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Abstract: Honey has been one previous natural food in human history. However, as the supply 

cannot satisfy the market demand, many incidents of adulterated and fraudulent honey have been 

reported. In Taiwan, some common adulterated honey and fraudulent honey incidents include (1) 

mixing honey with fructose, (2) importing cheap honey abroad but labeling them as domestic honey, 

and (3) labeling cheaper honey (for example, nectar and lychee honey) as high-price honey (for 

example, longan honey). It is very difficult for consumers to tell the genuineness of the labeling of 

honey. To protect consumers and honest honey producers, we aim at exploring and developing an 

efficient and convenient technology that can effectively classify honey. We analyze the infrared 

spectra of honey samples and apply machine learning technologies to classify honey. The 

experimental results confirm that this technology can effectively distinguish several main honey 

types in Taiwan. This technology has the advantages of non-destruction, immediacy, and low 

manpower. It can serve as an effective tool to fast screen honey products.  
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1. Introduction 

Honey was called a holy product in ancient times, and it has been highly valued even then. Even 

though people learn better skills to keep bee and produce honey, the supply still falls far behind the 

market demand. The price is rising every year in Taiwan, and the supply is very unstable, due to the 

climate change, the environments, the virus, the pathogen, the over-usage of pesticide and herbicide, 
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and so on [1,2]. Similar challenges can be observed globally [3,4]. 

In Taiwan, several popular honey includes longan honey, lychee honey, wildflower honey, etc. 

People prefer longan honey to other honey, because of the taste, the flavor and the claimed 

nutritional values [5]. People also believe domestic honey quality is better than some other imported 

honey. These factors cause the prices of honey are quite different. The price of longan honey is 

always higher than other kinds of honey. The prices of domestic honey are higher than that of some 

imported honey. The big price gap between different kinds of honey allure some sellers fraudulently 

label low-price honey as higher-price honey [6]. For example, lychee honey and wild flower honeys 

are labeled as longan honey, imported honey products are labeled as domestic honey, and 

fruticose-mixed products are labeled as pure honey. These problems of fraudulent and adulterated 

honey not only affect the rights of consumers but also the interests of honest honey producers. 

Therefore, classifying the types and the sources of honey is an important challenge for the Taiwan 

honey market and industry. The global honey industry has similar issues [7]. However, because some 

honey types have similar colors and the skills of mixing honey have been evolving, it is very difficult 

for users to verify the correctness of the labelling. Therefore, we aim at exploring technologies that 

can efficiently and effectively classifying honey. 

The rest of this paper is organized as follows. Section 2 discusses the related work and 

technologies. Section 3 introduces the FieldSpec4 spectroradiometer, and describes the data 

preprocessing technologies we apply. Our system design for the honey classification is presented in 

Section 4, which include the process, the design of our experiments, and the descriptions of the 

samples. Section 5 discusses the spectra analysis. Section 6 discusses the results of applying 

machine-learning classification on the honey spectra. Section 7 states our conclusions and future 

work. 

2. Related work  

There are some technologies available to classify honey, but most of these methods are 

destructive, and too costly in terms of man-power, money, and time. Here, destruction means that the 

conventional technologies would damage or compromise the honey samples. Both SNIF-NMR and 

EA-IRMS [8] use chemical titration and then apply the instrument to check whether honey is doped 

with C3/C4 isotope saccharides [9–11] and excessive animal medication. Plants like peanuts, tobacco, 

soybeans, rice, etc, are called “C3” due to the three-carbon compound (3-Phosphoglyceric acid, or 

3-PGA) produced by the CO2 fixation mechanism in these plants. While plants like corn and sugar 

cane are called “C4” as they have developed the C4 carbon fixation pathway to conserve water loss, 

thus are more prevalent in hot, sunny, and dry climates. The isotope analysis can be used to analyze 

the ratios of different isotopes in a sample material [11]. The difference between the two methods is 

that EA-IRMS cannot detect C3 plant sugar. The strength of these two methods is that they can 

accurately tell whether the samples contain C3 or C4 isotope saccharides, but the weaknesses include 

the complicated and time-consuming process, the difficulty for farmers to acquire these technologies, 

and its destruction on the samples. Inductively coupled plasma mass spectrometer (ICP-MS) and 

atomic absorption spectroscopy (AAS) [10] are two methods to analyze the metal residues in honey. 

The metal trace elements in each honey samples vary, depending on their locations and species. So it 

can help to identify the possible locations of honey samples. Disadvantages of these methods, 

include (1) difficulty for farmers to acquire the technologies, (2) difficulty in identifying the C3/C4 
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sugars ingredients, and (3) difficulty of accessing the skillful specialists. The official method of 

Association of Official Agricultural Chemists (AOAC) [12,13] has been widely accepted by several 

international organizations to distinguish high fructose corn syrup and honey, but high fructose corn 

syrup cannot be correctly identified by conventional methods. AOAC can accurately determine the 

purity of honey in terms of C3 and C4 sugars adulteration; but it is very cumbersome, 

time-consuming and difficult for operators to apply than SNIF-NMR and EA-IRMS do. The 

operators should have well knowledge of chemical properties. ATAGO REPO series honey refractive 

polarimeter [14] is used to detect the sucrose ingredients, which will be completely converted to 

monosaccharides (glucose and fructose) gradually [15]. The advantage of ATAGO REPO is that the 

general public can purchase the devices and no special knowledge is required. The process just 

requires 3 ml of honey sample. The price is between 45 K–125 K New Taiwan dollar (NT). The 

disadvantage of ATAGO REPO is that it cannot identify other ingredients, if a sample is mixed with 

other cheaper ingredients. 

Most of conventional technologies for food chemical testing or fruit sweetness identification are 

usually destructive: the process needs to destroy/compromise samples. For example, to test the 

sweetness of a group of watermelons, the samples must be randomly selected, the samples are cut 

open, and the juice is placed on a sweetness meter for testing. This process destroys the samples, and 

the tested results do not always hold for the rest of the samples. Some common weaknesses of the 

above technologies include (1) destruction or compromise of samples, (2) time-consuming, (3) 

requirement of skillful specialists, and (4) its limitations of very-narrow-specified ingredients.  

On the other hand, spectra of samples can be easily collected through infra-red spectrum, 

multi-spectrum, and hyperspectral instruments [16,17]. The process does not destroy or compromise 

the samples [18], and it is fast and easy to train the operators. Each ingredient inside a sample would 

generate different reflection on different spectrum, and these data (or curves) can be used to identify 

the ingredients. When there are many different ingredients contained in a food sample (like meat, 

fruits, oils, proteins), the accumulated effects on the reflections are quite complex [19,20]. Luckily, 

as more samples are collected, one can still differentiate the differences and Machine Learning (ML) 

technologies can be applied to learn the differences.  

Various ML technologies have been successfully applied in several fields like image 

identification, voice identification, natural language interpretation and translation, etc. Its application 

in food safety challenges has drawn some attention from the academia and industry [21,22]. A 

MultiLayer Perceptron (MLP) [23] is a class of feedforward artificial neural network. A MLP 

consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Its 

multiple-layer architecture and non-linear activation make MLP good at distinguishing data that is 

not linearly separable. A Convolutional Neural Network (CNN) [24] is a regularized version of 

multilayer perceptron. CNNs take advantage of the hierarchical pattern in data and assemble more 

complex patterns using smaller and simpler patterns. They are commonly used in analyzing visual 

imagery. Both MLP and CNN are feedforward neural networks. Unlike feedforward neural networks 

like MLP and CNN, a recurrent neural network (RNN) [25] is a class of artificial neural networks 

where connections between nodes form a directed graph along a temporal sequence, and RNNs can 

use their internal state (memory) to process sequences of inputs. This allows RNNs to exhibit 

temporal dynamic behavior, and makes them applicable to tasks such as unsegmented, connected 

handwriting recognition or speech recognition. Support-vector machines (SVMs) are supervised 

learning models with associated learning algorithms that analyze data used for classification and 
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regression analysis. SVMs can efficiently perform both a non-probabilistic binary linear classification 

and a non-linear multi-class classification. The Principal Component Analysis (PCA) [26] is a statistical 

procedure that uses an orthogonal transformation to convert a set of observations of possibly 

correlated variables into a set of values of linearly uncorrelated variables called principal 

components. PCA is mostly used as a tool in exploratory data analysis and for making predictive 

models. Due to the properties of the scanned spectra of the honey samples, we would apply MLP, 

SVM and PCA in classify honey samples. This paper describes our experiments on analyzing honey 

samples’ infra-red spectra and the classification of these samples using MLP, SVM and PCA 

respectively. 

3. Preliminaries 

We introduce the instrument and the pre-processing technologies applied. The instrument we 

use is the FieldSpec4 spectroradiometer from American ASD Company (now Malvern Panalytical 

company) [27]. FieldSpec4 spectrum ranges from 350 nm to 2500 nm. It uses graded index InGaAs 

photodiode SWIR detectors [16]. It provides 3 nm spectral resolution in the VNIR (350 nm–1000 nm) 

range and 10 nm in the SWIR (1001 nm–2500 nm) range. FieldSpec Dual collection software 

automates and synchronizes white reference and target radiance measurements, eliminating the need 

for manual white reference measurements. The light source we use is a 75 watt 

quartz-tungsten-halogen light.  

 

Figure 1. Four Spectrograms of the same longan honey. 

The raw data from FieldSpec4 need to be further processed in order to solve the scattering 

phenomenon [28], which mainly occurs in the operation and are inevitable during the experimental 

operation. Ahmed and Akinbode et al. [18] applied the technologies of the first-order, the 

second-order differential, normalization, Standard Normal deViate (SNV) correction, Multiplicative 

Signal Correction (MSC), and median center to solve the scattering problems of their meat samples. 

We apply the first-order differentials, SNV [29], and MSC [29]. The scattering phenomenon was 

shown in Figure 1. We can see that although the same sample was scanned several times, there are 

some differences among the spectrograms, which is the scattering phenomenon caused by white 

noise. Figure 1 shows the raw spectra, Figure 2 shows that after MSC processing, and Figure 3 

shows the results after SNV processing [29]. We can see that both SNV and MSC can eliminate the 

scattering noises. The vertical axis unit of the spectra charts below represents the ratio of the 
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reflected wave to the incident wave power. 

 

Figure 2. Four Spectrograms of the same Longan Honey after MSC processing. 

 

Figure 3. Four Spectrograms of the same Longan Honey after SNV processing. 

4. The design of our honey classification process 

The goals of this study include (1) investigating the effectiveness of various pre-processing 

technologies on honey samples, (2) classifying honey samples based on processed spectra, and (3) 

evaluating ML technologies on honey classification. To achieve the goals, we design and conduct 

several experiments, which can be divided into two phases. In Phase 1, we design a general process 

for identifying which pre-processing technology can effectively differentiate the honey while 

eliminating the noises. In Phase 2, we investigate how effectively Machine Learning (ML) 

technologies classify the honey. 
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Figure 4. Phase 1 process: investigating various pre-processing technologies. 

Figure 4 depicts our Phase-1-process: evaluating pre-processing technologies on honey 

classification. In the first step, we get the spectra of samples from FieldSpec 4, and apply the 

savitzky_golay smoothing algorithm [30] with the window size of 81 and a polynomial order of 3. 

Table 1 summarizes the acronyms used in this article. 

Table 1. The acronyms used in this article. 

terms acronyms terms acronyms 

Machine Learning ML FrucTose FT 

MultiLayer Perceptron MLP Principal Component Analysis PCA 

Convolutional Neural Network CNN Support-Vector Machine SVM 

Recurrent Neural Network RNN Mixed Longan Honey MLGH 

standard normal variate SNV Domestic LonGan Honey DLGH 

multiplicative scatter correction MSC Imported LonGan Honey ILGH 

First LonGan Honey 1LGH Citrus Honey CH 

Second LonGan Honey 2LGH Wild Flowers Honey WFH 

General LonGan Honey GLGH LyChee Honey LCH 

Pure LonGan Honey PLGH   

Several pre-processing technologies are evaluated, which include smoothed data with the 1st 

order differential (referred as smooth-1st-order-differential for short), smoothed data with SNV 

(smooth-SNV), smoothed data with MSC (smooth-MSC), smoothed data with SNV and the 1st order 

differential (smooth-SNV-1st-order-differential), and smoothed data with MSC and the 1st order 

differential (smooth-SNV-1st-order-differential). Totally, we have 8 kinds of spectra for each sample: 

raw spectrogram, 1st order differential spectrogram, smoothed spectrogram, 

smooth-1st-order-differential spectrogram, smooth-SNV spectrogram, 

smooth-SNV-1st-order-differential spectrogram, the smooth-MSC spectrogram, and the 

smooth–MSC-1st-order-differential spectrogram.  

Based on the 8 kinds of spectra, we investigate several questions: (1) does the smoothing 

processing would lose important information, (2) do SNV and MSC processes could solve the 

scattering phenomenon on honey samples, (3) how does the 1st-order differential operation impact 
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the information embedded in the raw spectrum, and (4) does it amplify the differences between 

different kinds of honey samples by applying the 1st-order differential after SNV/MSC operations? 

These questions will be investigated through the following honey classification experiments. 

 

Figure 5. Honey classification experiments and the relation. 

Figure 5 shows several honey classification experiments and the relation among these 

experiments. The 1st experiment is to classify samples into three major honey categories: (1) 

Generalized LonGan Honey (GLGH) which include pure longan honey and longan honey mixed 

with any other kinds of honey, (2) Non-LonGan Honey (NLGH), and (3) FrucTose(FT). The main 

goal of this experiment is to distinguish longan honey from others. 

The 2nd experiment is to classify samples into four categories: (1) the 1st-type of LonGan 

Honey (1GLH), the 2nd type of LonGan Honey (2LGH), NLGH, and FT. The reason for further 

classifying longan honey is because the different locations of longan honey productions might have 

some differences in their spectra. The 2LGH includes the samples labeled with “winery longan 

honey”, “neighbor’s longan honey”, and “Zhong Liao longan honey”, and the rest of the GLGH 

samples are classified as the 1LGH.  

Each sample has been scanned from time to time to see how it would change as we store it for a 

2-month period. The spectrum of a sample is also measured several times when we scan it using the 

FieldSpec 4 instrument. We apply several pre-processing operations on the raw spectra, and there are 

totally 104 spectrum data. 75% of the data are used as training data, and 25% of them are used for 

testing.  

5. Honey spectrum analysis  

Each honey sample is denoted by their product name. Four scanned values of each sample has 

been recorded during a 2-month period. A sequence number (or date) is annexed to the name to 

differentiate each scanning. For example, Nongqi Shi citrus honey 1, Nongqi Shi citrus 2, and so on. 

The samples marked with “Li Lunde” is to highlight the samples harvested from Lunde Li’s (or his 

relatives’) bee farms, which have won several honey competitions in Taiwan. 

Figure 6 and Figure 7 respectively depict the spectra of pure longan honey after SNV or MSC 
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pre-processing. We can easily tell that these pure longan honey samples share very similar spectrum 

charts, but there are still some differences in some channels (the reflections on different wavelength). 

These pure longan honeys samples can be roughly divided into two groups: the first group includes 

Li Lunde, Thailand Longan, Chiang Mai honey, pure honey; the second group includes winery 

longan honey and Zhong Liao longan honey. 

 

Figure 6. Spectra of pure longan honey after SNV processing. 

 

Figure 7. Spectra of pure longan honey after MSC processing. 

Figure 8 and Figure 9 respectively depict the charts of the pure longan honey after 

SNV-1
st
-differential operation and after MSC-1

st
- differential operation. We can see that the 

1
st
-order-differential operation does amplify the differences of the samples at some channels. For 

example, the Pure labeled “honey0324” stands out from the group of Lunde LI’s honeys.  
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Figure 8. Charts of pure longan honey after SNV-1st-order-derivative-differential 

operation. 

Figure 10 and Figure 11 respectively depict the charts of all samples’ spectra after 

SNV-1st-order- differential and after MSC-1st-order- differential. Based on these charts, the samples 

could be roughly divided into four group. The first group is the 1LGH group (some longan honey 

samples from specified locations); the 2nd group is NLGH group which contains samples from 

wildflower honey, and citrus honey, and lychee honey; the third group is the FT group (fructose); the 

fourth group is the 2LGH group which includes winery longan honey, neighbor’s longan honey, and 

Zhong Liao longan honey. 

 

Figure 9. Charts of pure longan honey after MSC-1st-order- differential operation. 

In the 1LGH group, the spectrograms of Li Lunde’s pure longan honey and Li Lunde longan 

honey mixed with other honey (flowers, lychee) sample are very similar. According to producer’s 

explanations, the blossom period of longgan flowers last several weeks, and bees harvest both longan 

flowers and other flowers both in the beginning and in the end of that period. Therefore, the producer 

Li Lunde would not label these honey as “pure” longan honeys, but other producers would still label 
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them as “pure” longan honey. In our classification, we all label them as Generalized LongGan Honey 

(GLGH) in this stage. From the charts of Figure 10 and 11, we can notice that there are apparently 

two different types of longan honey, the red-color type and the black-color type. We speculate that 

there are several possible causes that result in the phenomenon. One possible cause is the overlap of 

the logan blossom period and other flower blossom period. Bees forage honey from longan flowers 

as well as other flowers both at the beginning period and at the will-end period of longan blossom 

period. Most bee keepers still label their honey products as “pure” logan honey even though their 

harvested logan honey contain other honey types like lychee honey and wild-flower honey. The 

second possible cause might be the small cultivated lands in Taiwan. The size of each cultivated land 

in Taiwan is very small: the size of a farm is usually only one to several “fen”, where one “fen” 

equals 969 square meter. But, the foraging radius of a bee can range from 2~7 kilo meters. The third 

possible cause might be the variance of lonagn nectar in different locations. To precisely identifying 

and quantifying the ingredients of honey, we think some conventional time-consuming technologies 

like melissopalinological analysis applied on pollens are necessary [31].  

There is an interesting phenomenon. After about 800nm, most of the spectra have overlapped 

together, which is supposed to be the spectrum channel of fructose [32]. 

 

Figure 10. Charts of all-samples with SNV-1
st
-order- differential. 

 

Figure 11. Charts of all-samples with MSC-1
st
-order- differential. 
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6. Honey classification using MLP, SVM, and PCA 

We respectively discuss our honey classification experiments using the MultiLayer Perceptron 

(MLP) in TensorFlow package [33], SVM [34], and PCA [35].  

6.1. Honey classification using MLP 

In the MLP experiments, we use three hidden layers, and we label the samples, according to the 

experiment goals. The parameters used the MLP experiment are summarized in Table 2, where the 

notation “1LGH*60” means that there are 60 samples belonging to the 1LGH group, ReLu is one of 

the activation function [31], and softmax is used in the output layer.  

Table 2. The parameters and the numbers of samples in our MLP experiments  

 4-category lab. 3-category lab. 

number of epochs, ratio of validation data 5, 25% 5, 25% 

Sample Type * quantity 1LGH*60, 2LGH*12, FT*8, Other 

Honey*24 

GLGH*72, FT*8, Other Honey*24 

NoN of input layer 2151 2151 

NoN of 1
st
 hidden layer (ReLu) 228 208 

Non of 2
nd

 hidden layer (ReLu) 152 146 

Non of 3
rd

 hidden layer (ReLu) 76 63 

NoN of output layer 4 3 

NoN: Number of Nodes. The algorithm ReLu [23] is used in the hidden layers. Softwax [23] is used in the output layer.  

Figure 12 shows the flow chart for applying supervised learning in our honey spectrum 

classification. The detailed steps are described as follows. 

 

Figure 12. The flow chart of applying ML in honey spectrum classification. 

Step 1: The experimenter operates the spectroradiometer to scan the samples and obtain the 

spectra. 

Step 2: Create Label data from the samples. Preprocess the spectra. For example: smoothing, 

differentiation, and performing SNV/MSC to eliminate the scattering noises. 
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Step 3: Preprocessing for machine learning. 

Step 4: Load or create a model. 

Step 5: Model training. 

Step 6: The model is used to predict the labels of the spectra. 

Step 7: Analyze the results of the predictions and spectra, and investigate the reasons for the 

success/error of the predictions. 

Based on the results from the MLP-based classification experiments, we have the following 

observations. 

The 1st observation: This experiment is to observe the accuracy and prediction results of both 

the 4-category and the 3-category classifications, using only smoothed data. Table 3 shows the 

results. The 4-category experiment has the highest model accuracy.  

Table 3. The results of MLP experiments and the 1
st
 observation. 

Pre-processing Classification Model accuracy # of correct predictions # of wrong predictions 

Smooth 4-category classification 0.980 25 1 

Smooth 3-category classification 0.923 23 3 

2nd observation of MLP experiments: This experiment is to investigate the 4-category MLP 

classifications using different preprocessed data. Table 4 shows the results. The 

SNV-based/MSC-based MLP classifications have the highest model accuracy. 

Table 4. MLP classifications using different preprocessed data. 

Processing Classification Model 

accuracy 

Correct 

prediction 

Wrong 

prediction 

Raw data 4-category classification 0.961 24 2 

Data smoothing 4-category classification 0.932 22 4 

First-order differential 4-category classification 0.971 24 2 

Smooth and first-order differential 4-category classification 0.961 24 2 

SNV 4-category classification 0.980 25 1 

SNV and first-order differential 4-category classification 0.980 25 1 

MSC 4-category classification 0.980 25 1 

MSC and first-order differential 4-category classification 0.980 25 1 

3rd observation of MLP experiments: This experiment is to verify whether the 

SNV-1st-order-differential-preprocessed-data would have better results for all the MLP-based 

classification goals. The model was retrained five times. Table 5 shows the results. It does improve 

all the accuracy for several classification goals.  

Table 5. MLP classifications using SNV-1st-order-derective-differential-preprocessed data. 

Preprocessing Classification Highest 

accuracy 

Minimum 

accuracy 

Average 

accuracy 

SNV and first-order differential 4-category classifications 0.980 0.95 0.969 

SNV and first-order differential 3-category classifications 0.974 0.94 0.954 
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In a short summary, we have the following results. The results from both the preprocessed 

spectrum analysis and the MLP classifications show that the SNV-1st-order-differnetial 

preprocessing has the best accuracy. The 2nd winner is the MSC-1st-order-differential preprocessing, 

with a 0.03 less accuracy, compared to the SNV-1st-order-differnetial preprocessing. Among several 

classification goals, the 4-category classification with accuracy 0.9897 has the best result, and the 

3-category classification with accuracy 0.9743 comes the second; it shows that the results from the 

4-categry classification and the 3-category classification, in spectrum analysis and in MLP 

experiments, are satisfactory.  

6.2. Honey classification using SVM 

Here, we are interested in two questions for applying SVM classification: (1) which 

preprocessing procedure can provide better classification results? (2) how well SVM does on 

classifying the honey samples? Table 6 summarizes the results of the 4-category classification 

experiment for the 1
st
 question. We apply SVM on 8 versions of the pre-processed spectra 

(raw/smoothed/1
st
-order differential/ smoothed+1

st
-order differential/ SNV/SNV + 1

st
-order 

differential/MSC/MSC + 1st-order differential). Here, we concentrate on the spectra ranging from 

400–800 nm, based on the observations from the previous spectra analysis. The test data are to be 

classified as one of the four groups (C1–C4), where C1 denotes 1LGH, C2 denotes 2LGH, C3 

denotes the FT group, and C4 denotes the other honey group. 

Table 6. SVM-based honey classification using different preprocessing procedures 

 Raw smoothed 1
st
-order diff. 

Smoothed + 

1
st
 order diff. 

SNV 
SNV+ 1

st
 

order diff. 
MSC 

MSC + 1
st
 

order diff. 

 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

pre .94 1 1 1 .94 1 1 1 .58 0 0 0 .58 0 0 0 .94 1 1 1 .58 0 0 0 1 1 1 1 .58 0 0 0 

re  1 1 1 .83 1 1 1 .83 1 0 0 0 1 0 0 0 1 1 1 .83 1 0 0 0 1 1 1 1 1 0 0 0 

f1 .97 1 1 .91 .97 1 1 .91 .73 0 0 0 .73 0 0 0 .97 1 1 .91 .73 0 0 0 1 1 1 1 .73 0 0 0 

sup 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 

pre.: precision; re: re-call; f1: f1-score; sup: support. C1 is the 1LGH group; C2 is the 2LGH group; C3 s the FT group; 

C4 is the other honey group. 

In Table 6, four metrics are specified. “Precision” is defined as the number of true positives (  ) 

over the number of true positives plus the number of false positives (  ): P            [36]. 

“Recall” (R) is defined as the number of true positives (  ) over the number of true positives plus the 

number of false negatives (  ):             . The (f1) score is defined as the harmonic mean 

of precision and recall: f1-score              . The “support” is the number of tested 

samples in that group. 

High precision relates to a low false positive rate, and high recall relates to a low false negative 

rate. High scores for both show that the classifier is returning accurate results (high precision), as 

well as returning a majority of all positive results (high recall). From the table, we have two 

observations: (1) SVM applied on MSC-preprocessed spectra has the highest precision and the 

highest recall; (2) the 1
st
-order preprocessing on honey spectra will degrade the performance of SVM 

classification. Therefore, we apply SVM on the SMC-preprocessed spectra for the 3-category 
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classification. The results are shown in Table 7. From the table, we can see that applying SVM on the 

MSC-preprocessed spectra can 100% correctly classify the samples for the 3-category honey 

classification.  

Table 7. SVM-based 3-category honey classification using MSC-preprocessed spectra. 

 MSC 

group C1 C2 C3 

precision 1 1 1 

recall  1 1 1 

f1-score 1 1 1 

support 18 2 6 

C1 is the GLGH; C2 is the FT group; C3 is the other honey group. 

6.3. Honey classification using PCA 

Here, we are still interested in the two fundamental questions. (1) which preprocessing 

procedure can provide better classification results? (2) how well PCA does on classifying the honey 

samples? Table 8 summarizes the results of the 4-category classification experiment for the 1
st
 

question. We apply PCA on the 8 versions of the spectra. Here, we concentrate on the spectra ranging 

from 400–800 nm, based on the observations from the previous spectra analysis. 

Table 8. PCA-based honey classification using different preprocessing procedures. 

 Raw smoothed 1
st
-order diff. 

Smoothed + 

1
st
 order diff. 

SNV 
SNV+ 1

st
 

order diff. 
MSC 

MSC + 1
st
 

order diff. 

 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

pre .94 1 1 1 .94 1 1 1 1 1 1 1 1 1 1 1 .94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

re  1 1 1 .83 1 1 1 .83 1 1 1 1 1 1 1 1 1 1 1 .83 1 1 1 1 1 1 1 1 1 1 1 1 

f1 .97 1 1 .91 .97 1 1 .91 1 1 1 1 1 1 1 1 .97 1 1 .91 1 1 1 1 1 1 1 1 1 1 1 1 

sup 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 15 3 2 6 

pre.: precision; re: re-call; f1: f1-score; sup: support. C1 is the 1LGH group; C2 is the 2LGH group; C3 s the FT group; 

C4 is the other honey group. 

Table 9. PCA-based 3-category honey classification using 1
st
-order-preprocessed spectra. 

 1
st
-order diff. 

group C1 C2 C3 

precision 1 1 1 

recall  1 1 1 

f1-score 1 1 1 

support 18 2 6 

C1 is the GLGH; C2 is the FT group; C3 is the other honey group. 

From the table, we have one observation: both MSC and 1
st
-order differential operation can 

provide best PCA classification results. Next, we apply PCA on the 1
st
-order preprocessed spectra for 
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the 3-category classification. Table 9 summarizes the results.  

6.4. Summary of the classification experiments 

Now we summarize the observations.  

(1) Among the three classification technologies we applied, both SVM and PCA out-perform MLP 

in terms of accuracy.  

(2) When we apply MLP classification, both SNV pre-processing and MSC pre-processing can 

improve the accuracy.  

(3) When we apply SVM classification, MSC-preprocessed data can provide best accuracy, but the 

1
st
-order differentiation would downgrade the accuracy.  

(4) When we apply PCA classification, both MSC and the 1st-order differentiation can provide best 

classification accuracy.  

(5) Applying suitable ML technologies or statistical tools like PCA on preprocessed honey spectra 

can effectively classify honey samples when enough authentic samples are collected. This 

approach is much fast, and requires low man-power than other conventional approaches.  

Based on the experiments, there are some interesting open questions.  

(1) Why and how does the 1
st
-order differentiation pre-processing significantly downgrade the 

classification accuracy?  

(2) To identifying and quantifying the ingredients inside honey samples, some conventional 

time-consuming technologies like melissopalinological analysis applied on pollens are 

necessary, at least during the ML model training phase.  

7. Conclusions 

In this paper, we have investigated the effectiveness of several spectrum preprocessing 

technologies for classifying honey samples, and have run MLP, SVM, PCA classification 

experiments using the preprocessed honey spectra. Both the spectra analysis and the classification 

experiments provide several promising observations. (1) All three classification technologies (MLP, 

SVM, and PCA) can effectively perform both the 4-category honey classification and the 3-category 

classification. But, SVM and PCA outperform MLP in terms of prediction accuracy, when applying 

on our honey samples. (2) The MSC preprocessing can improve the performance of all the three 

classification process. Considering the merits of (1) non-destruction of samples, (2) fastness, (3) easy 

operation, (4) low man power, (4) no requirement of skillful operators, and (5) ML-based approach 

can learn and accumulate new knowledge of honey classification, this spectra-ML-based approach 

shows it as a very promising tool for fast and cheap honey sample screening and classification. 

However, to identify and quantify the ingredients of honey samples, we think collecting very large 

quantity of authentic samples and accompanying with some conventional time-consuming 

technologies like melissopalinological analysis is necessary. 

During the experiments, we also found that, some classification experiments on the 

lychee-verse- wildflower honey classification and the domestic-verse-imported honey classification 

do not provide consistent results among the three classification technologies, because the number of 

trusted samples are not enough. It is very difficult at this stage to gather large quantity of trusted 

samples, as the reports say many of the products in Taiwan be fraudulent. To further quantifying the 
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ingredients and extend the experiments to other honey classification challenges, we plan to 

co-operate with the government to acquire more trusted samples, and investigate other ML 

technologies in the future. Another interesting open question is exploring the rationale of why the 

1
st
-order differentiation would downgrade the accuracy of SVM classification on honey samples. 
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