small, then the impulse is approximately

I(nT +) ≈ (1 − ω)I(nT ),

in line with standard forms of impulsive control. However, if the number of infected plants is large,
then the number of plants that could be removed in practice is limited and will approximate

I(nT +) ≈ I(nT ) −
ω

α
,

with the understanding that this quantity is not negative (since I(nT +) is large). That is, in a large
outbreak, the number of plants removed at each impulse is approximately constant.

Note that, while we are using plant diseases with a vector as our focus, model (2.1) has a much
wider range of applications. These could include herbivory or a drosophila colony infesting a fruit
tree in an orchard. Our results will thus be generalisable beyond what is usually thought of as plant
diseases.

2.1. The existence and stability of the disease-free periodic solution

If I(t) = 0, then model (2.1) becomes the following subsystem:

dS (t)
dt

= −ηS (t) t , nT

S (nT +) = pS (nT ) + σ t = nT

S (0+) = S 0.

(2.2)

System (2.2) exhibits a positive periodic solution S ∗(t) that is globally asymptotically stable if 0 < p ≤
1 or p > 1 and p exp(−ηT ) < 1. See Theorem A.1 in the Appendix. The disease-free periodic solution
(S ∗(t), 0) of model (2.1), where

(S ∗(t), 0) =
(
σ exp(−η(t−nT ))

1−p exp(−ηT ) , 0
)
, t ∈ (nT, (n + 1)T ], n ∈ N, (2.3)

is feasible if 0 < p ≤ 1 or if p > 1 and p exp(−ηT ) < 1.

Theorem 2.1. The disease-free periodic solution (S ∗(t), 0) of (2.1) is locally asymptotically stable in
the first quadrant, provided that one of the following conditions is satisfied:
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(C1) 0 < p ≤ 1 and R1 < 1;

(C2) p > 1, p exp(−ηT ) < 1 and R1 < 1.

Here,

R1 = (1 − ω) exp
(
βσ(1 − exp(−ηT ))
η(1 − p exp(−ηT ))

− ηT
)
. (2.4)

Proof. Denote U(t) = S (t) + I(t). Then, according to the first and second equations of (2.1), we get
dU(t)

dt = −ηU(t), which yields U(t) = U(nT +) exp(−η(t− nT )), t ∈ (nT, (n + 1)T ], n ∈ N. It follows from
(2.1) that

dS (t)
dt

= −βS (t)I(t) − ηS (t) = −βS (t)(U(t) − S (t)) − ηS (t), t ∈ (nT, (n + 1)T ].

For t ∈ (nT, (n + 1)T ], we get the analytical solution for the S component,

S (t) =
S (nT +)U(nT +)e−(βU(nT +)−η2nT )/η

S (nT +)eη(t−nT )e−(βU(nT +)−η2nT )/η + I(nT +)e−(βU(nT +)e−η(t−nT )−η2t)/η
. (2.5)

Similarly, we have

I(t) =
I(nT +)U(nT +)e(βU(nT +)+η2nT )/η

I(nT +)eη(t−nT )e(βU(nT +)+η2nT )/η + S (nT +)e(βU(nT +)e−η(t−nT )+η2t)/η
. (2.6)

Denote Xn = S (nT +), Yn = I(nT +), Un = U(nT +). Then the difference equations that describe the
numbers of susceptible and infected plants at an impulse in terms of values at the previous impulse are
deduced as follows:

Xn+1 =
pXnUne−ηT

Xn + YneβUn(1−e−ηT )/η
+ σ,

Yn+1 =
YnUne−ηT eβUn(1−e−ηT )/η

Xn + YneβUn(1−e−ηT )/η

−
ωYnUne−ηT eβUn(1−e−ηT )/η

Xn + YneβUn(1−e−ηT )/η + αYnUne−ηT eβUn(1−e−ηT )/η
.

(2.7)

This is a Poincaré map at the impulsive points of model (2.1). Fixed points of system (2.7) correspond
to the initial values of periodic solutions of model (2.1). The stability of the disease-free periodic
solution of model (2.1) is equivalent to the stability of the boundary steady state of the difference
equations (2.7) [31]. There exists a boundary steady state

(
σ

1−p exp(−ηT ) , 0
)

for system (2.7) that is locally
stable if the absolute values of eigenvalues of the following matrix are less than one: p exp(−ηT ) p exp(−ηT ) − p exp(−ηT ) exp

(
βσ(1−exp(−ηT ))
η(1−p exp(−ηT ))

)
0 (1 − ω) exp

(
βσ(1−exp(−ηT ))
η(1−p exp(−ηT )) − ηT

)  . (2.8)

If (C1) or (C2) holds, then λ1 = p exp(−ηT ) < 1 and λ2 = (1 − ω) exp
(
βσ(1−exp(−ηT ))
η(1−p exp(−ηT )) − ηT

)
< 1.

Therefore, under conditions (C1) or (C2), the disease-free periodic solution (S ∗(t), 0) of (2.1) is locally
asymptotically stable. �
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Theorem 2.2. If one of the following conditions holds true, then the disease-free periodic solution
(S ∗(t), 0) of (2.1) is globally asymptotically stable in the first quadrant:

(C3) 0 < p ≤ 1 and R1
2 < 1;

(C4) p > 1, p exp(−ηT ) < 1 and R2
2 < 1.

Here,

R1
2 =

1 − ω

1 + ασ
1−exp(−ηT )

 exp
(
βσ(1 − exp(−ηT ))
η(1 − p exp(−ηT ))

− ηT
)
,

R2
2 =

1 − ω

1 + ασ
1−p exp(−ηT )

 exp
(
βσ(1 − exp(−ηT ))
η(1 − p exp(−ηT ))

− ηT
)
.

(2.9)

Proof. We first consider the case of 0 < p ≤ 1. It follows from (2.1) that

dU(t)
dt

= −ηU(t) t , nT

U(nT +) ≤ U(nT ) + σ t = nT

U(0+) = U0,

from which we get

U(nT +) ≤ U0 exp(−nηT ) +
σ

(
1 − exp(−nηT )

)
1 − exp(−ηT )

→
σ

1 − exp(−ηT )
for n→ ∞.

Thus U(t) is uniformly bounded and, for ε1 > 0 small enough, there exists a t1 > 0 such that S (t), I(t) ≤
L1 with t ≥ t1 for every solution (S (t), I(t)) of (2.1), where L1 = σ

1−exp(−ηT ) + ε1.
If R1 < R1

2 < 1, then, by Theorem 2.1, (S ∗(t), 0) is locally asymptotically stable. In order to show
the global stability of (S ∗(t), 0), we only need to prove its global attractiveness.

It follows from (2.1) that dS (t)/dt ≤ −ηS (t), S (nT +) = pS (nT )+σ. Consider the following system:

dZ1(t)
dt

= −ηZ1(t) t , nT

Z1(nT +) = pZ1(nT ) + σ t = nT

Z1(0+) = S (0+),

(2.10)

which yields S (t) ≤ Z1(t) and Z1(t) → S ∗(t) as t → ∞ by Theorem A.1 and the comparison theorem
on impulsive differential equations [32]. Hence, for ε2 > 0 small enough and large t, we have

S (t) ≤ Z1(t) < S ∗(t) + ε2. (2.11)

Hence there exists a t2 such that t2 ≥ t1 and (2.11) is true for all t ≥ t2. From (2.1), we get

dI(t)
dt
≤ β(S ∗(t) + ε2)I(t) − ηI(t) t , nT

I(nT +) =

(
1 −

ω

1 + αI(nT )

)
I(nT ) t = nT

I(0+) = I0,

(2.12)
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for t ≥ t2. It follows from R1
2 < 1 and sufficiently small ε1 and ε2 that

δ1 ≡

1 − ω

1 + ασ
1−exp(−ηT ) + αε1

 exp
(∫ T

0
(β(S ∗(t) + ε2) − η) dt

)
< 1. (2.13)

Making use of the comparison theorem on impulsive differential equations again, we get

I((n + 1)T ) ≤ I(nT +) exp
(∫ (n+1)T

nT
(β(S ∗(t) + ε2) − η) dt

)
=

(
1 −

ω

1 + αI(nT )

)
I(nT ) exp

(∫ (n+1)T

nT
(β(S ∗(t) + ε2) − η) dt

)
≤ δ1I(nT ),

(2.14)

which gives I(nT ) ≤ I0δ
n
1; hence I(nT )→ 0 as n→ ∞. Therefore I(t)→ 0 as t → ∞.

Next, we will prove that if lim
t→∞

I(t) = 0, then S (t)→ S ∗(t) as t → ∞.
The result lim

t→∞
I(t) = 0 shows that, for ε3 > 0 small enough, there exists a t3 such that t3 ≥ t2 and

0 < I(t) < ε3 for t ≥ t3. Thus, for t ≥ t3,

S (t)(−βε3 − η) ≤
dS (t)

dt
≤ −ηS (t), (2.15)

from which the following equations are obtained:

dZ2(t)
dt

= (−βε3 − η)Z2(t) t , nT

Z2(nT +) = pZ2(nT ) + σ t = nT

Z2(0+) = S (0+).

(2.16)

This system has a positive globally attractive periodic solution Z∗2(t) for t ∈ (nT, (n + 1)T ], where
Z∗2(t) =

σ exp((−βε3−η)(t−nT ))
1−p exp((−βε3−η)T ) with Z∗2(nT +) = σ

1−p exp((−βε3−η)T ) . The comparison theorem gives Z2(t) ≤ S (t) ≤
Z1(t), Z2(t) → Z∗2(t) and Z1(t) → S ∗(t) as t → ∞. Therefore there is a t4 for ε4 > 0 small enough such
that t4 ≥ t3 and, for t ≥ t4,

Z∗2(t) − ε4 < S (t) < S ∗(t) + ε4. (2.17)

Let ε3 → 0 in (2.17), so that Z2(t)→ S ∗(t). Then (2.17) becomes

S ∗(t) − ε4 < S (t) < S ∗(t) + ε4.

Hence S (t)→ S ∗(t) as t → ∞. We have proved the global stability of the disease-free periodic solution
(S ∗(t), 0) of (2.1) under condition (C3).

The case of p > 1 can be proved by the same method as above, so we omit it here. The only point
that needs to be illustrated is that, from (2.1), we have

dU(t)
dt

= −ηU(t) t , nT

U(nT +) ≤ pU(nT ) + σ t = nT

U(0+) = U0,

(2.18)
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which yields

U(nT +) ≤ U0(p exp(−ηT ))n +
σ

(
1 − (p exp(−ηT ))n)
1 − p exp(−ηT )

→
σ

1 − p exp(−ηT )

for n → ∞, since p exp(−ηT ) < 1. Hence U(t) is uniformly bounded. Then (S ∗(t), 0) is globally
asymptotically stable provided (C4) is satisfied. �

It is interesting to note that the condition R1 < 1, which is independent of α, cannot guarantee
the global stability of (S ∗(t), 0). This shows that the density-dependent factor α plays a key role in
global stability. With the condition R1 < 1 < R2

2, we can find parameters such that p < 1 (Figure 1A),
p = 1 (Figure 1B) or p > 1 (Figure 1C). The disease-free periodic solution is locally asymptotically
stable [33, 34]. However, using this parameter set, we can see that there are some initial data from
which solutions approach a positive periodic solution and finally persist (Figure 1).
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Figure 1. Behaviour of solutions of model (2.1) under different parameter sets that govern
local stability of the disease-free periodic solution. Three solution trajectories: (A) p =

0.5, β = 0.026 suggesting R1 = 0.9779 and R1
2 = 1.0813; (B) p = 1, β = 0.0108 suggesting

R1 = 0.9864 and R1
2 = 1.0907; (C) p = 1.1, β = 0.00745 suggesting R1 = 0.9770, R2

2 =

1.0818. The different initial values are (S 0, I0) = (15, 2), (S 0, I0) = (20, 1) and (S 0, I0) =

(10, 5). Other parameters are fixed as follows: η = 0.14, σ = 5, ω = 0.1, α = 1 and T = 2.1.
The impulsive effect occurs in both susceptible (top) and infected (bottom) plants, but is more
pronounced in susceptibles.

2.2. Permanence

The persistence of the system indicates that both susceptible and infected plants can keep surviving.
If our goal is to eliminate infected plants, then the persistence suggests control strategies fail to achieve
it. Meanwhile, the permanent conditions obtained from analyzing the system can provide scientific
support for us to identify the key factors that result in failure and the effectiveness of control strategies,
then guide us to establish a good treatment program.

Theorem 2.3. If one of the following conditions holds, then model (2.1) is permanent:

(C5) 0 < p ≤ 1 and R1 > 1;

(C6) p > 1, p exp(−ηT ) < 1 and R1 > 1.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7022–7056.
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Here, R1 is denoted by (2.4).

Proof. First, suppose (C5) is satisfied. From the boundedness of (2.1), if ε1 > 0 is small enough, there
exists a t1 > 0 such that S (t) ≤ L1, I(t) ≤ L1 for all t ≥ t1, where L1 = σ

1−exp(−ηT ) + ε1. The following
system is obtained for all t ≥ t1:

dS (t)
dt
≥ −(βL1 + η)S (t) t , nT

S (nT +) = pS (nT ) + σ t = nT

S (0+) = S 0,

(2.19)

which gives

S (nT +) ≥ S 0(p exp(−(βL1 + η)T ))n +
σ(1 − (p exp(−(βL1 + η)T ))n)

1 − p exp(−(βL1 + η)T )

→
σ

1 − p exp(−(βL1 + η)T )
as n→ ∞.

Thus, for ε2 > 0 sufficiently small, there is a constant L2 =
σ exp(−(βL1+η)T )

1−p exp(−(βL1+η)T ) − ε2 such that S (t) ≥ L2 for
t large enough. Therefore there exists a t2 such that t2 ≥ t1 and S (t) ≥ L2 for all t ≥ t2. Next, we shall
find an L3 > 0 such that I(t) ≥ L3 for t large enough.

Since R1 > 1, we can choose ε3 and L4 small enough such that

δ2 ≡ (1 − ω) exp
(∫ (n+1)T

nT
(β(Z∗(t) − ε3) − η) dt

)
> 1,

where Z∗(t) =
σ exp(−(βL4+η)(t−nT ))

1−p exp(−(βL4+η)T ) , t ∈ (nT, (n + 1)T ]. We will prove I(t) < L4 cannot hold for all t ≥ t2.

Otherwise, we have
dS (t)

dt
≥ (−βL4 − η)S (t) t , nT

S (nT +) = pS (nT ) + σ t = nT

S (0+) = S 0.

(2.20)

Consider the following system:

dZ(t)
dt

= (−βL4 − η)Z(t) t , nT

Z(nT +) = pZ(nT ) + σ t = nT

Z(0+) = S 0,

(2.21)

which has a positive periodic solution Z∗(t) and, for any solution Z(t) of (2.21), we have |Z(t)−Z∗(t)| →
0 as t → ∞, where Z∗(t) is expressed as above and Z∗(nT +) = σ

1−p exp((−βL4−η)T ) . Moreover, there exists a
t3 such that t3 ≥ t2 and S (t) ≥ Z(t) ≥ Z∗(t) − ε3 for t ≥ t3. Thus

dI(t)
dt
≥ (β(Z∗(t) − ε3) − η)I(t) t , nT

I(nT +) ≥ (1 − ω)I(nT ) t = nT

I(0+) = I0,

(2.22)
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for t ≥ t3. Take N∗ ∈ N and N∗T ≥ t3. Integrate (2.22) on (nT, (n + 1)T ], n ≥ N∗, and then

I((n + 1)T ) ≥ I(nT +) exp
(∫ (n+1)T

nT
(β(Z∗(t) − ε3) − η) dt

)
≥ (1 − ω)I(nT ) exp

(∫ (n+1)T

nT
(β(Z∗(t) − ε3) − η) dt

)
= δ2I(nT ).

(2.23)

Hence I((N∗ + n)T ) ≥ I(N∗T )δn
2 → ∞ as n → ∞, which is a contradiction. Hence there exists a t4

such that t4 ≥ t2 and I(t4) ≥ L4. If I(t) ≥ L4 for all t ≥ t4, then let L3 = L4. The proof then follows.
Otherwise, take t5 = inft>t4{I(t) < L4}. There are two possible cases to be considered.

Case 1: t5 = N1T, N1 ∈ N. Then I(t) ≥ L4 for t ∈ [t4, t5] and I(t+
5 ) < L4. Because S (t) ≥ L2 for

t ≥ t2, the following system is obtained:

dI(t)
dt
≥ (βL2 − η)I(t) t , nT

I(nT +) ≥ (1 − ω)I(nT ) t = nT

I(0+) = I0.

(2.24)

Since βS (t) − η ≥ βL2 − η for all t ≥ t2 and if βL2 − η > 0, (2.1) will be persistent. The case to be
considered is βL2 − η < 0. Take N2, N3 ∈ N such that

N2T >
− ln(ε3/(L1 + Z∗(0+)))

βL4 + η

and
(1 − ω)N2 exp((βL2 − η)n2T )δN3

2 > (1 − ω)N2 exp((βL2 − η)(N2 + 1)T )δN3
2 > 1.

Set t6 = (N2 +N3)T. Then there must be a t7 ∈ (t5, t5 +t6] such that I(t7) ≥ L4.Otherwise, considering
(2.21) with Z(t+

5 ) ≤ S (t+
5 ), we have

Z(t) = Z(t+
5 ) exp((−βL4 − η)(t − t5)) = Z∗(t) + (Z(t+

5 ) − Z∗(0+)) exp((−βL4 − η)(t − t5))

for t ∈ (nT, (n + 1)T ] and N1 ≤ n ≤ N1 + N2 + N3 − 1. Then

|Z(t) − Z∗(t)| ≤ (L1 + Z∗(0+)) exp((−βL4 − η)n2T ) < ε3 and Z∗(t) − ε3 ≤ Z(t) ≤ S (t)

for t5 + N2T ≤ t ≤ t5 + t6. By a similar analysis to that of (2.22) and (2.23), we get I(t5 + t6) ≥
I(t5 + N2T )δN3

2 . Integrating (2.24) on [t5, t5 + N2T ] yields I(t5 + N2T ) ≥ (1 −ω)N2 L4 exp((βL2 − η)N2T )
and I(t5 + t6) ≥ (1 − ω)N2 L4 exp((βL2 − η)N2T )δN3

2 > L4, which gives a contradiction.
Set t8 = inft>t5{I(t) > L4}. Then I(t) ≤ L4 for t ∈ (t5, t8) and I(t8) ≥ L4. For t ∈ (t5, t8), let

t ∈ (t5 + (K1 − 1)T, t5 + K1T ], K1 ∈ N and K1 ≤ N2 + N3. It follows from (2.24) that

I(t) ≥ I((t5 + (K1 − 1)T )+) exp((βL2 − η)(t − t5 − (K1 − 1)T ))
≥ (1 − ω)I(t5 + (K1 − 1)T ) exp((βL2 − η)(t − t5 − (K1 − 1)T ))
≥ (1 − ω)K1 L4 exp((βL2 − η)(t − t5))
≥ (1 − ω)N2+N3 L4 exp((βL2 − η)(N2 + N3)T ).

(2.25)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7022–7056.



7032

Let L5 = (1 − ω)N2+N3 L4 exp((βL2 − η)(N2 + N3)T ). Thus I(t) ≥ L5 for t ∈ (t5, t8). Since I(t8) ≥ L4, the
same argument can be continued for t > t8.

Case 2: t5 , N1T, N1 ∈ N. Then I(t) ≥ L4 for t ∈ [t4, t5] and I(t5) = L4. Suppose t5 ∈ (N4T, (N4 +

1)T ), N4 ∈ N. There exist two situations for t ∈ (t5, (N4 + 1)T ) to be considered.
(1) I(t) ≤ L4 for t ∈ (t5, (N4 + 1)T ). We claim that there must be a t9 ∈ [(N4 + 1)T, (N4 + 1)T + t6]

such that I(t9) > L4. Otherwise, consider (2.21) with Z((N4 + 1)T +) ≤ S ((N4 + 1)T +). Then

Z(t) = Z((N4 + 1)T +) exp((−βL4 − η)(t − (N4 + 1)T ))
= Z∗(t) + (Z((N4 + 1)T +) − Z∗(0+)) exp((−βL4 − η)(t − (N4 + 1)T ))

for t ∈ (N1T, (N1 + 1)T ] and N4 + 1 ≤ N1 ≤ N4 + N2 + N3. Using a similar analysis as Case 1, we get
I((N4 + 1)T + t6) ≥ I((N4 + 1)T + N2T )δN3

2 . Integrating (2.24) on [t5, (N4 + 1)T + N2T ] yields

I((N4 + 1)T + N2T ) ≥ (1 − ω)N2 L4 exp((βL2 − η)(N2 + 1)T )

and
I((N4 + 1)T + t6) ≥ (1 − ω)N2 L4 exp((βL2 − η)(N2 + 1)T )δN3

2 > L4,

which is a contradiction.
Let t10 = inft>t5{I(t) > L4}. Then I(t) ≤ L4 for t ∈ (t5, t10) and I(t10) ≥ L4. For t ∈ (t5, t10), take

t ∈ (N4T + (K2 − 1)T,N4T + K2T ], K2 ∈ N with K2 ≤ N2 + N3 + 1. It follows from (2.24) that

I(t) ≥ I((N4 + K2 − 1)T +) exp((βL2 − η)(t − (N4 + K2 − 1)T ))
≥ (1 − ω)I((N4 + K2 − 1)T ) exp((βL2 − η)(t − (N4 + K2 − 1)T ))
≥ (1 − ω)K2−1L4 exp((βL2 − η)(t − N4T ))
≥ (1 − ω)N2+N3 L4 exp((βL2 − η)(N2 + N3 + 1)T ).

(2.26)

Let L6 = (1 −ω)N2+N3 L4 exp((βL2 − η)(N2 + N3 + 1)T ), which satisfies L6 < L5. Therefore I(t) ≥ L6 for
t ∈ (t5, t10). The same argument can be continued for t > t10 because I(t10) ≥ L4.

(2) There exists a t11 ∈ (t5, (N4+1)T ) such that I(t11) > L4. Let t12 = inft>t5{I(t) > L4}. Then I(t) ≤ L4

for t ∈ (t5, t12) and I(t12) ≥ L4. Integrate (2.24) on [t5, t12). We have

I(t) ≥ I(t5) exp((βL2 − η)(t − t5)) ≥ L4 exp((βL2 − η)T ) > L5 > L6.

For t > t12, the same argument can be continued since I(t12) ≥ L4. Set L3 = L6. It follows from the
above discussion that I(t) ≥ L3 for all t ≥ t4.

Secondly, the case with (C6) can be investigated by making use of the same method as the one with
(C5), so here we omit it. �

From the preceding three theorems, we see that R1 < 1 is only the locally asymptotically stable
condition of the periodic solution (S ∗(t), 0) of (2.1), and the key threshold conditions for extinction
vs. persistence of the disease are Ri

2 < 1 (i = 1, 2) and R1 > 1 respectively. Therefore, R1 should not
be interpreted as an R0-like quantity. Note that the pathogen can persist despite the repeated removal
of infected plants. This is because, between roguing events, the infection has a chance to spread to
new hosts, thus sustaining it in the long term, in balance with the removal in the form of an impulsive
periodic orbit.
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Moreover, R1 < Ri
2 holds true if p exp(−ηT ) < 1 is valid. What we are interested in next is to

examine what will happen under the condition R1 < 1 < Ri
2 (i = 1, 2). Figure 2 shows that, for

R1 < 1 < Ri
2, there are some solutions approaching disease-free periodic solution regardless of the

value of p. The parameters chosen here are the same as those in Figure 1, in which there are some
solutions that eventually tend to a positive periodic solution, depending on initial values. Hence the
dynamics of model (2.1) cannot be determined when R1 < 1 < Ri

2 holds. A problem arising here is to
determine the conditions for the existence of a positive periodic solution. Therefore, in the study that
follows, we shall examine this issue.
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Figure 2. Basic behaviour of solutions of model (2.1) with different initial values and
parameters: (S 0, I0) = (3, 0.2), (S 0, I0) = (1, 0.1), (S 0, I0) = (2, 0.3). Three solution
trajectories: (A) p = 0.5; (B) p = 1; (C) p = 1.1. All other parameters are as in Figure 1.

2.3. Existence of the positive periodic solution

Generally speaking, we can take advantage of difference equations of impulsive points (2.7) for
the detailed calculation of the initial values of positive periodic solutions that refer to the positive
fixed points of (2.7). However, analytically solving the interior equilibria of (2.7), corresponding
to its positive fixed points, is difficult. In this subsection, we use bifurcation theory to investigate
the existence of a positive periodic solution of model (2.1) near the disease-free periodic solution by
setting the impulsive period T as the bifurcation parameter [35]. We use the following notations in
model (2.1):

dS (t)
dt

= −βS (t)I(t) − ηS (t) ≡ F1(S (t), I(t)) t , nT

dI(t)
dt

= βS (t)I(t) − ηI(t) ≡ F2(S (t), I(t)) t , nT

S (nT +) = pS (nT ) + σ ≡ θ1(S (nT ), I(nT )) t = nT

I(nT +) =

(
1 −

ω

1 + αI(nT )

)
I(nT ) ≡ θ2(S (nT ), I(nT )) t = nT.

(2.27)

Using Theorem A.2 (see Appendix), we can deduce the following theorem concerning the existence
of a positive periodic solution.

Theorem 2.4. The supercritical branch occurs at the point T0 satisfying R1(T0) = 1 and p exp(−ηT0) <
1. Namely, the system will have a positive periodic solution when T > T0 and is close to T0, provided
one of the following conditions of model (2.1) holds:
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(C7) 0 < p < 1, A1 < 0 and A2 > 0;

(C8) 0 < p < 1, A1 > 0 and A2 + A3 < 0;

(C9) p = 1 and A2 + A3 < 0;

(C10) p > 1 and A2 + A3 < 0.

Here, A1 = η +
βσ exp(−ηT0)(p exp(−ηT0)+pηT0−1)

(1−p exp(−ηT0))2 , A2 = −2αω
(1−ω)2 +

2βT0 p( 1
1−ω−exp(−ηT0))

1−p exp(−ηT0) and

A3 = βT0

(
1 − exp

(
βσ(exp(−ηT0)−1)
η(1−p exp(−ηT0))

))
.

Proof. See the Appendix. �

The above theorem reveals that a positive periodic solution exists under some conditions once the
disease-free periodic solution loses its local stability. To simulate its existence, appropriate parameters
are chosen, in accordance with Theorem 2.4, and Figure 3 is obtained. The periodic solution trajectory
in Figure 3A, 3B, 3C and 3D is associated with Conditions (C7), (C8), (C9) and (C10), respectively.
We can see from the four figures that the numbers of both susceptible and infected plants fluctuate
periodically with one impulse per period.
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Figure 3. Four positive periodic solution trajectories of model (2.1). The positive periodic
solution with (A) p = 0.5, β = 0.0894, η = 0.1, σ = 1.12, α = 0.2, ω = 0.1,T0 = 1.8993,T =

1.9993 and (S 0, I0) = (1.8854, 0.0443) satisfies Condition (C7); (B) p = 0.5, β = 0.0275, η =

0.14, σ = 5, α = 1, ω = 0.1,T0 = 2,T = 2.1, (S 0, I0) = (7.0324, 4.2984) satisfies Condition
(C8); (C) p = 1, β = 0.0108, η = 0.14, σ = 5, α = 1, ω = 0.1,T0 = 2,T = 2.1 and (S 0, I0) =

(16.8859, 2.4617) satisfies Condition (C9); (D) p = 1.1, β = 0.00745, η = 0.14, σ = 5, α =

1, ω = 0.1,T0 = 2,T = 2.1 and (S 0, I0) = (24.7299, 1.6906) satisfies Condition (C10).
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It is essential to mention that the condition p exp(−ηT ) < 1 is a sufficient condition for the
existence of the disease-free periodic solution and a positive periodic solution. An interesting
question arising here is what the dynamic behaviour of model (2.1) would be when p exp(−ηT ) > 1.
Our numerical simulations show that, aside from a periodic solution with one impulse per period,
there exists a periodic solution with period N̄T, N̄ ∈ N, which indicates that several impulses occur
per period, as shown in Figures 4A and 4B. In particular, periodic solutions with a more complex
period or chaotic attractors may exist if the transmission rate is relatively small. Figure 4C shows the
numbers of both plants at impulsive points corresponding to the initial values of periodic solutions as
the transmission rate β varies.

We note that the results in Figures 3 and 4 are highly dependent on initial conditions. Although
Theorem 2.4 proves that periodic behaviour is possible and our simulations illustrate this, the results
do not easily extend to a greater range of parameter values or initial conditions (results not shown). It
follows that the biological significance of these two figures may be limited, so these figures should be
considered for illustrative purposes only.

0 5 10 15 20 25 30
8

10

12

14

16

t

S

(A)

0 5 10 15 20 25 30
9

9.2

9.4

9.6

t

I

0 50 100 150 200
0

500

1000

1500

2000

t

S

(B)

0 50 100 150 200
0

500

1000

1500

2000

t

I

Figure 4. The dynamic behaviour of solutions of model (2.1) for p exp(−ηT ) > 1. (A) The
periodic trajectory with p = 1.5, β = 0.015, η = 0.15, σ = 2.5, α = 1, ω = 0.5,T = 2
and (S 0, I0) = (15.3248, 9.0691). (B) The periodic trajectory with p = 1.5, β = 0.0005, η =

0.15, σ = 2.5, α = 0.01, ω = 0.1,T = 1 and (S 0, I0) = (509.8074, 1807.2). (C) Bifurcation
diagrams with respect to parameter β at impulsive points with p = 1.5, η = 0.14, σ = 5, α =

1, ω = 0.1,T = 2.1 and β ∈ [1.1 × 10−6, 1.999 × 10−5].
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Table 1. Parameter values.
Parameter Definition Range (p ≤ 1) Range (p > 1)
η Death/harvest rate 0.001–0.9 [23] 0.1–0.9
T Period 0.01–10 2–10
σ Replanting number 0.1–5 0.1–5
p Proportional removal residual /replanting rate 0.01–1 1.005–1.22
α Density dependence 0.01–10 0.01–10
ω Roguing rate 0.1–0.99 0.1–0.99
β Transmission rate 0.000001–0.09 [23] 0.000001–0.09 [23]

2.4. Sensitivity analysis

Our analysis indicates that Ri
2 < 1 (i = 1, 2) are significant threshold conditions on the extinction of

plant diseases. To determine the significance of each parameter in predicting the outcome of the
disease, we explore the parameter space by performing an uncertainty analysis using Latin Hypercube
Sampling (LHS) with 1000 simulations per run. LHS is a statistical sampling method developed by
McKay et al. that selects an effective cross-secton of parameter variations within the ranges of values
observed empirically [2, 36]. Sensitivity analysis is performed by evaluating partial rank correlation
coefficients (PRCCs) for various input parameters against output variables (in our case, Ri

2 (i = 1, 2)),
and then the key parameters are determined. In the absence of available data on the distribution
functions, we chose a uniform distribution for all input parameters within the minimum and
maximum values shown in Table 1 [23] and evaluated PRCCs for all parameters of model (2.1).

It follows from Figure 5 that the three parameters with the greatest impact on the outcome are the
death/harvest rate η, the period T and the replanting rate σ. In particular, increasing η or T decreases Ri

2
(i = 1, 2), while increasing σ leads to an increase in Ri

2. The roguing rate ω has a moderate decreasing
effect on R1

2 for 0 < p ≤ 1 (shown in Figure 5A); however, it has only a minor impact on disease spread
for p > 1 (Figure 5B). The proportional replanting rate with p > 1 has a greater effect in Figure 5B
than the reductive rate for 0 < p ≤ 1 in Figure 5A.

−0.8 −0.6 −0.4 −0.2 0 0.2

Transmission rate

Roguing rate

Density dependence

Proportional residual rate

Replanting number

Period

Death/harvest rate

(A)

−0.6077

0.0350

0.0654

0.0275

−0.7191

0.1705

−0.0766

−0.8 −0.6 −0.4 −0.2 0 0.2

Transmission rate

Roguing rate

Density dependence

Proportional replanting rate

Replanting number

Period

Death/harvest rate

(B)

−0.5308

0.0688

0.0679

0.0292

0.0594

−0.0490

−0.7872

Figure 5. Partial rank correlation coefficient sensitivity analysis on the extinction threshold
of model (2.1). (A) Sensitivity analysis of R1

2 to all parameters when 0 < p ≤ 1. (B)
Sensitivity analysis of R2

2 to all parameters when p > 1.
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Since R1
2 depends significantly on η and T , we used the algebraic expression for R1

2 to plot a
three-dimensional surface (Figure 6), illustrating the dependence on these two parameters. All other
parameter values were chosen as the midpoints of their ranges in Table 1. The outcome indicates that
high values of η or small values of T will guarantee R1

2 < 1. In particular, if η remains unchanged,
then R1

2 > 1 unless the period T is small; that is, if the death/harvesting rate is fixed, then control
measures of sufficiently frequent roguing need to be taken to maintain a disease-free state.

Figure 6. Dependence of R1
2 on the period and the death/harvest rate. The outcome is much

more sensitive to changes in the death/harvest rate; if this is large, then R1
2 < 1. However, if

this quantity is small, then R1
2 is large unless the period can be sufficiently reduced. Hence the

disease can be eliminated if the death/harvest rate or the frequency of roguing is sufficiently
large. The parameters are: p = 0.5, β = 0.05, σ = 2.5, ω = 0.5 and α = 5.

Compared to previous studies on plant diseases [23, 27], an important feature of our work here is
that the nonlinear roguing rate is included. In view of our sensitivity analysis, we see that the density
dependence α has a moderate impact on the threshold. Using (2.7), we examine how α influences the
development of the disease, especially the extinction speed of infected plants. See Figure 7. It can be
seen that when α = 0.01, 0.05, 0.1 and 1, the infections go to extinction after going through 10, 12, 15
and 22 impulses, respectively. This implies that the nonlinear roguing slows down the extinction speed
of infections.

So far, the dynamics of the plant-disease model with periodic cultural control strategy have been
investigated. The results show that infected plants can be eradicated provided certain conditions are
satisfied. However, complete eradication of infected plants may consume massive resources that are
not biologically or economically desirable. An important concept in IDM refers to the economic
threshold (ET), at which the control measures should be implemented to prevent an increasing number
of infected plants from reaching the economic injury level.
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Figure 7. The effect of α on Yn as defined by (2.7). The larger the value of α, the lower the
likelihood of extinction of infected plants. The other parameters are: p = 1.2, β = 0.006, η =

0.15, σ = 2.5, ω = 0.5 and T = 2.

3. The plant-disease model with economic threshold

In order to measure up to the standard of IDM, we use the ET in crop production. Under this
threshold policy, roguing and replanting management needs to be deployed only when the number of
infected plants reaches the ET. In such a way, significant economic losses can be avoided. The main
purpose of this section is to extend model (2.1) by taking the ET into consideration for the infected
plants, resulting in a state-dependent impulsive model:

dS (t)
dt

= −βS (t)I(t) − ηS (t) I(t) < ET

dI(t)
dt

= βS (t)I(t) − ηI(t) I(t) < ET

S (t+) = pS (t) + σ I(t) = ET

I(t+) =

(
1 −

ω

1 + αI(t)

)
I(t) I(t) = ET.

(3.1)

3.1. The existence of the periodic solution

We initially focus on the existence of a periodic solution of (3.1) with one impulsive effect per
period denoted by τ. In such a case, the solution is called a first-order τ-periodic solution. Before the
main conclusions are presented, the following definition of the Lambert W function needs to be given.

Definition 3.1. [37] The Lambert W function is defined to be multi-valued inverse of the function
z→ zez satisfying

LambertW(z)exp(LambertW(z)) = z.

It is easy to see that the function zez has the positive derivative (z + 1)ez if z > −1. The inverse
function of zez restricted on the interval [−1,∞] is defined by LambertW(0, z). For simplicity, we
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define LambertW(0, z) ≡ LambertW(z). Similarly, we define the inverse function of zez restricted on
the interval (−∞,−1] to be LambertW(−1, z).

If the initial number of infected plants is larger than or equal to the ET, then we implement the
roguing strategy until the number falls below the ET. After that, the value will no longer exceed the
ET, because, once it reaches the ET, the removal strategy will be carried out. Hence, without loss of
generality, we can assume that the initial number of infected plants is less than the ET.

It follows from the first and second equations of (3.1) that any solution (S (t), I(t)) starting from
(S 0, I0) does not experience any impulsive effect if S 0 < η

β
and I0 < ET. Thus, to investigate the

existence of the periodic solution, we concentrate on the region Ω = {(S (t), I(t)) | S (t) > η

β
, I(t) ≤ ET }.

Theorem 3.1. Let d(x) = f1(x) − f2(x), f1(x) =
β

η

(
1
p − 1

)
x − h

η
−

βσ

pη , f2(x) = ln
(

1
p (1 − σ

x )
)
, h =

−η ln
(

1
1− ω

1+αET

)
−

βωET
1+αET , X∗ =

(
σ/2 +

√
(σ/2)2 +

ησ

β
(

1
p−1

)
)

and X∗ = σ +
pη
β
. Then model (3.1) has a

unique first-order τ-periodic solution if one of the following conditions is satisfied:

(H1) p = 1, d(X∗) > 0 and −h
η
−

βσ

η
< 0;

(H2) p > 1 and d(X∗) > 0;

(H3) 0 < p < 1, X∗ >
η

β
and d(X∗) = 0;

(H4) 0 < p < 1, X∗ >
η

β
and d(X∗) < 0.

Moreover, model (3.1) has two first-order τ-periodic solutions if the following condition holds:

(H5) 0 < p < 1, X∗ >
η

β
, d(X∗) > 0 and d(X∗) < 0.

Proof. Let (S (t), I(t)) be any solution of model (3.1) initiating from (S 0, I0), where S 1 = S (τ), I1 =

I(τ) = ET, S +
1 = S (τ+) and I+

1 = I(τ+). Without loss of generality, set I0 =
(
1 − ω

1+αET

)
ET. For

t ∈ (0, τ], the solution satisfies the first integral

β(S (t) − S 0) − η ln
(
S (t)
S 0

)
= −η ln

(
I(t)
I0

)
− β(I(t) − I0), (3.2)

which yields

β(S 1 − S 0) − η ln
(
S 1

S 0

)
= −η ln

(
1

1 − ω
1+αET

)
−

βωET
1 + αET

≡ h; (3.3)

that is,

−
β

η
S 1 exp

(
−
β

η
S 1

)
= −

β

η
S 0 exp

(
−

h
η
−
β

η
S 0

)
. (3.4)

It follows from the properties of the Lambert W function that

S 1 = −
η

β
Lambert W

(
−1,−

β

η
S 0 exp

(
−

h
η
−
β

η
S 0

))
. (3.5)

If the initial value (S 0, I0) is selected such that

S +
1 = S 0, I+

1 = I0, (3.6)
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then the solution (S (t), I(t)) is a τ-periodic solution. Since I+
1 = I0 is satisfied, we next show the

existence of the horizontal coordinate of initial value (S 0, I0). According to (3.6) and S 1 >
η

β
, we have

S 0 > σ +
pη
β
≡ X∗ and

−
pη
β

Lambert W
(
−1,−

β

η
S 0 exp

(
−

h
η
−
β

η
S 0

))
+ σ = S 0, (3.7)

which is equivalent to d(S 0) = 0. Thus the existence of τ-periodic solutions of model (3.1) is converted
into the existence of the positive solutions of d(x) = 0 with x > X∗. In view of S 1 < S 0 and S 1 >

η

β
,

we have 1 < S 0
S 1

= p + σ
S 1
< p +

βσ

η
. Hence X∗ >

η

β
should be satisfied. There are several cases to be

considered.
(1) (H1) is true. Then

S 0 =
σ

1 − exp(−h
η
−

βσ

η
)
> σ +

pη
β
, (3.8)

which shows that d(S 0) = 0 has a unique root satisfying S 0 > X∗.
(2) (H2) is valid. According to

d′(x) =

β

η

(
1
p − 1

) (
x2 − σx − σ

β
η

(
1
p−1

))
x(x − σ)

, (3.9)

we have d′(x) < 0 for x > X∗. Thus there exists an S 0 such that S 0 > X∗ and d(S 0) = 0 since d(X∗) > 0
and d(x) is a monotonically decreasing continuous function.

(3) (H3) holds. It is easy to prove that X∗ > X∗ if X∗ >
η

β
. Hence X∗ is the horizontal coordinate we

want to obtain.
(4) (H4) holds. It follows from (3.9), X∗ > X∗ and d′(X∗) = 0 that d′(x) < 0 for x ∈ (X∗, X∗);

furthermore, d′(x) > 0 for x ∈ (X∗,+∞). Then 0 > d(X∗) > d(X∗). It follows that there is an S 0 such
that d(S 0) = 0 with S 0 > X∗ since d(X∗) < 0.

(5) (H5) is valid. According to d(X∗) > 0, d(X∗) < 0 and X∗ > X∗, we know that there exists an S 1
0

such that d(S 1
0) = 0 with X∗ < S 1

0 < X∗ because of the continuity of d(x). Since d(x) is increasing if
x > X∗ and d(X∗) < 0, there is an S 2

0 such that d(S 2
0) = 0 with S 2

0 > X∗.
Consequently, a unique positive root or two positive roots of d(x) = 0 with x > X∗ exist provided

one condition of Theorem 3.1 is satisfied, which means that there is a unique periodic solution or two
periodic solutions of (3.1) if conditions (Hi) (i = 1, . . . , 5) hold true. �

Figure 8 illustrates the existence of the first-order periodic solution. Figure 8A shows the unique
periodic solution if (H4) holds. With (H1), (H2) or (H3), the results are similar to Figure 8A, so we
omit them. Figure 8B gives an example of two periodic solutions through the establishment of the
assumption (H5), in which the same parameter set is taken but different initial values are chosen.

3.2. The period of the first-order τ-periodic solution

Taking the ET into consideration, we refer to the roguing and replanting strategies as “density-
dependent control measures”. The action to be carried out is to examine and count the number of
infected plants so as to determine whether it exceeds the ET or not. In view of Theorem 3.1, plant
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Figure 8. The periodic solutions of model (3.1) with p = 0.5, η = 0.1, σ = 5, α = 0.4, ω =

0.5 and ET = 10. (A) The periodic solution satisfying Condition (H4) with β = 0.06 and
(S 0, I0) = (8.5011, 9). (B) Two periodic solutions satisfying condition (H5) with the same
parameter values and initial values as follows: (S 1

0, I0) = (6.5225, 9) (dashed) and (S 2
0, I0) =

(7.6514, 9) (solid), where β = 0.035.

levels could periodically oscillate with maximum value at the ET, which indicates that the control can
be implemented at τ intervals, provided the value of τ is given. Then the density-dependent control
measure can be converted to a periodic control strategy. Such an approach will not only reduce the
number of infected plants to a economically viable level but it will also allow us to deploy strategies
periodically, which is more convenient and effective than counting the number of infected plants. Based
on this, we derive the basic expression of τ for the periodic solution.

It follows from (2.5) and (2.6) that the periodic solution (S (t), I(t)) of model (3.1) initiating from
(S 0, I0) with I0 =

(
1 − ω

1+αET

)
ET and U0 = S 0 + I0 reads

S (t) =
S 0U0 exp(−ηt)

S 0 + I0 exp((βU0(1 − exp(−ηt)))/η)
(3.10)

and

I(t) =
S 0U0 exp(−ηt) exp((βU0(1 − exp(−ηt)))/η)

S 0 + I0 exp((βU0(1 − exp(−ηt)))/η)
(3.11)

for t ∈ (0, τ]. Combining the above equations with S 0 = pS (τ) + σ yields

S 0U0 exp(−ητ)
S 0 + I0 exp((βU0(1 − exp(−ητ)))/η)

=
1
p

(S 0 − σ), (3.12)

which can be solved with respect to τ by the properties of the Lambert W function:

τ = −
1
η

ln
(
S 0 − σ

pU0
+

η

βU0
Lambert W

(
βI0(S 0 − σ)

pηS 0
exp

(
βU0

η
−
β(S 0 − σ)

pη

)))
. (3.13)

In view of (3.13), the period τ of each periodic solution shown in Figure 8 can be easily calculated
as follows

τ8A = 0.2892, τ8B(S 1
0,I0) = 1.7388, τ8B(S 2

0,I0) = 0.8446.
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3.3. The nonexistence of the order-2 periodic solution

Suppose an order-2 periodic solution of (3.1) exists. Denote

l1 =

{
(S (t), I) | I =

(
1 −

ω

1 + αET

)
ET ≡ I∗

}
, l2 = {(S (t), I) | I = ET }. (3.14)

Without loss of generality, take P1 = (S P1 , I
∗) ∈ l1 as the initial point, as depicted in Figure 9. The

solution starting from P1 will reach line l2 at the point Q1 = (S Q1 , ET ). Let the bottom-left side of
the phase trajectory P̃1Q1 between two lines be the region Ω1, and let the top-right side be Ω2. An
impulsive effect will occur at Q1. If Q1 jumps to the point P1, then a first-order periodic solution P̃1Q1

is obtained, while if Q1 jumps to the point P2 = (S P2 , I
∗) ∈ Ω1, the solution starting from P2 will reach

the point Q2 = (S Q2 , ET ) ∈ l2, where S Q2 < S Q1 due to the uniqueness of solutions. Then an order-2
periodic solution exists if and only if Q2 jumps to P1. It follows from (3.1) that

S P2 = pS Q1 + σ and S Q+
2

= pS Q2 + σ,

which give S Q+
2
< S P2 < S P1 . Thus it is impossible for Q2 to jump to P1, and hence an order-2 periodic

solution does not exist. We obtain the same result if Q1 jumps to a point of l1 in Ω2. Similarly, the
existence of order-n periodic solutions with n ≥ 2 can also be ruled out.

S

I

P1P2

Q1Q2

11
12

l2

l1

Figure 9. Illustration of the nonexistence of an order-2 periodic solution of model (3.1).
The path of the solution trajectory is as follows: P1 → Q1 → P2 → Q2 → P1, which is
impossible.

3.4. The stability of the periodic solution

Suppose the solution starting from the point Pk = (S Pk , I
∗) ∈ l1 reaches the line l2 at the point

Qk = (S Qk , ET ), at which an impulse occurs. Then it jumps to Pk+1 = (S Pk+1 , I
∗) ∈ l1, where I∗, l1, l2
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are as in (3.14). Using the same method as before, we get a similar equation to (3.7) for the horizontal
coordinates of successive impulsive points Pk and Pk+1,

S Pk+1 = −
pη
β

Lambert W
(
−1,−

β

η
S Pk exp

(
−

h
η
−
β

η
S Pk

))
+ σ ≡ f (S Pk), (3.15)

where −β
η
S Pk exp

(
−h
η
−

β

η
S Pk

)
∈ [−e−1, 0); i.e., −β

η
S Pk exp(−β

η
S Pk) ≥ − exp(−1 + h

η
), k = 1, 2, . . . It

follows that
S Pk ∈ (0, S min] ∪ [S max,+∞), (3.16)

with
S min = −

η

β
Lambert W

(
−e(−1+ h

η )
)
, S max = −

η

β
Lambert W

(
−1,−e(−1+ h

η )
)
, (3.17)

and S min <
η

β
< S max. Therefore (3.15) is well-defined for S Pk ≥ S max due to the fact that (S Pk , I

∗) ∈ Ω.

In fact, the trajectory starting from the point (S max, I∗) will reach the point ( η
β
, ET ) ∈ l2 and be tangent

to l2, whereupon it will tend to (0, 0). Hence, if S max = X∗, then d(X∗) = 0; however, the solution
starting from (X∗, I∗) is not the periodic solution. In addition, (3.15) refers to the Poincaré map at the
impulse points of (3.1); it is easy to prove that f (x) with x > η

β
is a concave function since f ′′(x) < 0.

Denote g(S ) = −
β

η
S exp

(
−h
η
−

β

η
S
)
. Then

d f (S )
dS

= −
pη
β

Lambert W (−1, g(S ))
(1 + Lambert W(−1, g(S ))) g(S )

dg(S )
dS

=
Lambert W(−1, g(S ))

1 + Lambert W(−1, g(S ))
p(βS − η)

βS
.

(3.18)

According to (3.7), we get the following result for the periodic solution with initial value (S 0, I∗):

d f (S )
dS

∣∣∣∣∣
S =S 0

=
Lambert W(−1, g(S 0))

1 + Lambert W(−1, g(S 0))
p(βS 0 − η)

βS 0

=
−

β

pη (S 0 − σ)

1 − β

pη (S 0 − σ)

p(βS 0 − η)
βS 0

=
(S 0 − σ)(1 − β

η
S 0)

S 0

(
1 − β

pη (S 0 − σ)
) ≡ λS 0 .

(3.19)

3.4.1. The local stability of the periodic solution

It follows from S 0 > X∗ = σ +
pη
β

that λS 0 > 0. Using a theorem from Tang & Xiao [38], the local
stability of the periodic solution can be determined by λS 0 , which means that if λS 0 < 1, it is locally
asymptotically stable, while if λS 0 > 1, it is unstable.

Theorem 3.2. The unique first-order τ-periodic solution of model (3.1) is unstable if it satisfies (H1)
or (H2); locally asymptotically stable if it satisfies (H4); and undergoes a fold bifurcation if it satisfies
(H3). Moreover, if model (3.1) has two first-order τ-periodic solutions under condition (H5), then the
periodic solution with a smaller horizontal coordinate is unstable and the one with a larger horizontal
coordinate is locally asymptotically stable.
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Proof. From (3.19), we have

λS 0 − 1 =

β

η
S 0(S 0 − σ)( 1

p − 1) − σ

S 0

(
1 − β

pη (S 0 − σ)
) . (3.20)

We consider the following five situations:
(1) If (H1) is valid, then λS 0 − 1 = −σ

S 0
(
1− βη (S 0−σ)

) > 0. Thus λS 0 > 1, which shows that the periodic

solution is unstable in this case.
(2) If (H2) holds, then λS 0 > 1 holds true because 1

p − 1 < 0. We thus find that the periodic solution
is unstable.

(3) If (H3) is satisfied, then β

η
S 0(S 0 − σ)( 1

p − 1) − σ = 0 if S 0 = X∗, so λS 0 = 1. Hence a fold
bifurcation occurs here [39].

(4) If (H4) is satisfied, then, according to the process of the proof of Theorem 3.1, it can be seen
that S 0 > X∗, from which we have β

η
S 0(S 0 −σ)( 1

p − 1)−σ > 0 and λS 0 < 1. It follows that the periodic
solution is locally asymptotically stable.

(5) If (H5) holds, then we get X∗ < S 1
0 < X∗ and S 2

0 > X∗. Thus β

η
S 0(S 0 − σ)( 1

p − 1) − σ < 0 for
S 0 = S 1

0, and β

η
S 0(S 0 − σ)( 1

p − 1) − σ > 0 for S 0 = S 2
0, which yields λS 1

0
> 1 and λS 2

0
< 1. As a result,

the periodic solution with S 1
0 is unstable and the one with S 2

0 is locally asymptotically stable. �

3.4.2. The global stability of the periodic solution

Previous analysis illustrates that the periodic solution with 0 < p < 1 under (H4) or the one with S 2
0

is locally asymptotically stable. We now turn our attention to global stability.

Claim 3.1.
d(X∗) < 0⇐⇒ S max < X∗ (3.21)

Proof. See the Appendix. �

Theorem 3.3. The first-order τ-periodic solution of model (3.1) satisfying (H4) is globally
asymptotically stable in Ω∗ = {(S (t), I(t)) | S (t) > S max, I(t) ≤ ET }.

Proof. We only need to prove the global attractiveness of the periodic solution. It follows from (3.15)
that

f (S Pk) − S Pk = −
pη
β

Lambert W
(
−1,−

β

η
S Pk exp

(
−

h
η
−
β

η
S Pk

))
+ σ − S Pk . (3.22)

Define functions

g1(S ) = −Lambert W(−1, g(S )) and g2(S ) =
β

pη
(S − σ).

If S > η

β
, then

dg1(S )
dS

=
Lambert W(−1, g(S ))

1 + Lambert W(−1, g(S ))

(
β

η
−

1
S

)
> 0 and

dg2(S )
dS

=
β

pη
> 0.
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Functions g1(S ) and g2(S ) are well-defined for all S ≥ S max. Both functions are monotonically
increasing with respect to S , so, without loss of generality, we choose (S max, I∗) as the first point.
Because g1(S max) = 1, we get

g1(S max) > g2(S max)⇔ S max < X∗. (3.23)

Under condition (H4), the unique periodic solution exists. Claim 3.1 and (3.23) mean that
model (3.1) satisfies g1(S max) > g2(S max). Hence g1(S ) and g2(S ) intersect at S 0 with S 0 > X∗; that is,
g1(S 0) = g2(S 0). It follows from (3.19) that f ′(S Pk) > 0. On the basis of above analysis, the following
results are obtained:

(1) If S max < S Pk < S 0, then g1(S Pk) > g2(S Pk), which gives f (S Pk) > S Pk . According to the
monotonicity of f , we have f (S Pk) < f (S 0) = S 0. Thus S Pk < f (S Pk) < S 0.

(2) If S Pk > S 0, then g1(S Pk) < g2(S Pk), which yields f (S Pk) < S Pk . Furthermore, f (S Pk) >

f (S 0) = S 0. Hence S 0 < f (S Pk) < S Pk .

Therefore the periodic solution in this situation is globally attractive and thus is globally
asymptotically stable in Ω∗. This completes the proof. �

We have examined the existence and stability of a first-order τ-periodic solution under certain
conditions. Global stability of the first-order τ-periodic solution is obtained if condition (H4) holds
true. It is interesting to investigate global behaviour of model (3.1) under conditions other than (H4).
By applying the same argument as above, we will address this issue in detail.

Case 1: p = 1.
(1) g1(S max) > g2(S max).
It is easy to see from Claim 3.1 and (3.23) that d(X∗) < 0 and there does not exist any periodic

solution. Then g1(S Pk) > g2(S Pk) is always valid for S Pk > S max, which indicates f (S Pk) > S Pk ; that
is, S Pk+1 > S Pk . Thus the number of the healthy plants will tend to infinity and the number of infected
plants can be maintained below the ET.

(2) g1(S max) < g2(S max) and − h
η
−

βσ

η
< 0.

In this case, (H1) holds true so that model (3.1) has a unique periodic solution. Then g1(S ) and g2(S )
only intersect at S 0. If S max < S Pk < S 0, then g1(S Pk) < g2(S Pk) and S Pk+1 < S Pk , which shows the
solution will satisfy S Pk < S max after several impulsive effects so both plants will die out. If S Pk > S 0,

then g1(S Pk) > g2(S Pk) and S Pk+1 > S Pk , so the number of the healthy plants will go to infinity.
(3) g1(S max) < g2(S max) and − h

η
−

βσ

η
≥ 0.

It follows that S Pk+1 < S Pk , and any solution will eventually approach (0, 0).
Therefore, whether the model has a periodic solution or not, the number of susceptible plants either

tends to zero or goes to infinity under the condition p = 1.
Case 2: p > 1.
(1) g1(S max) > g2(S max).
For this case, S Pk+1 > S Pk , so the number of susceptible plants approaches infinity.
(2) g1(S max) < g2(S max).
Here (H2) holds, so model (3.1) has a unique periodic solution. The conclusions of this situation

are similar to the results of (2) in Case 1.
Case 3: 0 < p < 1.
We have examined the case that g1(S max) > g2(S max). We have another three cases to consider.
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(1) g1(S max) < g2(S max) and d(X∗) = 0.
In this case, (H3) is valid, and there is a unique periodic solution. Hence g2(S Pk) > g1(S Pk) is true

for S Pk > S max and g1 is tangent to g2 at X∗. If S max < S Pk < X∗, then S Pk+1 < S Pk , so both plants will
die out. If S Pk > X∗, then f (S Pk) > f (X∗) = X∗, X∗ < f (S Pk) < S Pk and the number of healthy plants
will approach X∗. Thus the periodic solution with (X∗, I∗) is semi-stable, and a fold bifurcation occurs
at X∗.

(2) g1(S max) < g2(S max) and d(X∗) < 0.
Here (H5) is satisfied, and there exist two periodic solutions. Then g1 and g2 intersect at two values,

S 1
0 and S 2

0. When S max < S Pk < S 1
0, g1(S Pk) < g2(S Pk) and S Pk+1 < S Pk ; when S 1

0 < S Pk < S 2
0, g1(S Pk) >

g2(S Pk) and S 2
0 > S Pk+1 > S Pk > S 1

0; when S Pk > S 2
0, g1(S Pk) < g2(S Pk) and S 2

0 < S Pk+1 < S Pk . Hence
the periodic solution with (S 1

0, I
∗) is unstable, and the one with (S 2

0, I
∗) is stable in Ω∗ = {(S (t), I(t)) |

S (t) > S 1
0, I(t) ≤ ET }.

(3) g1(S max) < g2(S max) and d(X∗) > 0.
There does not exist any periodic solution, so S Pk+1 < S Pk . In this case, the susceptible plants tend

to extinction and then both plants die out.
The stability of periodic solutions can also be investigated by the method of cobwebbing. We take

the case 0 < p < 1 as an example. It follows from cobweb maps shown in Figures 10B, 10C and 10D
that when d(X∗) crosses from negative to positive values, the two fixed points (stable and unstable)
of the difference equation (3.15) “collide”, forming a semi-stable fixed point at d(X∗) = 0, and then
disappear. This is a fold bifurcation in the discrete-time dynamical system [39]. Note that Figure 10A
is a special case generated by the horizontal coordinate of the initial values of the periodic solution
satisfying S 0 > X∗. In addition, we omit the cobweb map for S < S 1

0 in Figure 10B, since it is too
small to depict clearly; however, we know the susceptible plants tend to extinction.

So far, we have studied the global stability of model (3.1) and obtained that if the system does not
have any periodic solution, the susceptible plants either grow and tend to infinity or decrease and die
out eventually; conversely, if periodic solutions exist, only the one satisfying (H4) is globally stable in
Ω∗, and the one satisfying (H5) with a larger horizontal coordinate is stable in Ω∗.

3.5. Effects of roguing and replanting

To address the effects of roguing and replanting on the dynamics of model (3.1) with 0 < p < 1,
we let parameters ω and σ vary and fix other parameters to build the bifurcation set, as shown in
Figure 11. Curves d(X∗) = 0 and d(X∗) = 0 divide the ω–σ parameter space into three regions, Ω∗1, Ω∗2
and Ω∗3, and the existence of various types of periodic solutions is indicated in different areas. Note that
parameter ranges under (H3), (H4) and (H5) correspond to d(X∗) = 0, Ω∗1 and Ω∗2 (or Figures 10C, 10A
and 10B), respectively. Therefore, when the replanting number σ and the roguing rate ω are selected
from Ω∗1, the first-order periodic solution is globally asymptotically stable; when they are selected
from Ω∗2, two first-order periodic solutions coexist, one of which is locally asymptotically stable; if we
choose parameters in d(X∗) = 0, then there exists a semi-stable first-order periodic solution, and a fold
bifurcation occurs; if parameters are selected from Ω∗3, the periodic solution does not exist.

Our goal here is to choose a suitable replanting number and roguing rate such that the first-order
periodic solution is globally asymptotically stable, and hence the control action can eventually be
managed periodically. For a given roguing rate, the goal can be reached for relatively large replanting
numbers. The targets are not realized if the replanting number is relatively small, regardless of the
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Figure 10. The fold bifurcation and the stability of periodic solutions of model (3.1) with
p = 0.5, η = 0.1, σ = 5, α = 0.4, ω = 0.5 amd ET = 10. The cobweb map (A) with
β = 0.06, S 0 = 8.5011 and d(X∗) < 0 satisfying condition (H4); (B) with β = 0.035, S 1

0 =

6.5225, S 2
0 = 7.6514 and d(X∗) < 0 satisfying condition (H5); (C) with β = 0.03318, S 0 =

7.1173, d(X∗) = 0 satisfying condition (H3); (D) with β = 0.004 and d(X∗) > 0.

value of the roguing rate. Nevertheless, for a larger replanting number, our objective can be achieved
provided the roguing rate is relatively small. Therefore control measures largely affect the dynamic
behaviour of model (3.1) in a sense that, on one hand, the number of infected plants can be
maintained below the ET; on the other hand, this density-dependent control measure can be converted
into a periodic control strategy. From the point view of plant-disease management, this control
measure is effective and can be implemented easily.

The stability analysis implies that, even if the number of infected plants can be maintained below the
ET, the susceptible plants may approach extinction or infinity. One issue is how quickly the susceptible
plants die out or go to infinity. To state this question, according to (3.22), we denote

∆S Pk ≡ S Pk+1 − S Pk = −
pη
β

Lambert W
(
−1, g(S Pk)

)
+ σ − S Pk , (3.24)
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Figure 11. The bifurcation set for model (3.1) with respect to the roguing rate (ω) and the
replanting number (σ). In Ω∗1, the first-order periodic solution is globally stable; in Ω∗2, two
first-order periodic solutions coexist; in Ω∗3, no periodic solution exists; when d(X∗) = 0, the
first-order periodic solution is semi-stable. All other parameters are as follows: p = 0.5, β =

0.05, η = 0.1, α = 1 and ET = 10.

with g(S Pk) = −
β

η
S Pk exp

(
−h
η
−

β

η
S Pk

)
and S Pk ≥ S max. In light of (3.18), we get

d∆S Pk

dS Pk

=
d f (S Pk)

dS Pk

− 1 =
Lambert W(−1, g(S Pk))

1 + Lambert W(−1, g(S Pk))
p(βS Pk − η)

βS Pk

− 1. (3.25)

The instability of the periodic solution indicates that
d∆S Pk
dS Pk

> 0, which shows that ∆S Pk is a
monotonically increasing function with respect to S Pk . Therefore the susceptible plants grow or die
out faster and faster as the number of the impulsive effects increases.

It is easy to see from (3.24) that ∆S Pk is increasing with respect to α, since h and g are increasing
functions with respect to α and h respectively. The simulation in Figure 12 shows that the susceptible
plants grow faster and faster as α increases, which means α could accelerate the growth speed of
susceptible plants. On the contrary, if susceptible plants become extinct, they will die out slower and
slower with increasing α, which implies that α could decelerate the extinction speed.

4. Discussion

On the basis of the principles of IDM and taking non-continuous implementation of disease control
into consideration, we extend the model developed by van den Bosch et al. [23] and establish two plant-
disease models using an impulsive cultural strategy with fixed moments and state-dependent controls.
Our work is of a general nature and can be applied to a wide range of plant diseases. With respect to
the replanting of susceptible plants, the parameter p is introduced with several biological meanings. In
particular, p = 1 corresponds to only constant replanting being implemented, p > 1 means proportional
replanting is adopted, and 0 < p < 1 represents the reductive rate and describes the fact that, when
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Figure 12. The effect of α on ∆S Pk of (3.24). As the number of susceptible plants approaches
infinity, the larger the value of α is and the greater ∆S Pk (the difference between the number
of susceptible plants at successive impulsive moments) will be. The other parameters are as
follows: p = 1, β = 0.02, η = 0.3240, σ = 5, ω = 0.5, ET = 10.

infected plants are rogued, some susceptible plants will inevitably be removed. We focus on these three
cases to investigate the dynamical behaviour of models (2.1) and (3.1).

Density-dependent roguing can be used to obtain a more accurate evaluation of plant-disease
epidemics. This gives rise to the nonlinear impulsive function that makes theoretical analysis more
complicated. Thus our study here provides a theoretical framework for analyzing nonlinear impulsive
systems, including making use of the difference equations (2.7) and (3.15) at impulsive points to
discuss the existence and stability of periodic solutions of both models. It is worth noting that the
Poincaré map serves an important purpose in completely examining the dynamic behaviour of
systems: for the model with periodic impulses (2.1), we obtained local stability of the disease-free
periodic solution; for the model with density-dependent impulses (3.1), the existence and local and
global stability of a first-order τ-periodic solution are obtained.

Our stability analysis for model (2.1) indicated that if all these control methods are adopted so that
Ri

2 < 1 (i = 1, 2), suggesting global stability of disease-free periodic solution, then control strategies
would be effective enough to eradicate the disease. We conducted a sensitivity analysis to gain a better
understanding of the impact of parameters on the threshold when various parameters are changed
within the ranges of values observed empirically. The results illustrated that, regardless of the value of
p, high harvest rates, large intervention periods and small replanting numbers were required for disease
extinction. Furthermore, if the reductive rate or only constant replanting is considered (0 < p ≤ 1),
the roguing strategy with larger removing rate (i.e., ω > ω̄) was also effective in terms of reducing R1

2
below unity, where

ω̄ =

(
1 +

ασ

1 − exp(−ηT )

) (
1 − exp

(
−
βσ(1 − exp(−ηT ))
η(1 − p exp(−ηT ))

+ ηT
))
.

Conversely, if proportional replanting is deployed (p > 1), small replanting rates can reduce R2
2 below

unity. These conclusions can be used to guide our periodic inspections of plant diseases.
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Periodically exercising control strategies may cost vast resources, especially when the number of
infected plants has not reached the ET. Based on IDM, model (2.1) is thus modified by taking the
ET into account, and model (3.1) is formulated to control the number of infections below the ET. A
special case (p = 1, α = 0 of model (3.1)) was investigated by Tang et al. [27], who proved that there
is a unique unstable periodic solution, which is consistent with our result. However, our modelling
and conclusions extend those obtained by Tang et al. First, we consider density-dependent roguing,
which can better describe reality. Secondly, besides constant replanting (p = 1), we consider the
reductive rate (0 < p < 1) and proportional replanting (p > 1) for susceptible plants when infections
are rogued. Thirdly, not only a unique periodic solution but also two periodic solutions may exist.
Finally, global stability of the unique periodic solution is deduced under 0 < p < 1, which is the goal
we want to achieve. In addition, using the period obtained, we can not only reduce the number of
infected plants to an economically viable level but also implement strategies in a periodic form, which
may be convenient to operate. From a biological point of view, it can be concluded that, even though
susceptible plants will be incidentally removed in roguing, constant replanting works well and can be
easily realized in practice.

Our model has a few limitations, which should be acknowledged. Since infected plants sometimes
die easily, equal death rates of both plants may be unreasonable. In our study, we use the same value for
reasons of mathematical tractability. The economic threshold for model (3.1) describes a farmer who
monitors his field very frequently and, when the density of infected plants passes the ET threshold, goes
into the field and rogues. In practice, a grower going into the field to look at diseases in his plants will
remove clearly infected plants (or will never do this because even infected plants give some harvest).
Growers may not go into the field frequently enough to be able to determine the moment that the ET
threshold is passed accurately. Hence our results will be approximations of reality at best. Because
individual measures may bring only small benefits, it is possible to improve our models to describe
the epidemic of plant diseases by combining several strategies in IDM. The case p > 1 suggests that
new healthy plants would be added to a field in a number relative to the existing number of susceptible
plants, which is unlikely to be done in practice, due to issues of space. This could be improved by
having a parameter K representing the maximum number of plants that can be grown and adding new
plants proportional to K − S − I. Moreover, herbivores feed on plants, so the infected plants in our
models could theoretically be replaced by herbivores and the model studied here could be extended to
a plant–herbivore model. This differs from the model of our current research in that we would need
to consider the coefficients of energy conversion after herbivores eat plants, as well as the different
mortality rates of plants and animals. However, an issue arises in this framework in the case that the
disease is transmitted to the animals. Infected plants can be rogued directly, but we cannot easily kill
infected animals. We leave these issues for further investigations.
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Appendix

Theorem A.1. Suppose one of the following conditions is satisfied:
(1) 0 < p ≤ 1
(2) p > 1 and p exp(−ηT ) < 1.
Then system (2.2) has a positive periodic solution S ∗(t), and, for any solution S (t) of (2.2), we have
|S (t) − S ∗(t)| → 0 as t → ∞, where S ∗(t) =

σ exp(−η(t−nT ))
1−p exp(−ηT ) , t ∈ (nT, (n + 1)T ].

Proof. Without loss of generality, set t ∈ (nT, (n + 1)T ], n ∈ N. It follows from the first equation
of (2.2) that S (t) = S (nT +) exp(−η(t − nT )). Thus S ((n + 1)T ) = S (nT +) exp(−ηT ), S ((n + 1)T +) =

pS ((n + 1)T ) + σ = pS (nT +) exp(−ηT ) + σ. Let Mn+1 = S ((n + 1)T +). Then

Mn+1 = pMn exp(−ηT ) + σ

has equilibrium M∗ = σ
1−p exp(−ηT ) . Hence, if one of the conditions mentioned above holds, then S ∗(0+) =

M∗ and the positive periodic solution of (2.2) is S ∗(t) = M∗ exp(−η(t − nT )), t ∈ (nT, (n + 1)T ], n ∈ N.
In addition,

|S (t) − S ∗(t)| = |S (nT +) exp(−η(t − nT )) − S ∗(0+) exp(−η(t − nT ))|
= |(S (nT +) − S ∗(0+)) exp(−η(t − nT ))| → 0 (t → ∞).

�

Theorem A.2. [35] If | 1 − a′0 |< 1 and d′0 = 0, then we get the following results.
(I) If M1M2 , 0, then we have a bifurcation. Moreover, we have a supercritical branch of a

nontrivial periodic solution of (2.27) if M1M2 < 0 and a subcritical branch if M1M2 > 0.
(II) If M1M2 = 0, then we have an undetermined case, with the following definitions.
Let X(t) = (S (t), I(t)) be the solution of (2.27), the disease-free periodic solution of (2.27) be δ =

(S ∗(t), 0) and Φ be the flow associated to the first and the second equations of (2.27), which implies
that X(t) = Φ(t, S 0, I0), 0 < t ≤ T, where X0 = (S 0, I0), S 0 = S (0+), I0 = I(0+). We assume that the flow
Φ applies up to time T; that is, X(T ) = Φ(T, X0).

d′0 = 1 −
(
∂θ2

∂I
·
∂Φ2

∂I

)
(T0, X0) (where T0 is the root of d′0 = 0)
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a′0 = 1 −
(
∂θ1

∂S
·
∂Φ1

∂S

)
(T0, X0)

b′0 = −

(
∂θ1

∂S
·
∂Φ1

∂I
+
∂θ1

∂I
·
∂Φ2

∂I

)
(T0, X0)

M1 = −
∂2θ2

∂S ∂I

(
∂Φ1(T0, X0)

∂T̃
+
∂Φ1(T0, X0)

∂S
1
a′0

∂θ1

∂S
∂Φ1(T0, X0)

∂T̃

)
∂Φ2(T0, X0)

∂I

−
∂θ2

∂I

(
∂2Φ2(T0, X0)

∂S ∂I
1
a′0

∂θ1

∂S
∂Φ1(T0, X0)

∂T̃
+
∂2Φ2(T0, X0)

∂T̃∂I

)
(where T = T0 + T̃ )

M2 = − 2
∂2θ2

∂S ∂I

(
∂Φ1(T0, X0)

∂I
−

b′0
a′0

∂Φ1(T0, X0)
∂S

)
∂Φ2(T0, X0)

∂I
−
∂2θ2

∂I2

(
∂Φ2(T0, X0)

∂I

)2

+ 2
∂θ2

∂I
b′0
a′0

∂2Φ2(T0, X0)
∂S ∂I

−
∂θ2

∂I
∂2Φ2(T0, X0)

∂I2

∂Φ1(t, X0)
∂S

= exp
(∫ t

0

∂F1(δ(ξ))
∂S

dξ
)

∂Φ2(t, X0)
∂I

= exp
(∫ t

0

∂F2(δ(ξ))
∂I

dξ
)

∂Φ1(t, X0)
∂I

=

∫ t

0
exp

(∫ t

ν

∂F1(δ(ξ))
∂S

dξ
)
∂F1(δ(ν))

∂I
exp

(∫ ν

0

∂F2(δ(ξ))
∂I

dξ
)

dν

∂2Φ2(t, X0)
∂S ∂I

=

∫ t

0
exp

(∫ t

ν

∂F2(δ(ξ))
∂I

dξ
)
∂2F2(δ(ν))
∂I∂S

exp
(∫ ν

0

∂F2(δ(ξ))
∂I

dξ
)

dν

∂2Φ2(t, X0)
∂I2 =

∫ t

0
exp

(∫ t

ν

∂F2(δ(ξ))
∂I

dξ
)
∂2F2(δ(ν))

∂I2 exp
(∫ ν

0

∂F2(δ(ξ))
∂I

dξ
)

dν

+

∫ t

0

{
exp

(∫ t

ν

∂F2(δ(ξ))
∂I

dξ
)
∂2F2(δ(ν))
∂I∂S

}
×

{∫ ν

0
exp

(∫ ν

θ

∂F1(δ(ξ))
∂S

dξ
)
∂F1(δ(θ))

∂I
exp

(∫ θ

0

∂F2(δ(ξ))
∂I

dξ
)

dθ
}

dν

∂2Φ2(t, X0)

∂I∂T̃
=
∂F2(δ(t))

∂I
exp

(∫ t

0

∂F2(δ(ξ))
∂I

dξ
)

∂Φ1(T0, X0)

∂T̃
= Ṡ ∗(T0).

The proof of Theorem 2.4

Proof. Applying Theorem A.2, we make the following calculations.

d′0 = 1 − (1 − ω) exp
(
β

∫ T0

0
S ∗(ξ)dξ − ηT0

)
.

If d′0 = 0, then T0 satisfies the condition

(1 − ω) exp
(
βσ(1 − exp(−ηT0))
η(1 − p exp(−ηT0))

− ηT0

)
= 1,
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which implies that there exists a T0 such that R1(T0) = 1. Furthermore,

∂Φ1(T0, X0)
∂S

= exp(−ηT0)

∂Φ2(T0, X0)
∂I

= exp
(
βσ(1 − exp(−ηT0))
η(1 − p exp(−ηT0))

− ηT0

)
∂Φ1(T0, X0)

∂I
= exp(−ηT0)

(
1 − exp

(
βσ(1 − exp(−ηT0))
η(1 − p exp(−ηT0))

))
a′0 = 1 − p exp(−ηT0) > 0

|1 − a′0| = p exp(−ηT0) < 1

b′0 = p exp(−ηT0)
(
exp

(
βσ(1 − exp(−ηT0))
η(1 − p exp(−ηT0))

)
− 1

)
> 0

∂2Φ2(T0, X0)
∂S ∂I

= βT0 exp
(
βσ(1 − exp(−ηT0))
η(1 − p exp(−ηT0))

− ηT0

)
> 0

∂2Φ2(T0, X0)
∂I2 = β exp

(
−βσ exp(−ηT0)

η(1 − p exp(−ηT0))

)
exp(−ηT0)×∫ T0

0

(
exp

(
βσ exp(−ην)

η(1 − p exp(−ηT0))

)
− exp

(
βσ

η(1 − p exp(−ηT0))

))
dν < 0

∂2Φ2(T0, X0)

∂I∂T̃
=

(
βσ exp(−ηT0)

1 − p exp(−ηT0)
− η

)
exp

(
βσ(1 − exp(−ηT0))
η(1 − p exp(−ηT0))

− ηT0

)
∂Φ1(T0, X0)

∂T̃
=
−ησ exp(−ηT0)
1 − p exp(−ηT0)

< 0

M1 = η +
βσ exp(−ηT0)

(
p exp(−ηT0) + pηT0 − 1

)
(1 − p exp(−ηT0))2

M2 =
−2αω

(1 − ω)2 +
2βT0 p

(
1

1−ω − exp(−ηT0)
)

1 − p exp(−ηT0)

+ β

∫ T0

0

(
1 − exp

(
βσ

(
exp(−ην) − 1

)
η
(
1 − p exp(−ηT0)

))) dν.

If p ≥ 1, then M1 > 0 holds naturally. It is difficulty to calculate the last item of M2; however, it is
easy to verify that

0 < β
∫ T0

0

(
1 − exp

(
βσ

(
exp(−ην) − 1

)
η
(
1 − p exp(−ηT0)

))) dν < βT0

(
1 − exp

(
βσ(exp(−ηT0) − 1)
η(1 − p exp(−ηT0))

))
.

If one of the conditions (C7), (C8), (C9) or (C10) is valid, then M1M2 < 0 holds. Thus, if the
parameters satisfy (C7), (C8), (C9) or (C10), then model (2.1) has a supercritical branch at T0. �

The proof of Claim 3.1

Proof.

d(X∗) < 0⇔ η ln
(

η

βσ + pη

)
+ (βσ + pη)(1 −

1
p

) +
βσ

p
+ h > 0
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⇔ exp
(
h
η

+
βσ

η
+ p − 1

)
>
βσ

η
+ p

⇔ (−
βσ

η
− p)e(− βση −p) > −e(−1+ h

η )

⇔ −
βσ

η
− p < Lambert W

(
−1,−e(−1+ h

η )
)

⇔ σ +
pη
β
> −

η

β
Lambert W

(
−1,−e(−1+ h

η )
)

⇔ σ +
pη
β
> S max.

This completes the proof. �
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