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Abstract: A three stage-structured prey-predator model with digestion delay and density dependent
delay for the predator is investigated. The stability of the equilibrium point and the Hopf bifurcation
of the system by choosing time delay as a bifurcation parameter in five cases are considered, and
the conditions for the positive equilibrium occurring local Hopf bifurcation are given in each case.
Numerical results show that delayed system considered has not only periodic oscillation, stability
switches but also chaotic oscillation, even unbounded oscillation. Finally, delays induced Hopf
bifurcation, stability switches, complicated dynamic behaviors of the system are discussed in detail.
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1. Introduction

In the real world, many species have two distinctive stages—immature and mature, of life in their
lives. A delayed single-specie model with two stages is introduced by Aiello and Freedman [1, 2]
in 1990. A single-specie model with stage-structured is considered by Wang and Chen [3] in 1997,
and found that there exists a stable periodic solution in that model. The single-specie model with two
stage-structured have been received much attentions and summarized by Liu et al. [4]. In these papers,
the authors assume that the species have two different stages—immature and mature, and only the
mature member can reproduce themselves. But, some species go through three different life stages—
immature, mature and old. A single-specie model with delay and three different life history stages
and cannibalism has investigated by Gao [5], and shown that there would be a stability switches for
the positive equilibrium when time delays are increased from zero. A nonautonomous predator-prey
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system (1.1) 
x′(t) = x(t)[a(t) − b(t)x(t) − c(t)y2(t) − d(t)y3(t)],
y′1(t) = α(t)x(t)y3(t − τ) − β1(t)y1(t) − γ1(t)y1(t),
y′2(t) = γ1(t)y1(t) − β2(t)y2(t) − γ2(t)y2(t) − η1(t)y2

2(t),
y′3(t) = γ2(t)y2(t) − η2(t)y3(t),

(1.1)

with three-stage-structured and time delay has considered by Yang and Shi [6], and the conditions for
the existence of the positive periodic solution are obtained.

Time delays play an important role in population dynamics, which can cause the loss of stability of
the equilibrium, bifurcate various types of periodic solutions, unbounded solutions and even chaotic
solutions. Time delay is common in biodynamic systems [7], and harmful delays can cause
fluctuation(period solution) in population density, and which would make the system subject to
chaotic oscillation, unstable oscillation and extinct [8–15], even the time delay is very small.

Recently, a prey-predator model (1.2)
x′1(t) = αx2(t) − (γ1 + Ω)x1(t) − ηx2

1(t) − Ex1(t)y(t − τ2),
x′2(t) = Ωx1(t) − (θ1 + a)x2(t),
x′3(t) = ax2(t) − bx3(t),
y′(t) = kEx1(t − τ1)y(t) − dy(t) − f y2(t),

(1.2)

with three stage structure and time delay is studied in [16]. The conditions for the positive equilibrium
occurring local and global Hopf bifurcation are obtained. And the properties (direction, stability, etc)
of the local Hopf bifurcation are analyzed. Furthermore, a prey-predator system (1.3)

x′1(t) = αx2(t) − (γ1 + Ω)x1(t) − ηx2
1(t) − Ex1(t)y(t),

x′2(t) = Ωx1(t) − (θ1 + a)x2(t),
x′3(t) = ax2(t) − bx3(t),
y′(t) = y(t)[kEx1(t) − d − f y(t − τ)],

(1.3)

with three stage structure and predator density dependent delay has been considered in [17, 18], by
choosing time delay as a bifurcation parameter, the local and global Hopf bifurcation are investigated.
The authors focus on the existence of global Hopf bifurcation in systems (1.2) and (1.3), by using
the global Hopf bifurcating theorem for general functional differential equations which introduced by
Wu [19]. Meanwhile, the harsh conditions for the positive equilibrium occurring local Hopf bifurcation
are obtained, i.e. there are only a pair of pure imaginary roots for the characteristic equation about the
positive equilibrium.

Note that, the sufficient conditions for the existence of local Hopf bifurcation of systems (1.2)
and (1.3) are C1

3 : fη < KE2, C2
3 : fη > KE2, respectively, where K, E, η, f are positive. K is

the rate of conversing prey into predator and E is the predation coefficient for predator population.
η is the density dependent coefficient for prey populations, reflecting the competition effect between
prey populations; and f is the density dependent coefficient for predator population, reflecting the
competition effect between predator populations; respectively. But, the conditions C1

3 and C2
3 cannot

hold at the same time. Then, one of them holds for any parameter values of the system exclude the
special case fη = KE2, if both digestion delay and density dependent delay considered in a new model.
Therefore, there would be a natural Hopf bifurcation for the system with two different time delays τ1
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and τ2 without any conditions for the values of the parameters. And, how does the dynamic behavior
go when τ1 = τ2 = τ? Does there exist a bifurcating periodic solution, stability switches or other
complex dynamic behaviors, if there exist at least a pair of pure imaginary roots for the characteristic
equation about the positive equilibrium?

Motivation by aforementioned observations, we consider the following prey-predator model with
three stage structure and two time delays:


x′1(t) = αx2(t) − x1(t)(γ1 + Ω + ηx1(t) + Ey(t)),
x′2(t) = Ωx1(t) − θ1x2(t) − ax2(t),
x′3(t) = ax2(t) − bx3(t),
y′(t) = y(t)(KEx1(t − τ1) − d − f y(t − τ2)),

(1.4)

where x′1(t), x′2(t), x′3(t) are the change of density of the prey population in the three stages of immature,
mature and old, and y′(t) is the change of density of the predator population at time t, respectively.
All of the parameters are positive. For prey population, α is the birth rate; γ1, θ1, b are the death rate
of the immature, mature and old stages; Ω and a are the maturity rate and ageing rate, respectively.
For predator population, d is the death rate; τ1 and τ2 are digestion delay [16] and density dependent
delay [17,18], respectively. The delays τ1 and τ2 in system (1.4) can be regarded as a digestion time(or
conversion time) and density dependent time of the predators. For τ1, when the predator catches
the prey at time t, it needs τ1 time to convert the energy of the prey into its own energy. For τ2, the
competition between predator populations has a time delay τ2, as in classical delayed Logistic equation
x′(t) = rx(t)[1− x(t−τ)/K]. That is to say, the change rate of the predators y′(t) depends on the number
of immature preys and of predators present at some previous time x1(t− τ1) and y(t− τ2) , respectively.

From the third equation of system (1.4), which is a linear nonhomogeneous equation about x3(t),
then the asymptotic behavior of x3(t) is dependent on x2(t). Therefore, we only need to consider the
following subsystem 

x′1(t) = αx2(t) − x1(t)(γ + ηx1(t) + Ey(t)),
x′2(t) = Ωx1(t) − θx2(t),
y′(t) = y(t)(KEx1(t − τ1) − d − f y(t − τ2)),

(1.5)

where γ = γ1 + Ω, θ = θ1 + a. And the initial conditions for system (1.5) are

xi(t) = ϕi(t) ≥ 0(i = 1, 2), y(t) = ϕ3(t) ≥ 0, t ∈ [−τmax, 0], τmax = max{τ1, τ2}.

The organization of this paper is as follows. We consider the stability of the equilibrium point
and the existence of Hopf bifurcation, by choosing time delays as a bifurcation parameter in five
different cases, firstly. And, in section 2, the conditions for the positive equilibrium occurring local
Hopf bifurcation are obtained in each case. Secondly, in section 3, some numerical examples are
given to support the theoretical results, which show that the delayed system considered has not only
periodic oscillation, stability switches but also chaotic oscillation, even unbounded oscillation under
some parameter sets of values. Finally, in section 4, delays induced Hopf bifurcation, stability switches,
complicated dynamic behaviors of the system are analyzed in detail.
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2. Local stability analysis and Hopf bifurcation

2.1. Local stability analysis

For system (1.5), if condition C1 : αΩ − γθ > 0 holds, there’re two boundary equilibrium
E0 = (0, 0, 0), E1(x̂1, x̂2, 0); and if condition C2 : KEx∗1 − d > 0 holds, a unique positive equilibrium
E2(x∗1, x

∗
2, y
∗) exists, where

x̂1 =
αΩ − γθ

ηθ
, x̂2 =

Ω

θ
x1, x∗1 =

f (αΩ − γθ) + dEθ
(KE2 + η f )θ

, x∗2 =
Ω

θ
x∗1, y

∗ =
KEx∗1 − d

f
.

Let X(t) = (x1(t), x2(t), y(t)), and Ē = (x̄1, x̄2, ȳ) be any arbitrary equilibrium. The linearized
equation about Ē is

X′(t) = AX(t) + B1X(t − τ1) + B2X(t − τ2), (2.1)

where

A =


−γ − 2ηx̄1 − ȳE α −x̄1E

Ω −θ 0
0 0 x̄1KE − d − ȳ f

 ,
B1 =


0 0 0
0 0 0

KȳE 0 0

 , B2 =


0 0 0
0 0 0
0 0 −ȳ f

 ,
and the characteristic equation about it is given by

H(λ, τ1, τ2) = det(A + B1e−λτ1 + B2e−λτ2 − λI) = 0. (2.2)

Note that, ȳ = 0 for the boundary equilibrium E0 and E1, then the characteristic equation about E0

and E1 are same as in [16, 17]. Therefore, we obtain following lemma.
Lemma 2.1. (i) If γθ > αΩ then E0 is local stable. And, if γθ < αΩ then E0 is unstable and E1

exists.
(ii) If KEx̂1 < d then E1 is local stable. And if KEx̂1 > d then E1 is unstable and E2 exists.

2.2. Existence of local Hopf bifurcation

From (2.2), one obtain the characteristic equation about the positive equilibrium E2:

H(λ, τ1, τ2) = M(λ) + N(λ)e−λτ1 + P(λ)e−λτ2 = 0, (2.3)

where
M(λ) = λ3 + m2λ

2 + m1λ + m0,

N(λ) = n2λ
2 + n1λ + n0,

P(λ) = p2λ
2 + p1λ + p0,

m2 = γ + Ey∗ + θ + 2ηx∗1,m1 = θηx∗1,m0 = 0,
n2 = 0, n1 = KE2x∗1y∗, n0 = KE2x∗1y∗θ,
p2 = f y∗, p1 = f y∗(γ + Ey∗ + θ + 2ηx∗1), p0 = f y∗θηx∗1.
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When τ1 = τ2 = 0, (2.3) becomes to

H(λ, 0, 0) = λ3 + h2λ
2 + h1λ + h0 = 0, (2.4)

where
h2 = γ + 2ηx∗1 + Ey∗ + θ + f y∗ > 0,
h1 = θ(ηx∗1 + f y∗) + f y∗(γ + 2ηx∗1 + Ey∗) + KE2x∗1y∗ > 0,
h0 = θ( fη + KE2)x∗1y∗ > 0.

By Routh-Hurwits criterion, all roots of (2.4) have negative real parts, since

h2h1 − h0 > θ{[2η f x∗1y∗ + Ey∗(d + 2 f y∗)] − ( fη + KE2)x∗1y∗} > 0.

Meanwhile, E2 is local stable. We investigate the Hopf bifurcation about E2 in following five cases.

2.2.1. The case τ1 > 0, τ2 ≡ 0

The equation (2.3) is
H(λ, τ1, 0) = Mτ1(λ) + Nτ1(λ)e−λτ1 = 0, (2.5)

where
Mτ1(λ) = M(λ) + P(λ),Nτ1(λ) = N(λ).

Suppose λ = iω(ω > 0) is a pure imaginary root of (2.5) and separating the real and imaginary
parts, one obtain {

(m2 + p2)ω2 − (m0 + p0) = (n0 − n2ω
2) cosωτ1 + n1ω sinωτ1,

ω3 − (m1 + p1)ω = n1ω cosωτ1 − (n0 − n2ω
2) sinωτ1.

and
(n0 − n2ω

2)2 + n2
1ω

2 = [(m2 + p2)ω2 − (m0 + p0)]2 + [ω3 − (m1 + p1)ω]2.

That is
Fτ1($) = $3 + f12$

2 + f11$ + f10 = 0, (2.6)

where
$ = ω2, f12 = (m2 + p2)2 − 2(m1 + p1) − n2

2 > 0,

f11 = (m1 + p1)2 + 2n2n0 − n2
1 − 2(m2 + p2)(m0 + p0),

f10 = (m0 + p0)2 − n2
0 = θx∗1y∗(m0 + p0 + n0)( fη − KE2). (2.7)

If condition C1
3 : fη < KE2 holds, from (2.7) we know that (2.6) has at least one positive root. Without

loss of generality, we assume that (2.6) has three different positive roots, denoted by ωk =
√
$k(k =

1, 2, 3) . And, one have

cosωkτ1 =
[(m2 + p2)ω2

k − (m0 + p0)](n0 − n2ω
2
k) + n1ωk[ω3

k − (m1 + p1)ωk]

(n0 − n2ω
2
k)2

+ (n1ωk)2

∆
= Fωk .
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Thus
τ(n)

1k =
1
ωk

cos−1 [
Fωk

]
+

2nπ
ωk

, k = 1, 2, 3; n = 0, 1, 2, · · · , (2.8)

and the direction of τ(n)
1k passing through the imaginary axis [20] when ω = ωk is determined by

sign
[

dRe(λ(τ))
dτ

∣∣∣∣∣
τ=τ(n)

1k

]
= sign

[
F′τ1

($k)
∣∣∣
$k=ω2

k

]
= sign

(
∆k
τ1

)
.

Then sign
(
∆k
τ1

)
, 0, since $k(k = 1, 2, 3) are three distinct positive roots of (2.6). Therefore, system

(1.5) undergoes a local Hopf bifurcation at E2 when τ1 = τ(n)
1k , by the Hopf bifurcation theorem for

functional differential equations [21]. Furthermore, system (1.5) undergoes a local Hopf bifurcation at
E2 and sign

(
∆1
τ1

)
= 1, if f11 > 0 and condition C1

3 : fη < KE2 hold. Then, (2.6) has a unique positive
root ω1, and τ1 = τ(n)

1 (n = 0, 1, 2, · · · ) corresponding to ω1.
Define

S τ1 = {τ1|H(λ, τ1, 0) = 0,Re(λ) < 0}, τ10 = min{τ(n)
1k |1 ≤ k ≤ 3, n = 0, 1, 2, · · · },

when τ1 ∈ S τ1 , E2 is local stable. Note that, if (2.6) have more than one positive roots, there would be
finite stability switches when time delay τ1 passing through the critical points τ1 = τ(n)

1k (k = 1, 2, 3; n =

0, 1, 2, · · · ) and [0, τ10) ⊆ S τ1 . If (2.6) has only one positive root, there is no stability switches when
time delay τ1 passing through the critical points τ1 = τ(n)

1 (n = 1, 2, · · · ) and S τ1 = [0, τ(0)
1 ).

Theorem 2.1 (i) Suppose (2.6) has at least one positive roots denoted by$k(1 ≤ k ≤ 3). There exists
a nonempty set S τ1 and [0, τ10) ⊆ S τ1 , when τ1 ∈ S τ1 the positive equilibrium E2 of system (1.5) is local
stable. There is a Hopf bifurcation for system (1.5) at E2 when τ1 = τ(n)

1k (k = 1, 2, 3; n = 0, 1, 2, · · · ).
(ii) Suppose (2.6) has only one positive root denoted by $1. There exists a nonempty set S τ1 and

S τ1 = [0, τ(0)
1 ), when τ1 ∈ S τ1 the positive equilibrium E2 of system (1.5) is local stable and unstable

when τ1 > τ
(0)
1 . There is a Hopf bifurcation for system (1.5) at E2 when τ1 = τ(n)

1 (n = 0, 1, 2, · · · ).
Note 2.1 If f11 > 0 and condition C1

3 : fη < KE2 hold, then (2.6) have only one positive root,
and this is a special case of Theorem 2.1 (ii). The local and global Hopf bifurcation in this special
situation have been considered in [16]. Meanwhile, theorem 2.1 generalizes the result about local
Hopf bifurcation in [16].

2.2.2. The case τ1 ≡ 0, τ2 > 0

The equation (2.3) becomes to

H(λ, 0, τ2) = Mτ2(λ) + Nτ2(λ)e−λτ2 = 0, (2.9)

where
Mτ2(λ) = M(λ) + N(λ),Nτ2(λ) = P(λ).

Suppose λ = iω(ω > 0) is a pure imaginary root of (2.9), similar to the case 2.2.1, one have

Fτ2($) = $3 + f22$
2 + f21$ + f20 = 0, (2.10)
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where
$ = ω2, f22 = (m2 + n2)2 − 2(m1 + n1) − p2

2,

f21 = (m1 + n1)2 + 2p2 p0 − p2
1 − 2(m2 + n2)(m0 + n0),

f20 = (m0 + n0)2 − p2
0 = θx∗1y∗(m0 + p0 + n0)(KE2 − fη). (2.11)

From (2.11) we know that (2.10) has at least one positive root, if condition C2
3 : fη > KE2 hold.

Without loss of generality, we assume that (2.10) has three distinct positive roots, denoted by ωk =
√
$k(k = 1, 2, 3) and we obtain

cosωkτ2 =
[(m2 + n2)ω2

k − (m0 + n0)](p0 − p2ω
2
k) + p1ωk[ω3

k − (m1 + n1)ωk]

(p0 − p2ω
2
k)2

+ (p1ωk)2

∆
= Fωk .

Thus
τ(n)

2k =
1
ωk

cos−1 [
Fωk

]
+

2nπ
ωk

, k = 1, 2, 3; n = 0, 1, 2, · · · , (2.12)

and the direction of τ(n)
2k passing through the imaginary axis [20] when ω = ωk is determined by

sign
[

dRe(λ(τ))
dτ

∣∣∣∣∣
τ=τ(n)

2k

]
= sign

[
F′τ2

($k)
∣∣∣
$k=ω2

k

]
= sign

(
∆k
τ2

)
.

System (1.5) undergoes a Hopf bifurcation at E2 when τ2 = τ(n)
2k since sign

(
∆k
τ2

)
, 0. Furthermore,

if f21 > 0, f22 > 0 and condition C2
3 : fη > KE2 hold, then (2.10) has a unique positive root ω1, and

τ2 = τ(n)
2 (n = 0, 1, 2, · · · ) corresponding to ω1. There is a Hopf bifurcation at E2 since sign

(
∆1
τ2

)
= 1.

Define

S τ2 = {τ2|H(λ, 0, τ2) = 0,Re(λ) < 0}, τ20 = min{τ(n)
2k |1 ≤ k ≤ 3, n = 0, 1, 2, · · · }.

Theorem 2.2 (i) Suppose (2.10) has at least one positive roots denoted by $k(1 ≤ k ≤ 3). There
exists a nonempty set S τ2 and [0, τ20) ⊆ S τ2 , when τ2 ∈ S τ2 the positive equilibrium E2 of system
(1.5) is local stable. There is a Hopf bifurcation for system (1.5) at E2 when τ2 = τ(n)

2k (k = 1, 2, 3; n =

0, 1, 2, · · · ).
(ii) Suppose (2.10) has only one positive root denoted by $1. There exists a nonempty set S τ2 and

S τ2 = [0, τ(0)
2 ), when τ2 ∈ S τ2 the positive equilibrium E2 of (1.5) is local stable and unstable when

τ2 > τ
(0)
2 . There is a Hopf bifurcation for system (1.5) at E2 when τ2 = τ(n)

2 (n = 0, 1, 2, · · · ).
Note 2.2 If f21 > 0, f22 > 0 and condition C2

3 : fη > KE2 hold, then (2.10) has only one positive
root, and this is a special case of Theorem 2.2 (ii). The local and global Hopf bifurcation in this special
situation have been considered in [17, 18]. Meanwhile, theorem 2.2 generalizes the result about local
Hopf bifurcation in [17].

2.2.3. The case τ1 = τ2 = τ > 0

The equation (2.3) is
H(λ, τ, τ) = Mτ(λ) + Nτ(λ)e−λτ = 0, (2.13)

where
Mτ(λ) = M(λ),Nτ(λ) = P(λ) + N(λ).
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Suppose λ = iω(ω > 0) is a pure imaginary root of (2.13), similar to the case 2.2.1, we have

Fτ($) = $3 + f32$
2 + f31$ + f30 = 0, (2.14)

where
$ = ω2, f32 = m2

2 − 2m1 − (n2 + p2)2,

f31 = m2
1 + 2(p2 + n2)(p0 + n0) − (p1 + n1)2 − 2m2m0,

f30 = m2
0 − (p0 + n0)2 = −(p0 + n0)2 < 0.

(2.14) has at least one positive root since f30 < 0. Without loss of generality, we assume that (2.14) has
three different positive roots, denoted by ωk =

√
$k(k = 1, 2, 3) and we get

cosωkτ =
(m2ω

2
k − m0)[p0 + n0 − (p2 + n2)ω2

k] + (p1 + n1)ωk(ω3
k − m1ωk)

[(p0 + n0) − (p2 + n2)ω2
k]2

+ [(p1 + n1)ωk]2

∆
= Fωk .

Thus

τ(n)
k =

1
ωk

cos−1 [
Fωk

]
+

2nπ
ωk

, k = 1, 2, 3; n = 0, 1, 2, · · · , (2.15)

and the direction of τ(n)
k passing through the imaginary axis [20] when ω = ωk is determined by

sign
[

dRe(λ(τ))
dτ

∣∣∣∣∣
τ=τ(n)

k

]
= sign

[
F′τ($k)

∣∣∣
$k=ω2

k

]
= sign

(
∆k
τ

)
.

System (1.5) undergoes a Hopf bifurcation at E2 when τ = τ(n)
k . Furthermore, if f31 > 0, f32 > 0 hold,

then (2.14) has a unique positive root ω1, and τ = τ(n)(n = 0, 1, 2, · · · ) corresponding to ω1. There is a
Hopf bifurcation at the positive equilibrium E2 since sign

(
∆1
τ

)
= 1.

Define

S τ = {τ|H(λ, τ, τ) = 0,Re(λ) < 0}, τ0 = min{τ(n)
k |1 ≤ k ≤ 3, n = 0, 1, 2, · · · }.

Theorem 2.3 (i) Suppose (2.14) has at least one positive roots denoted by $k(1 ≤ k ≤ 3). There
exists a nonempty set S τ and [0, τ0) ⊆ S τ, when τ ∈ S τ the positive equilibrium E2 of system (1.5) is
local stable. There is a Hopf bifurcation for system (1.5) at E2 when τ = τ(n)

k (k = 1, 2, 3; n = 0, 1, 2, · · · ).
(ii) Suppose (2.14) has only one positive root denoted by $1. There exists a nonempty set S τ and

S τ = [0, τ(0)), when τ ∈ S τ the positive equilibrium E2 of system (1.5) is local stable and unstable when
τ > τ(0). There is a Hopf bifurcation for system (1.5) at E2 when τ = τ(n)(n = 0, 1, 2, · · · ).

Note 2.3 If f32 > 0, f31 > 0 hold, then (2.14) has only one positive root, and this is a special case of
Theorem 2.3 (ii).

2.2.4. The case τ1 > 0 and fixed τ2 ∈ S τ2

The characteristic equation about E2 becomes to

H(λ, τ1, τ2) =
(
M(λ) + P(λ)e−λτ2

)
+ N(λ)e−λτ1 = 0, (2.16)
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Suppose λ = iω(ω > 0) is a pure imaginary root of (2.16), similar to the case 2.2.1, one have{
A1 + B1 cosωτ2 −C1 sinωτ2 = −E1 cosωτ1 + F1 sinωτ1,

D1 − B1 sinωτ2 −C1 cosωτ2 = E1 sinωτ1 + F1 cosωτ1,

where

A1 = m2ω
2 − m0, B1 = p2ω

2 − p0,C1 = p1,D1 = ω3 − m1ω, E1 = n2ω
2 − n0, F1 = n1ω.

And
Fτ1(τ2)(ω) = ω6 + f45ω

5 + f44ω
4 + f43ω

3 + f42ω
2 + f41ω + f40 = 0, (2.17)

where

f45 = −2p2 sinωτ2,

f44 = m2
2 − 2m1 − n2

2 + p2
2 + 2(m2 p2 − p1) cosωτ2,

f43 = 2(p0 + m1 p2 − m2 p1) sinωτ2,

f42 = m2
1 − 2m2m0 + 2n2n0 − n2

1 + p2
1 − 2p2 p0 + 2(p1m1 − p0m2 − m0 p2) cosωτ2,

f41 = 2(m0 p1 − p0m1) sinωτ2,

f40 = p2
0 + m2

0 + 2p0m0 cosωτ2 − n2
0.

Assumed that condition C1
3 : fη < KE2 holds, then

Fτ1(τ2)(0) = f0 = (m0 + p0)2 − n2
0 = θx∗1y∗(m0 + p0 + n0)( fη − KE2) < 0, (2.18)

and Fτ1(τ2)(+∞) = +∞. Therefore, (2.17) has at least one positive root. Without loss of generality, we
assume that (2.17) has N1(N1 ∈ N

+) different positive roots, denoted by ωk =
√
$k(k = 1, 2, · · · ,N1)

and we have

cosωkτ1 =
F1D1 − E1A1 − (F1C1 + E1B1) cosωkτ2 + (E1C1 − F1B1) sinωkτ2

E2
1 + F2

1

∆
= Fωk .

Thus

τ(n)
1k (τ2) =

1
ωk

cos−1 [
Fωk

]
+

2nπ
ωk

, k = 1, 2, · · · ,N1; n = 0, 1, 2, · · · , (2.19)

and the direction of τ(n)
1k (τ2) passing through the imaginary axis [20] when ω = ωk is determined by

sign
[

dRe(λ(τ))
dτ

∣∣∣∣∣
τ=τ(n)

1k

]
= sign

[
F′τ1(τ2)($k)

∣∣∣
$k=ω2

k

]
= sign

(
∆k
τ1(τ2)

)
.

Then sign
(
∆k
τ1(τ2)

)
, 0, since ωk(k = 1, 2, · · · ,N1) are N1 distinct positive roots of (2.17). And, system

(1.5) undergos a Hopf bifurcation at E2 when τ1 = τ(n)
1k (τ2).

Define
S τ1(τ2) = {τ1|H(λ, τ1, τ2) = 0,Re(λ) < 0, τ2 ∈ S τ2},

τ10(τ2) = min{τ(n)
1k (τ2)|1 ≤ k ≤ N1, n = 0, 1, 2, · · · },
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when τ1 ∈ S τ1(τ2) the positive equilibrium E2 is local stable. Note that, if (2.17) has more than one
positive root, there would be finite stability switches when time delay τ1 passing through the critical
points

τ1 = τ(n)
1k (τ2)(k = 1, 2, · · · ,N1; n = 0, 1, 2, · · · )

and [0, τ10(τ2)) ⊆ S τ1(τ2). If f4i > 0(i = 1, 2, · · · , 5) and condition C1
3 : fη < KE2 hold, (2.17) has only

one positive root, there is no stability switches when time delay τ1 passing through the critical points
τ1 = τ(n)

1 (τ2)(n = 1, 2, · · · ) and S τ1(τ2) = [0, τ(0)
1 (τ2)).

Theorem 2.4 (i) Suppose (2.17) has at least one positive roots denoted by ωk(1 ≤ k ≤ N1). There
exists a nonempty set S τ1(τ2) and [0, τ10(τ2)) ⊆ S τ1(τ2), when τ1 ∈ S τ1(τ2) the positive equilibrium E2 of
(1.5) is local stable, system (1.5) can undergoes a Hopf bifurcation at the positive equilibrium E2 when

τ1 = τ(n)
1k (τ2)(k = 1, 2, · · · ,N1; n = 0, 1, 2, · · · ).

(ii) Suppose (2.17) has only one positive root denoted by ω1. There exists a nonempty set S τ1(τ2)

and S τ1(τ2) = [0, τ(0)
1 (τ2)), when τ1(τ2) ∈ S τ1(τ2) the positive equilibrium E2 of (1.5) is local stable and

unstable when τ1 > τ(0)
1 (τ2), system (1.5) can undergoes a Hopf bifurcation at the positive equilibrium

E2 when τ1 = τ(n)
1 (τ2)(n = 0, 1, 2, · · · ).

Note 2.4 If f4i > 0(i = 1, 2, · · · , 5) and condition C1
3 : fη < KE2 hold, then (2.17) has only one

positive root, and this is a special case of Theorem 2.4 (ii).

2.2.5. The case τ2 > 0 and fixed τ1 ∈ S τ1

The characteristic equation about E2 is given by

H(λ, τ1, τ2) =
(
M(λ) + N(λ)e−λτ1

)
+ P(λ)e−λτ2 = 0, (2.20)

Suppose λ = iω(ω > 0) is a pure imaginary root of (2.20), similar to the case 2.2.1, we have{
A2 + B2 cosω0τ1 −C2 sinω0τ1 = −E2 cosω0τ2 + F2 sinω0τ2,

D2 − B2 sinω0τ1 −C2 cosω0τ1 = E2 sinω0τ2 + F2 cosω0τ2,

where

A2 = m2ω
2
0 − m0, B2 = n2ω

2
0 − n0,C2 = n1,D2 = ω3

0 − m1ω0, E2 = p2ω
2
0 − p0, F2 = p1ω0.

And
Fτ2(τ1)(ω) = ω6 + f55ω

5 + f54ω
4 + f53ω

3 + f52ω
2 + f51ω + f50=0, (2.21)

where

f55 = −2n2 sinωτ1,

f54 = m2
2 − 2m1 − p2

2 + n2
2 + 2(m2n2 − p1) cosωτ1,

f53 = 2(n0 + m1n2 − m2n1) sinωτ1,

f52 = m2
1 − 2m2m0 + 2p2 p0 − p2

1 + n2
1 − 2n2n0 + 2(n1m1 − n0m2 − m0n2) cosωτ1,

f51 = 2(m0n1 − n0m1) sinωτ1,

f50 = n2
0 + m2

0 + 2n0m0 cosωτ1 − p2
0,

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6934–6961.



6944

Assumed that condition C2
3 : fη > KE2 hold, then

Fτ2(τ1)(0) = f0 = (m0 + n0)2 − p2
0 = θx∗1y∗(m0 + p0 + n0)(KE2 − fη) < 0, (2.22)

and Fτ2(τ1)(+∞) = +∞, therefore, (2.21) has at least one positive root. Without loss of generality, we
assume that (2.21) has N2(N2 ∈ N

+) distinct positive roots, denoted by ωk =
√
$k(k = 1, 2, · · · ,N2)

and we have

cosωkτ2 =
F2D2 − E2A2 − (F2C2 + E2B2) cosωkτ1 + (E2C2 − F2B2) sinωkτ1

E2
2 + F2

2

, Fωk .

Thus
τ(n)

2k (τ1) =
1
ωk

cos−1 [
Fωk

]
+

2nπ
ωk

, k = 1, 2, · · · ,N2; n = 0, 1, 2, · · · , (2.23)

and the direction of τ(n)
2k (τ1) passing through the imaginary axis [20] when ω = ωk is determined by

sign
[

dRe(λ(τ))
dτ

∣∣∣∣∣
τ=τ(n)

2k

]
= sign

[
F′τ2(τ1)($k)

∣∣∣
$k=ω2

k

]
= sign

(
∆k
τ2(τ1)

)
.

Then sign
(
∆k
τ2(τ1)

)
, 0, since ωk(k = 1, 2, · · · ,N2) are N2 distinct positive roots of (2.21). System (1.5)

undergoes a Hopf bifurcation at E2 when τ2 = τ(n)
2k (τ1).

Define
S τ2(τ1) = {τ2|H(λ, τ1, τ2) = 0,Re(λ) < 0, τ1 ∈ S τ1},

τ20(τ1) = min{τ(n)
2k (τ1)|1 ≤ k ≤ N2, n = 0, 1, 2, · · · },

when τ2 ∈ S τ2(τ1) the positive equilibrium E2 is local stable. Note that, if (2.21) has more than one
positive root, there would be finite stability switches when time delay τ2 passing through the critical
points

τ2 = τ(n)
2k (τ1)(k = 1, 2, · · · ,N2; n = 0, 1, 2, · · · )

and [0, τ20(τ1)) ⊆ S τ2(τ1). If f5i > 0(i = 1, 2, · · · , 5) and condition C2
3 : fη > KE2 hold, (2.21) has only

one positive root, there is no stability switches when time delay τ1 passing through the critical points
τ2 = τ(n)

2 (τ1)(n = 1, 2, · · · ) and S τ2(τ1) = [0, τ(0)
2 (τ1)).

Theorem 2.5 (i) Suppose (2.21) has at least one positive roots denoted by ωk(1 ≤ k ≤ N2). There
exists a nonempty set S τ2(τ1) and [0, τ20(τ1)) ⊆ S τ2(τ1), when τ2 ∈ S τ2(τ1) the positive equilibrium E2 of
system (1.5) is local stable. There is a Hopf bifurcation at E2 when

τ2 = τ(n)
2k (τ1)(k = 1, 2, · · · ,N2; n = 0, 1, 2, · · · ).

(ii) Suppose (2.21) has only one positive root denoted by ω1. There exists a nonempty set S τ2(τ1)

and S τ2(τ1) = [0, τ(0)
2 (τ1)), when τ2(τ1) ∈ S τ2(τ1) the positive equilibrium E2 of (1.5) is local stable and

unstable when τ2 > τ
(0)
2 (τ1). There is a Hopf bifurcation at E2 when τ2 = τ(n)

2 (τ1)(n = 0, 1, 2, · · · ).
Note 2.5 If f5i > 0(i = 1, 2, · · · , 5) and condition C2

3 : fη > KE2 hold, then (2.21) has only one
positive root, and this is a special case of Theorem 2.5 (ii).
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3. Numerical simulations

3.1. Example 1

We consider following system
x′1(t) = 2.5x2(t) − x1(t)(1.05 + 0.2x1(t) + 1.25y(t)),
x′2(t) = 0.9x1(t) − 0.7x2(t),
y′(t) = y(t)(0.75x1(t − τ1) − 0.1 − 1.8y(t − τ2)),

(3.1)

where α = 2.5, γ1 = 0.15,Ω = 0.9, η = 0.2, E = 1.25, θ1 = 0.2, a = 0.5,K = 0.6, d = 0.1, f =

1.8, X(0) = (4.0, 5.0, 1.3).
In case 2.2.1, τ1 > 0, τ2 ≡ 0, from (2.6) we have f12 = 24.6366, f11 = 84.7024, f10 = −5.3829, the

unique positive root ω = 0.2498 and

τ(n)
1 = 8.4802 + 0.5nπ, n = 0, 1, 2, · · · ,

sign
(
∆1
τ1

)
= 1. According to Theorem 2.2.1 (ii),

τ10 = 8.4802, S τ1 = [0, 8.4802).

The positive equilibrium point E2 is local stable when τ1 = 8.3 < τ10, and unstable when τ1 =

8.6 > τ10 (Figure 1). And increasing time delay τ1, the prey and predator populations can coexist with
stable limit cycles when τ2 = 0 and τ1 = 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.3, 10, 11, 12, 13, 15, 20, 25, 40, 80,
respectively (Figure 2). Then, there is a global Hopf bifurcation when time delay τ1 far away from the
first bifurcating critical point τ10 [16], and the amplitudes of period oscillation are increasing with time
delay τ1 increased. By the fast-slow oscillations, too large time delay τ1 would make the population
to be die out, since the populations are very close to zero when time delay τ1 increase to some critical
value (Figure 3).

In case 2.2.2, τ2 > 0, τ1 ≡ 0, from (2.10) we have f22 = 7.5640, f21 = −103.9972, f20 = 5.3829, and
there are two positive roots ω1 = 7.0595, ω2 = 0.0520,

τ(n)
21 = 0.68 + 0.2833nπ, τ(n)

22 = 17.4608 + 38.4615nπ, n = 0, 1, 2, · · · ,

sign
(
∆1
τ2

)
= 1, sign

(
∆2
τ2

)
= −1. Note that τ(0)

21 < τ(1)
21 < τ(0)

22 , there is no stability switches for τ2 passing
through the critical points τ(n)

21 and τ(n)
22 . According to Theorem 2.2.2 (i),

τ20 = 0.68, S τ2 = [0, 0.68).

The positive equilibrium point E2 is local stable when τ2 = 0.66 < τ20, and unstable when τ2 =

0.70 > τ20 (Figure 4). And increasing time delay τ2, the prey and predator populations can coexist
with stable limit cycles when τ1 = 0 and τ2 = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, respectively (Figure 5), and the
amplitudes of period oscillation are increased. And, time delay τ2 would make the population to be die
out, because the populations are very close to zero and then tend to unbounded solutions as time delay
τ2 = 1.23 (Figure 6).
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Figure 1: The time-series plot of the system (29). (a) E2 is local asymptotically

stable for τ1 = 8.3 < τ10, (b) A local Hopf bifurcation for τ1 = 8.6 > τ10 near positive

equilibrium point E2.

and Fτ2(τ1)(+∞) = +∞, therefore, (26) has at least one positive root. Without loss

of generality, we assume that (26) has N2(N2 ∈ N+) distinct positive roots, denoted

by ωk =
√

ϖk(k = 1, 2, · · · , N2) and we have

cos ωkτ2 =
F2D2 − E2A2 − (F2C2 + E2B2) cos ωkτ1 + (E2C2 − F2B2) sin ωkτ1

E2
2 + F 2

2

, Fωk
.

Thus

τ
(n)
2k (τ1) =

1

ωk

cos−1 [Fωk
] +

2nπ

ωk

, k = 1, 2, · · · , N2; n = 0, 1, 2, · · · , (28)

and the direction of τ
(n)
2k (τ1) passing through the imaginary axis [20] when ω = ωk is

determined by

sign

[
dRe(λ(τ))

dτ

∣∣∣∣
τ=τ

(n)
2k

]
= sign

[
F ′

τ2(τ1)(ϖk)
∣∣
ϖk=ω2

k

]
= sign

(
∆k

τ2(τ1)

)
.

Then sign
(
∆k

τ2(τ1)

)
̸= 0, since ωk(k = 1, 2, · · · , N2) are N2 distinct positive roots of

(26). System (5) undergoes a Hopf bifurcation at E2 when τ2 = τ
(n)
2k (τ1).

12

Figure 1. The time-series plot of the system (3.1). (a) E2 is local asymptotically stable for
τ1 = 8.3 < τ10, (b) A local Hopf bifurcation for τ1 = 8.6 > τ10 near positive equilibrium
point E2.
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Figure 2: Prey and predator populations coexist with stable limit cycles for system

(29) when τ2 = 0 and τ1 = 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.3, 10, 11, 12, 13, 15, 20, 25, 40, 80,

respectively.

Define

Sτ2(τ1) = {τ2|H(λ, τ1, τ2) = 0, Re(λ) < 0, τ1 ∈ Sτ1},

τ20(τ1) = min{τ
(n)
2k (τ1)|1 ≤ k ≤ N2, n = 0, 1, 2, · · · },

when τ2 ∈ Sτ2(τ1) the positive equilibrium E2 is local stable. Note that, if (26) has

more than one positive root, there would be finite stability switches when time delay

τ2 passing through the critical points

τ2 = τ
(n)
2k (τ1)(k = 1, 2, · · · , N2; n = 0, 1, 2, · · · )

and [0, τ20(τ1)) ⊆ Sτ2(τ1). If f5i > 0(i = 1, 2, · · · , 5) and condition C2
3 : fη > KE2

hold, (26) has only one positive root, there is no stability switches when time de-

lay τ1 passing through the critical points τ2 = τ
(n)
2 (τ1)(n = 1, 2, · · · ) and Sτ2(τ1) =

[0, τ
(0)
2 (τ1)).

Theorem 2.5 (i) Suppose (26) has at least one positive roots denoted by ωk(1 ≤
k ≤ N2). There exists a nonempty set Sτ2(τ1) and [0, τ20(τ1)) ⊆ Sτ2(τ1), when τ2 ∈
Sτ2(τ1) the positive equilibrium E2 of system (5) is local stable. There is a Hopf

13

Figure 2. Prey and predator populations coexist with stable limit cycles for system
(3.1) when τ2 = 0 and τ1 = 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.3, 10, 11, 12, 13, 15, 20, 25, 40, 80,
respectively.
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Figure 3: The time-series plot of the system (29) when τ2 = 0 and τ1 =

8.6, 9.3, 11, 20, 30, 50, respectively.

bifurcation at E2 when

τ2 = τ
(n)
2k (τ1)(k = 1, 2, · · · , N2; n = 0, 1, 2, · · · ).

(ii) Suppose (26) has only one positive root denoted by ω1. There exists a nonemp-

ty set Sτ2(τ1) and Sτ2(τ1) = [0, τ
(0)
2 (τ1)), when τ2(τ1) ∈ Sτ2(τ1) the positive equilibrium

E2 of (5) is local stable and unstable when τ2 > τ
(0)
2 (τ1). There is a Hopf bifurcation

at E2 when τ2 = τ
(n)
2 (τ1)(n = 0, 1, 2, · · · ).

Note 2.5 If f5i > 0(i = 1, 2, · · · , 5) and condition C2
3 : fη > KE2 hold, then (26)

has only one positive root, and this is a special case of Theorem 2.5 (ii).

14

Figure 3. The time-series plot of the system (3.1) when τ2 = 0 and τ1 =

8.6, 9.3, 11, 20, 30, 50, respectively.
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Figure 4: The time-series plot of the system (29). (a) E2 is local asymptotically stable

for τ2 = 0.66 < τ10, (b) A local Hopf bifurcation for τ2 = 0.70 > τ10 near positive

equilibrium point E2.

3 Numerical Simulations

3.1 Example 1

We consider following system



x′
1(t) = 2.5x2(t) − x1(t)(1.05 + 0.2x1(t) + 1.25y(t)),

x′
2(t) = 0.9x1(t) − 0.7x2(t),

y′(t) = y(t)(0.75x1(t − τ1) − 0.1 − 1.8y(t − τ2)),

(29)

where α = 2.5, γ1 = 0.15, Ω = 0.9, η = 0.2, E = 1.25, θ1 = 0.2, a = 0.5, K = 0.6, d =

0.1, f = 1.8, X(0) = (4.0, 5.0, 1.3).

In case 2.2.1, τ1 > 0, τ2 ≡ 0, from (11) we have f12 = 24.6366, f11 = 84.7024, f10 =

15

Figure 4. The time-series plot of the system (3.1). (a) E2 is local asymptotically stable for
τ2 = 0.66 < τ10, (b) A local Hopf bifurcation for τ2 = 0.70 > τ10 near positive equilibrium
point E2.
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Figure 5: Prey and predator populations coexist with stable limit cycles for system

(29) when τ1 = 0 and τ2 = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, respectively.

−5.3829, the unique positive root ω = 0.2498 and

τ
(n)
1 = 8.4802 + 0.5nπ, n = 0, 1, 2, · · · ,

sign
(
∆1

τ1

)
= 1. According to Theorem 2.2.1 (ii),

τ10 = 8.4802, Sτ1 = [0, 8.4802).

The positive equilibrium point E2 is local stable when τ1 = 8.3 < τ10, and un-

stable when τ1 = 8.6 > τ10 (Fig. 1). And increasing time delay τ1, the prey

and predator populations can coexist with stable limit cycles when τ2 = 0 and

τ1 = 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.3, 10, 11, 12, 13, 15, 20, 25, 40, 80, respectively (Fig. 2).

Then, there is a global Hopf bifurcation when time delay τ1 far away from the first

bifurcating critical point τ10 [16], and the amplitudes of period oscillation are increas-

ing with time delay τ1 increased. By the fast-slow oscillations, too large time delay

τ1 would make the population to be die out, since the populations are very close to

zero when time delay τ1 increase to some critical value (Fig.3).

In case 2.2.2, τ2 > 0, τ1 ≡ 0, from (15) we have f22 = 7.5640, f21 = −103.9972, f20 =

16

Figure 5. Prey and predator populations coexist with stable limit cycles for system (3.1)
when τ1 = 0 and τ2 = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, respectively.
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Figure 6: The time-series plot of the system (29) when τ1 = 0 and τ2 =

0.7, 1.0, 1.22, 1.23, respectively.

5.3829, and there are two positive roots ω1 = 7.0595, ω2 = 0.0520,

τ
(n)
21 = 0.68 + 0.2833nπ, τ

(n)
22 = 17.4608 + 38.4615nπ, n = 0, 1, 2, · · · ,

sign
(
∆1

τ2

)
= 1, sign

(
∆2

τ2

)
= −1. Note that τ

(0)
21 < τ

(1)
21 < τ

(0)
22 , there is no stability

switches for τ2 passing through the critical points τ
(n)
21 and τ

(n)
22 . According to Theorem

2.2.2 (i),

τ20 = 0.68, Sτ2 = [0, 0.68).

The positive equilibrium point E2 is local stable when τ2 = 0.66 < τ20, and un-

stable when τ2 = 0.70 > τ20 (Fig. 4). And increasing time delay τ2, the prey

and predator populations can coexist with stable limit cycles when τ1 = 0 and

τ2 = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, respectively (Fig. 5), and the amplitudes of period

oscillation are increased. And, time delay τ2 would make the population to be die

out, because the populations are very close to zero and then tend to unbounded

17

Figure 6. The time-series plot of the system (3.1) when τ1 = 0 and τ2 = 0.7, 1.0, 1.22, 1.23,
respectively.
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In case 2.2.3, τ1 = τ2 = τ, f32 = 14.7433, f31 = −171.3174, f30 = −12.0940, and the unique positive
root ω = 2.7753,

τ(n) = 0.5015 + 0.7206nπ, n = 0, 1, 2, · · · ,

sign
(
∆1
τ

)
= 1. Then τ0 = 0.5017, According to Theorem 2.2.3 (i),

τ0 = 0.5017, S τ = [0, 0.5017).

The positive equilibrium point E2 is local stable when τ = 0.48 < τ0, and unstable when τ = 0.52 > τ0

(Figure 7). And increasing time delay τ, the prey and predator populations can coexist with stable limit
cycles when τ = 0.503, 0.505, 0.508, 0.513, 0.518, 0.523, 0.526, 0.53, respectively (Figure 8), and the
amplitudes of period oscillation are increased. And, time delay τ would make the population to be die
out, because the populations are very close to zero and then tend to unbounded solution as time delay
τ = 0.536 (Figure 9).
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Figure 7: The time-series plot of the system (29). (a) E2 is local asymptotically

stable for τ = 0.48 < τ0, (b) A local Hopf bifurcation for τ = 0.52 > τ0 near positive

equilibrium point E2.

solutions as time delay τ2 = 1.23 (Fig. 6).

In case 2.2.3, τ1 = τ2 = τ, f32 = 14.7433, f31 = −171.3174, f30 = −12.0940, and

the unique positive root ω = 2.7753,

τ (n) = 0.5015 + 0.7206nπ, n = 0, 1, 2, · · · ,

sign (∆1
τ ) = 1. Then τ0 = 0.5017, According to Theorem 2.2.3 (i),

τ0 = 0.5017, Sτ = [0, 0.5017).

The positive equilibrium point E2 is local stable when τ = 0.48 < τ0, and unstable

when τ = 0.52 > τ0 (Fig. 7). And increasing time delay τ , the prey and predator pop-

ulations can coexist with stable limit cycles when τ = 0.503, 0.505, 0.508, 0.513, 0.518, 0.523,

0.526, 0.53, respectively (Fig. 8), and the amplitudes of period oscillation are in-

creased. And, time delay τ would make the population to be die out, because the

populations are very close to zero and then tend to unbounded solution as time delay

18

Figure 7. The time-series plot of the system (3.1). (a) E2 is local asymptotically stable for
τ = 0.48 < τ0, (b) A local Hopf bifurcation for τ = 0.52 > τ0 near positive equilibrium point
E2.
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Figure 8: Prey and predator populations coexist with stable limit cycles for system

(29) when τ = 0.503, 0.505, 0.508, 0.513, 0.518, 0.523, 0.526, 0.53, respectively.

τ = 0.536 (Fig. 9).

We plot the stable and unstable regions with τ1 × τ2 = [0, 10] × [0, 1.4] (Fig.

10) by using the publicly available Matlab package Trace-DDE [22], which by the

pseudospectral method for the computation of characteristic roots of delay differential

equations introduced in [23, 24]. From Figure 10, we see that, if one fixed τ2 about

0.55, there would be stability switches when τ1 increasing from 0 to 10. Let τ2 =

0.52 ∈ Sτ2 , in case 2.2.4, from the Figure 11 we see that Fτ1(τ2) = 0 have three

positive roots

ω1 = 2.896366, ω2 = 2.473462, ω3 = 0.288596,

and
τ

(n)
11 = 0.338236 + 0.690520nπ,

τ
(n)
12 = 0.786103 + 0.808583nπ,

τ
(n)
13 = 7.871032 + 6.930103nπ, (n = 0, 1, 2, · · · , )

sign
(
∆1

τ1(τ2)

)
= 1, sign

(
∆2

τ1(τ2)

)
= −1, sign

(
∆3

τ1(τ2)

)
= 1

19

Figure 8. Prey and predator populations coexist with stable limit cycles for system (3.1)
when τ = 0.503, 0.505, 0.508, 0.513, 0.518, 0.523, 0.526, 0.53, respectively.
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Figure 9: The time-series plot of the system (29) when τ =

0.503, 0.508, 0.516, 0.524, 0.533, 0.536, respectively.

Note that,

τ
(0)
11 = 0.338236, τ

(0)
12 = 0.786103,

τ
(1)
11 = 2.507569, τ

(1)
12 = 3.326342,

τ
(2)
11 = 4.676903, τ

(2)
12 = 5.866582,

τ
(3)
11 = 6.846236, τ

(0)
13 = 7.8710317,

τ
(3)
12 = 8.406821, τ

(4)
11 = 9.015570.

then
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(0)
11 < τ
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12 < τ

(1)
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(0)
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(3)
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11 ,

and

Sτ1(τ2) =
[
0, τ

(0)
11

)∪ (
τ

(0)
12 , τ

(1)
11

)∪ (
τ

(1)
12 , τ

(2)
11

)∪ (
τ

(2)
12 , τ

(3)
11

)
.

When τ2 = 0.52, τ1 ∈ Sτ1(τ2), the positive equilibrium point E2 is local stable, where

Sτ1(τ2) composed of four an increasing intervals. There are four times stability switch-

es when time delay τ1 crossing Sτ1(τ2). And continuously increasing time delay τ1, the

prey and predator populations coexist with period oscillation, quasi-period oscilla-

20

Figure 9. The time-series plot of the system (3.1) when τ = 0.503, 0.508, 0.516,
0.524, 0.533, 0.536, respectively.
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We plot the stable and unstable regions with τ1 × τ2 = [0, 10] × [0, 1.4] (Figure 10) by using the
publicly available Matlab package Trace-DDE [22], which by the pseudospectral method for the
computation of characteristic roots of delay differential equations introduced in [23, 24]. From
Figure 10, we see that, if one fixed τ2 about 0.55, there would be stability switches when τ1 increasing
from 0 to 10. Let τ2 = 0.52 ∈ S τ2 , in case 2.2.4, from the Figure 11 we see that Fτ1(τ2) = 0 have three
positive roots

ω1 = 2.896366, ω2 = 2.473462, ω3 = 0.288596,

and

τ(n)
11 = 0.338236 + 0.690520nπ, τ(n)

12 = 0.786103 + 0.808583nπ,

τ(n)
13 = 7.871032 + 6.930103nπ, (n = 0, 1, 2, · · · ), sign

(
∆1
τ1(τ2)

)
= 1, sign

(
∆2
τ1(τ2)

)
= −1, sign

(
∆3
τ1(τ2)

)
= 1.

Note that,

τ(0)
11 = 0.338236, τ(0)

12 = 0.786103, τ(1)
11 = 2.507569, τ(1)

12 = 3.326342, τ(2)
11 = 4.676903,

τ(2)
12 = 5.866582, τ(3)

11 = 6.846236, τ(0)
13 = 7.8710317, τ(3)

12 = 8.406821, τ(4)
11 = 9.015570.

then

τ(0)
11 < τ

(0)
12 < τ

(1)
11 < τ

(1)
12 < τ

(2)
11 < τ

(2)
12 < τ

(3)
11 < τ

(0)
13 < τ

(3)
12 < τ

(4)
11 ,

and

S τ1(τ2) =
[
0, τ(0)

11

)⋃(
τ(0)

12 , τ
(1)
11

)⋃(
τ(1)

12 , τ
(2)
11

)⋃(
τ(2)

12 , τ
(3)
11

)
.

When τ2 = 0.52, τ1 ∈ S τ1(τ2), the positive equilibrium point E2 is local stable, where S τ1(τ2) composed
of four an increasing intervals. There are four times stability switches when time delay τ1 crossing
S τ1(τ2). And continuously increasing time delay τ1, the prey and predator populations coexist with
period oscillation, quasi-period oscillation, even chaotic oscillation when τ1 = 8, 9, 11, 14, 15, 19, 37,
and tend to unbounded oscillation for τ1 = 38 (Figure 12).

Let τ1 = 3.1 ∈
(
τ(1)

11 , τ
(1)
12

)
(unstable region). We investigate the effect time delay τ2 on system (3.1).

The bifurcation diagrams of time delay τ2 over [0.52, 0.68] show that system (3.1) has rich dynamics
(Figure 13), including (1) periodic oscillating, (2) period-doubling bifurcations, and (3) chaos, and the
solution tend to unbounded oscillation for τ2 = 0.69 at time t = 210 (Figure 14).
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Figure 10: The stable regions (gray) and unstable regions (white) of the positive

equilibrium point E2 of system (29) with τ1 × τ2 = [0, 10] × [0, 1.4].

tion, even chaotic oscillation when τ1 = 8, 9, 11, 14, 15, 19, 37, and tend to unbounded

oscillation for τ1 = 38 (Fig. 12).

Let τ1 = 3.1 ∈
(
τ

(1)
11 , τ

(1)
12

)
(unstable region). We investigate the effect time

delay τ2 on system (29). The bifurcation diagrams of time delay τ2 over [0.52, 0.68]

show that system (29) has rich dynamics (Fig. 13), including (1) periodic oscillating,

(2) period-doubling bifurcations, and (3) chaos, and the solution tend to unbounded

oscillation for τ2 = 0.69 at time t = 210 (Fig. 14).

Furthermore, increasing τ2 from 0.52 to 1.4, then τ
(n)
11 decreased and τ

(n)
12 increased,

and the stability switches disappear one by one when τ
(n)
12 > τ

(n+1)
11 for n = 2, 1, 0

(Fig. 15). We plot the stable and unstable regions (Fig. 16 an 17) by choose

f = 0.6, 0.8, 1.2, 1.5, 1.9, 2.2, 2.4, 2.9 respectively, and remained other parameters in

example 1. By increasing the values of parameter f , the stable and unstable regions

21

Figure 10. The stable regions (gray) and unstable regions (white) of the positive equilibrium
point E2 of system (3.1) with τ1 × τ2 = [0, 10] × [0, 1.4].
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Figure 11: The graphic of function Fτ1(τ2)(ω) = 0 (top) and the critical time delay

series τ
(n)
11 , τ

(n)
12 , τ

(n)
13 (bottom) when τ2 = 0.52 for system (29).

showing that τ
(0)
11 increased and τ

(0)
21 decreased, and the stable regions changed more

and more complexity, which is a connect region from the view of topology. If we

increasing the values of parameter f and choose τ2 less than and closed to the first

critical point τ
(0)
21 , then there would be more and more stability switches by increasing

time delay τ1 from 0 to 15.

3.2 Example 2

We consider following system



x′
1(t) = 2.6x2(t) − x1(t)(1.1 + 0.3x1(t) + 1.1y(t)),

x′
2(t) = 0.9x1(t) − 0.8x2(t),

y′(t) = y(t)(0.88x1(t − τ1) − 0.15 − fy(t − τ2)),

(30)

where α = 2.6, γ1 = 0.2, Ω = 0.9, η = 0.3, E = 1.1, θ1 = 0.15, a = 0.65, k = 0.8, d =

0.15, X(0) = (4.0, 5.0, 1.3). We consider the case 2.2.2 with different value of param-

eter f .

22

Figure 11. The graphic of function Fτ1(τ2)(ω) = 0 (top) and the critical time delay series
τ(n)

11 , τ
(n)
12 , τ

(n)
13 (bottom) when τ2 = 0.52 for system (3.1).
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Figure 12: The time-series plot of the system (29) when τ2 = 0.52 and τ1 =

8, 9, 11, 14, 15, 19, 37, 38, respectively.

Let f = 0.095, from (15) we have ω1 = 0.3760, ω2 = 0.2963 and

τ
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21 = 6.7472+5.3191nπ, τ
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Let f = 0.11, from (15) we have ω1 = 0.4037, ω2 = 0.2957 and
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23

Figure 12. The time-series plot of the system (3.1) when τ2 = 0.52 and τ1 =

8, 9, 11, 14, 15, 19, 37, 38, respectively.
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Figure 13: The bifurcation diagrams of system (29) when time delay τ1 = 3.1 and

time delay τ2 over [0.52, 0.68].
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.

Let f = 0.16, from (15) we have ω1 = 0.4874, ω2 = 0.2972 and

τ
(n)
21 = 4.6008+4.1034nπ, τ

(n)
22 = 13.0647+6.7295nπ, sign

(
∆1

τ2

)
= 1, sign

(
∆2

τ2

)
= −1,

τ
(0)
21 = 4.6008, τ

(0)
22 = 13.0647, τ

(1)
21 = 17.4916,

τ
(2)
21 = 30.3824, τ

(1)
22 = 34.2025,

then

τ
(0)
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(0)
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(1)
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(2)
21 < τ

(1)
22 , Sτ2 =

[
0, τ

(0)
21

)∪ (
τ

(0)
22 , τ

(1)
21

)
.

Let f = 0.35, from (15) we have ω1 = 0.7658, ω2 = 0.2976 and

τ
(n)
21 = 2.6501+2.6116nπ, τ

(n)
22 = 13.5430+6.7204nπ, sign

(
∆1

τ2

)
= 1, sign

(
∆2

τ2

)
= −1,

τ
(0)
21 = 2.6501, τ

(1)
21 = 10.8544, τ
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21 = 13.5430,

then

τ
(0)
21 < τ

(1)
21 < τ

(0)
22 , Sτ2 =

[
0, τ

(0)
21

)
.

From above numerical analysis, we see that, the times of stability switches are

decreased from four to one by increasing the values of parameter f from 0.095 to 0.35;

and the first critical point τ
(0)
21 also decreased (Fig. 18). From Figure 19, we see the

stable regions changed more and more simple by increasing the values of parameter

f , and the stable regions from four parts to three parts, and to two parts, finally to

one connect region.

24

Figure 13. The bifurcation diagrams of system (3.1) when time delay τ1 = 3.1 and time
delay τ2 over [0.52, 0.68].
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Figure 14: The time-series plot of the system (29) when τ1 = 3.1 and τ2 =

0.54, 0.60, 0.63, 0.67, 0.69, respectively.

4 Conclusion

We have considered a prey-predator system with three stage structure and two

delays, and analyzed the stability of the equilibrium point, obtained the conditions for

the positive equilibrium E2 occurring Hopf bifurcation by analyzing the characteristic

equation in five cases. From the numerical examples and analysis, we know that

the time delays would make the system subject to period oscillation, quasi-period

oscillation, chaotic oscillation, finite stability switches, even unbounded oscillation

and extinct. That is to say, time delays are important factors to affect the dynamic

behaviors of the system.

4.1 Delays induced Hopf bifurcation

From the analysis in section 2, we know that f30 < 0 in (19) for case 2.2.3, then

(19) has at least one positive root, and there is a natural Hopf bifurcation for system

(5) without any conditions according to theorem 2.2.3 (i). If condition C1
3 : fη < KE2

25

Figure 14. The time-series plot of the system (3.1) when τ1 = 3.1 and τ2 =

0.54, 0.60, 0.63, 0.67, 0.69, respectively.

Furthermore, increasing τ2 from 0.52 to 1.4, then τ(n)
11 decreased and τ(n)

12 increased, and the stability
switches disappear one by one when τ(n)

12 > τ(n+1)
11 for n = 2, 1, 0 (Figure 15). We plot the stable and

unstable regions (Figures 16 and 17) by choose f = 0.6, 0.8, 1.2, 1.5, 1.9, 2.2, 2.4, 2.9 respectively, and
remained other parameters in example 1. By increasing the values of parameter f , the stable and
unstable regions showing that τ(0)

11 increased and τ(0)
21 decreased, and the stable regions changed more

and more complexity, which is a connect region from the view of topology. If we increasing the values
of parameter f and choose τ2 less than and closed to the first critical point τ(0)

21 , then there would be
more and more stability switches by increasing time delay τ1 from 0 to 15.

3.2. Example 2

We consider following system
x′1(t) = 2.6x2(t) − x1(t)(1.1 + 0.3x1(t) + 1.1y(t)),
x′2(t) = 0.9x1(t) − 0.8x2(t),
y′(t) = y(t)(0.88x1(t − τ1) − 0.15 − f y(t − τ2)),

(3.2)

where α = 2.6, γ1 = 0.2,Ω = 0.9, η = 0.3, E = 1.1, θ1 = 0.15, a = 0.65, k = 0.8, d = 0.15, X(0) =

(4.0, 5.0, 1.3). We consider the case 2.2.2 with different value of parameter f .
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holds then f10 < 0 in (11) for case 2.2.1, and that (11) has at least one positive root,

and there is a Hopf bifurcation for system (5) according to theorem 2.2.1 (i). Similarly,

if condition C2
3 : fη > KE2 holds then f20 < 0 in (15) for case 2.2.2, and that (15)

has at least one positive root, there is a Hopf bifurcation for system (5) according to

theorem 2.2.2 (i). Note that conditions C1
3 : fη < KE2 and C2

3 : fη > KE2 cannot

hold at the same time, but one of them can hold for any parameter values of the

system exclude the special case fη = KE2. Therefore, there is a Hopf bifurcation

for system (5) with only one time delay τ1 or τ2. And then, one of Sτ1 and Sτ2 is

nonempty set. So, there is a natural Hopf bifurcation for system (5), and large time

delays would make the positive point E2 eventually unstable. These are harmful

delays for system (5).

26

Figure 15. Location about the critical time delay series τ(n)
11 , τ

(n)
12 , τ

(n)
13 of the system (3.1) in

the stable-unstable regions when increased time delay τ2.
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Figure 16: The stable regions (gray) and unstable regions (white) of the positive

equilibrium point E2 of system (29) with parameter f = 0.6, 0.8, 1.2, 1.5, respectively.

4.2 Delays induced stability switches

From the analysis in section 2, we know that there would be finite stability switch-

es for system (5) when the equation has more than one positive roots ωk(k > 1).

From example 1 in case 2.2.2, only time delay τ2, there are two positive roots and

two critical delay sequences τ
(n)
21 and τ

(n)
22 . But, there is no stability switches since

τ
(0)
21 < τ

(1)
21 < τ

(0)
22 . From example 1 in case 2.2.4 fixed τ2 = 0.52 ∈ Sτ2 , there are three

positive roots and three critical delay sequences τ
(n)
11 , τ

(n)
12 and τ

(0)
13 . Note that

τ
(0)
11 < τ

(0)
12 < τ

(1)
11 < τ

(1)
12 < τ

(2)
11 < τ

(2)
12 < τ

(3)
11 < τ

(0)
13 < τ

(3)
12 < τ

(4)
11 ,

27

Figure 16. The stable regions (gray) and unstable regions (white) of the positive equilibrium
point E2 of system (3.1) with parameter f = 0.6, 0.8, 1.2, 1.5, respectively.
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Let f = 0.095, from (2.10) we have ω1 = 0.3760, ω2 = 0.2963 and

τ(n)
21 = 6.7472 + 5.3191nπ, τ(n)

22 = 12.1964 + 6.7499nπ, sign
(
∆1
τ2

)
= 1, sign

(
∆2
τ2

)
= −1,

τ(0)
21 = 6.7472, τ(0)

22 = 12.1964, τ(1)
21 = 23.4585, τ(1)

22 = 33.4014,

τ(2)
21 = 40.1697, τ(2)

22 = 54.6066, τ(3)
21 = 56.8809, τ(4)

21 = 73.5921, τ(3)
22 = 75.8117,

then
τ(0)

21 < τ
(0)
22 < τ

(1)
21 < τ

(1)
22 < τ

(2)
21 < τ

(2)
22 < τ

(3)
21 < τ

(4)
21 < τ

(3)
22 ,

and
S τ2 =

[
0, τ(0)

21

)⋃(
τ(0)

22 , τ
(1)
21

)⋃(
τ(1)

22 , τ
(2)
21

)⋃(
τ(2)

22 , τ
(3)
21

)
.

Let f = 0.11, from (2.10) we have ω1 = 0.4037, ω2 = 0.2957 and

τ(n)
21 = 6.0146 + 4.9542nπ, τ(n)

22 = 12.5688 + 6.7636nπ, sign
(
∆1
τ2

)
= 1, sign

(
∆2
τ2

)
= −1,

τ(0)
21 = 6.0146, τ(0)

22 = 12.5688, τ(1)
21 = 21.5800,

τ(1)
22 = 33.8150, τ(2)

21 = 37.1453, τ(3)
21 = 52.7107, τ(2)

22 = 55.0613,

then
τ(0)

21 < τ
(0)
22 < τ

(1)
21 < τ

(1)
22 < τ

(2)
21 < τ

(3)
21 < τ

(2)
22 ,

and
S τ2 =

[
0, τ(0)

21

)⋃(
τ(0)

22 , τ
(1)
21

)⋃(
τ(1)

22 , τ
(2)
21

)
.

Let f = 0.16, from (2.10) we have ω1 = 0.4874, ω2 = 0.2972 and

τ(n)
21 = 4.6008 + 4.1034nπ, τ(n)

22 = 13.0647 + 6.7295nπ, sign
(
∆1
τ2

)
= 1, sign

(
∆2
τ2

)
= −1,

τ(0)
21 = 4.6008, τ(0)

22 = 13.0647, τ(1)
21 = 17.4916, τ(2)

21 = 30.3824, τ(1)
22 = 34.2025,

then
τ(0)

21 < τ
(0)
22 < τ

(1)
21 < τ

(2)
21 < τ

(1)
22 , S τ2 =

[
0, τ(0)

21

)⋃(
τ(0)

22 , τ
(1)
21

)
.

Let f = 0.35, from (2.10) we have ω1 = 0.7658, ω2 = 0.2976 and

τ(n)
21 = 2.6501 + 2.6116nπ, τ(n)

22 = 13.5430 + 6.7204nπ, sign
(
∆1
τ2

)
= 1, sign

(
∆2
τ2

)
= −1,

τ(0)
21 = 2.6501, τ(1)

21 = 10.8544, τ(1)
21 = 13.5430,

then
τ(0)

21 < τ
(1)
21 < τ

(0)
22 , S τ2 =

[
0, τ(0)

21

)
.

From above numerical analysis, we see that, the times of stability switches are decreased from four
to one by increasing the values of parameter f from 0.095 to 0.35; and the first critical point τ(0)

21 also
decreased (Figure 18). From Figure 19, we see the stable regions changed more and more simple by
increasing the values of parameter f , and the stable regions from four parts to three parts, and to two
parts, finally to one connect region.
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Figure 17: The stable regions (gray) and unstable regions (white) of the positive

equilibrium point E2 of system (29) with parameter f = 1.9, 2.2, 2.4, 2.9, respectively.

and

Sτ1(τ2) =
[
0, τ

(0)
11

)∪ (
τ

(0)
12 , τ

(1)
11

)∪ (
τ

(1)
12 , τ

(2)
11

)∪ (
τ

(2)
12 , τ

(3)
11

)
,

there are four times stability switches when time delay τ1 increasing from 0 to infinity.

From the stable and unstable regions in example 1 (Fig. 16 and Fig. 17), we see that,

there is no stability switches on τ1-axis or τ2-axis, but there are several times stability

switches on τ2-axis in example 2 for some suitable parameter values (Fig. 19). And,

the stability regions in examples 1 and 2 are two different types in view of topology.

The former is a connected region varying the parameter f from 0.6 to 2.9, and the

latter from four parts to three parts, to two parts and to one connected region varying

the parameter f from 0.095 to 0.35. That is to say, parameter f would change the

stability switches times for some suitable parameter values of the system.

28

Figure 17. The stable regions (gray) and unstable regions (white) of the positive equilibrium
point E2 of system (3.1) with parameter f = 1.9, 2.2, 2.4, 2.9, respectively.

4. Conclusion

We have considered a prey-predator system with three stage structure and two delays, and analyzed
the stability of the equilibrium point, obtained the conditions for the positive equilibrium E2 occurring
Hopf bifurcation by analyzing the characteristic equation in five cases. From the numerical examples
and analysis, we know that the time delays would make the system subject to period oscillation, quasi-
period oscillation, chaotic oscillation, finite stability switches, even unbounded oscillation and extinct.
That is to say, time delays are important factors to affect the dynamic behaviors of the system.

4.1. Delays induced Hopf bifurcation

From the analysis in section 2, we know that f30 < 0 in (2.14) for case 2.2.3, then (2.14) has at
least one positive root, and there is a natural Hopf bifurcation for system (1.5) without any conditions
according to theorem 2.2.3 (i). If condition C1

3 : fη < KE2 holds then f10 < 0 in (2.6) for case 2.2.1,
and that (2.6) has at least one positive root, and there is a Hopf bifurcation for system (1.5) according
to theorem 2.2.1 (i). Similarly, if condition C2

3 : fη > KE2 holds then f20 < 0 in (2.10) for case 2.2.2,
and that (2.10) has at least one positive root, there is a Hopf bifurcation for system (1.5) according
to theorem 2.2.2 (i). Note that conditions C1

3 : fη < KE2 and C2
3 : fη > KE2 cannot hold at the
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Figure 18: The location of the critical time delay points τ
(n)
21 and τ

(n)
22 of the system

(30) with f = 0.095, 0.11, 0.16, 0.35, respectively.

4.3 Delays induced complicated dynamic behaviors

The numerical simulations show that delayed system (5) has complicated dy-

namic behaviors (Fig. 12, Fig. 13 and Fig. 14) when we change the time delays

and far away from the first bifurcating critical time delay point, including periodic

oscillating, quasi-periodic oscillating, period-doubling bifurcations, chaos, and those

behaviors undiscovered if the system (5) has only one time delay [16, 17, 18]. That

is to say, time delays are important factor to affect the complex dynamic behaviors

of the system, since the positive equilibrium point E2 of the system (5) is global

asymptotically stable in the absence of time delays [16]. When time delay far away

from the first critical point and increased, large time delays would make system (5)

extinct (unbounded oscillation) undergoing a series of fast-slow oscillations or chaotic

oscillations which make the prey and predator populations very closed to zero, and

destroyed the permanence of it. And these are not found in [16, 17, 18]. All of the

analysis show that the time delays would destroy the stability of the system, and

induced complicated dynamic behaviors, even make the system die out.

All in all, time delays induced Hopf bifurcation, stability switches, and compli-

cated dynamic behaviors for system (5), and make the system (5) subject to period

29

Figure 18. The location of the critical time delay points τ(n)
21 and τ(n)

22 of the system (3.2) with
f = 0.095, 0.11, 0.16, 0.35, respectively.

same time, but one of them can hold for any parameter values of the system exclude the special case
fη = KE2. Therefore, there is a Hopf bifurcation for system (1.5) with only one time delay τ1 or τ2.
And then, one of S τ1 and S τ2 is nonempty set. So, there is a natural Hopf bifurcation for system (1.5),
and large time delays would make the positive point E2 eventually unstable. These are harmful delays
for system (1.5).

4.2. Delays induced stability switches

From the analysis in section 2, we know that there would be finite stability switches for system (1.5)
when the equation has more than one positive roots ωk(k > 1). From example 1 in case 2.2.2, only
time delay τ2, there are two positive roots and two critical delay sequences τ(n)

21 and τ(n)
22 . But, there is

no stability switches since τ(0)
21 < τ(1)

21 < τ(0)
22 . From example 1 in case 2.2.4 fixed τ2 = 0.52 ∈ S τ2 , there

are three positive roots and three critical delay sequences τ(n)
11 , τ

(n)
12 and τ(0)

13 . Note that

τ(0)
11 < τ

(0)
12 < τ

(1)
11 < τ

(1)
12 < τ

(2)
11 < τ

(2)
12 < τ

(3)
11 < τ

(0)
13 < τ

(3)
12 < τ

(4)
11 ,

and
S τ1(τ2) =

[
0, τ(0)

11

)⋃(
τ(0)

12 , τ
(1)
11

)⋃(
τ(1)

12 , τ
(2)
11

)⋃(
τ(2)

12 , τ
(3)
11

)
,

there are four times stability switches when time delay τ1 increasing from 0 to infinity. From the stable
and unstable regions in example 1 (Figures 16 and 17), we see that, there is no stability switches on τ1-
axis or τ2-axis, but there are several times stability switches on τ2-axis in example 2 for some suitable
parameter values (Figure 19). And, the stability regions in examples 1 and 2 are two different types in
view of topology. The former is a connected region varying the parameter f from 0.6 to 2.9, and the
latter from four parts to three parts, to two parts and to one connected region varying the parameter
f from 0.095 to 0.35. That is to say, parameter f would change the stability switches times for some
suitable parameter values of the system.
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Figure 19: The stable regions (gray) and unstable regions (white) of the positive

equilibrium point E2 of the system (30) with f = 0.095, 0.11, 0.16, 0.35, respectively.

oscillations and finite times stability switches via local Hopf bifurcation, and quasi-

period oscillations, period-doubling bifurcations, chaotic oscillations and unbounded

oscillations. Harmful time delays destroy the stability of the system, even make the

system die out. How to control the bifurcation, unbounded oscillations and even

chaos, arising from the multiple time delays system? The impulsive control strate-

gies and the time-varying control strategies would be considered [25, 26], which could

both improve the stability of the system and control periodic and chaotic oscillations

effectively. We will continue to study these problems in the future.

30

Figure 19. The stable regions (gray) and unstable regions (white) of the positive equilibrium
point E2 of the system (3.2) with f = 0.095, 0.11, 0.16, 0.35, respectively.

4.3. Delays induced complicated dynamic behaviors

The numerical simulations show that delayed system (1.5) has complicated dynamic behaviors
(Figures 12, 13 and 14) when we change the time delays and far away from the first bifurcating
critical time delay point, including periodic oscillating, quasi-periodic oscillating, period-doubling
bifurcations, chaos, and those behaviors undiscovered if the system (1.5) has only one time
delay [16–18]. That is to say, time delays are important factor to affect the complex dynamic
behaviors of the system, since the positive equilibrium point E2 of the system (1.5) is global
asymptotically stable in the absence of time delays [16]. When time delay far away from the first
critical point and increased, large time delays would make system (1.5) extinct (unbounded
oscillation) undergoing a series of fast-slow oscillations or chaotic oscillations which make the prey
and predator populations very closed to zero, and destroyed the permanence of it. And these are not
found in [16–18]. All of the analysis show that the time delays would destroy the stability of the
system, and induced complicated dynamic behaviors, even make the system die out.

All in all, time delays induced Hopf bifurcation, stability switches, and complicated dynamic
behaviors for system (1.5), and make the system (1.5) subject to period oscillations and finite times
stability switches via local Hopf bifurcation, and quasi-period oscillations, period-doubling
bifurcations, chaotic oscillations and unbounded oscillations. Harmful time delays destroy the
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stability of the system, even make the system die out. How to control the bifurcation, unbounded
oscillations and even chaos, arising from the multiple time delays system? The impulsive control
strategies and the time-varying control strategies would be considered [25, 26], which could both
improve the stability of the system and control periodic and chaotic oscillations effectively. We will
continue to study these problems in the future.
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