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Abstract: In this paper, a mathematical model is formulated to investigate the effect of cytotoxic T
lymphocyte (CTL) immune response on human immunodeficiency virus (HIV) infection dynamics.
The model includes latently infected cells, antiretroviral therapy, cell-free virus infection and cell-to-
cell viral transmission. By constructing Lyapunov functionals, the global stability of three equilibria is
obtained. More specifically, the infection-free equilibrium E f is globally asymptotically stable when
the basic reproductive numbers R0 < 1, implying that the virus can be eventually cleared; the infected
equilibrium without immune response Ew is globally asymptotically stable when the CTL immune
response reproduction number R1 is less than one and R0 is greater than one, implying that the infection
becomes chronic, but CTL immune response has not been established; the infected equilibrium with
immune response Ec is globally asymptotically stable when R1 > 1, implying that the infection
becomes chronic with persistent CTL immune response. Numerical simulations confirm the above
theoretical results. Moreover, the inclusion of CTL immune response can generate a higher level of
uninfected CD4+ T cells, and significantly reduce infected cells and viral load. These results may help
to improve the understanding of HIV infection dynamics.

Keywords: HIV; CTL immune response; antiretroviral therapy; latently infected cells; cell-to-cell
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1. Introduction

Acquired immunodeficiency syndrome (AIDS) is a fatal infectious disease. It is caused by HIV,
which is a retrovirus and targets crucial components of the immune system (i.e. CD4+ T cells) [1, 2].
According to the world health organization (WHO), HIV infection continues to be a serious global
public health issue, particularly in low- and middle-income countries [3]. Indeed, there were
approximately 36.7 million people living with HIV at the end of 2016, and 1.8 million people
becomes newly infected in 2016 globally [4].
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Because of destructiveness and complexity of HIV infection, researchers have been trying to find a
way to cure HIV since it was discovered in 1981. Different classes of antiretroviral drugs have been
developed, including fusion/entry inhibitors, reverse transcriptase inhibitors (RTIs), integrase
inhibitors and protease inhibitors (PIs) that act on different steps of the HIV life cycle. RTIs can
prevent HIV RNA from being converted into DNA, and PIs can inhibit infected cells to produce
mature virus particles. For this reason, RTIs can be assumed to reduce the viral infection rate and PIs
can decrease the number of new infectious virions as shown in existing mathematical models [5–8].

Although current therapy regimens have proven to be very effective in suppressing the viral load to
below the detection threshold of standard clinical assays (50 copies/mL) [9,10], low-level viremia can
be detected in most patients even after years of treatment using ultrasensitive assays [9, 11]. In
addition, a number of patients experience intermittent episodes of detectable viremia (i.e. blips)
during treatment [10] or rapid viral rebound after stopping treatment [12]. These phenomena indicate
that the virus has not be successfully eradicated from infected individuals. Latently infected cells that
persist during therapy and can release infectious virions when activation by relevant antigens are now
considered as a major barrier to viral eradication [7, 13, 14]. To study the effect of latently infected
cells on HIV infection dynamics, Pankavich [15] developed the following model:

dS (t)
dt

= λ − (1 − εRT I)βS (t)VI(t) − d1S (t)

dL(t)
dt

= f (1 − εRT I)βS (t)VI(t) − αL(t) − d2L(t)

dI(t)
dt

= (1 − f )(1 − εRT I)βS (t)VI(t) + αL(t) − d3I(t)

dVI(t)
dt

= N(1 − εPI)d3I(t) − d4VI(t)

(1)

where state variables S , L, I and VI represent the concentrations of uninfected CD4+ T cells, latently
infected CD4+ T cells, productively infected CD4+ T cells and infectious virions, respectively. εRT I

and εPI are the drug efficacy of RTIs and PIs, respectively. Uninfected cells are produced at a constant
rate λ, die naturally at rate d1, and are infected by cell-free virus at rate β. A fraction f of infection
events lead to latency, latently infected cells die at rate d2 and are activated at rate α. The parameter N
denotes the total number of viruses produced by one productively infected CD4+ T cell in its lifespan.
Constants d3 and d4 are the death rate of productively infected CD4+ T cells and infectious virions,
respectively. All parameters are positive constants and 0 < f , εRT I , εRT I < 1, existing mathematical
models [5–8].

Obviously, the model (1) includes only cell-free virus infection route presented in many
mathematical models [6, 13, 16]. However, cell-to-cell viral transmission through the formation of
virological synapses, has been estimated to be several orders of magnitude more efficient than
infection by free virus [17–19]. Moreover, cell-to-cell viral transmission permits the transfer of HIV
without exposing the virus to extracellular environment, which may increases the probability of
escaping from antiretroviral therapy and neutralization by antibodies. In other words, cell-to-cell viral
transmission may be the reason why virions can persist in the presence of therapy for a long time [20].
Therefore, in [5], Mojaver and Kheiri studied following model by incorporating the two ways of viral
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infection:
dS (t)

dt
= λ − (1 − ε)βS (t)V(t) − d1S (t) − aS (t)I(t)

dL(t)
dt

= f (1 − ε)βS (t)V(t) + f aS (t)I(t) − αL(t) − d2L(t)

dI(t)
dt

= (1 − f )(1 − ε)βS (t)V(t) + αL(t) + (1 − f )aS (t)I(t) − d3I(t)

dV(t)
dt

= Nd3I(t) − d4V(t)

(2)

obtained the two equilibria of system (2) and proved their global stability by constructing Lyapunov
functionals. Here state variable V represents the concentration of free virions. ε = 1−(1−εRT I)(1−εPI)
is overall drug efficacy. The cell-to-cell viral transmission is modeled by aS I. The other variables and
parameters are the same as those in model (1).

As stated in paper [21], the normal host immune responses, including antibodies, cytokines, natural
killer cells and T cells, will be activated to fight viral infections. In particular, CTLs are considered to be
a major branch of immune system because they generally lack CD4+ receptor [22–24]. Additionally,
the authors of [25] concluded that CTL can lead to better immune responses in HIV-infected patients
on antiretroviral therapy. These findings suggest that CTL immune response play an indispensable
role in HIV infection. Thus, we combine CTL immune response and (2) to have the following set of
differential equations,

dS (t)
dt

= λ − (1 − ε)βS (t)V(t) − d1S (t) − aS (t)I(t)

dL(t)
dt

= f (1 − ε)βS (t)V(t) + f aS (t)I(t) − αL(t) − d2L(t)

dI(t)
dt

= (1 − f )(1 − ε)βS (t)V(t) + αL(t) + (1 − f )aS (t)I(t) − d3I(t) − bI(t)Z(t)

dV(t)
dt

= Nd3I(t) − d4V(t)

dZ(t)
dt

= cI(t)Z(t) − d5Z(t)

(3)

where state variable Z denotes the concentration of CTLs. CTLs expand at rate c and decay at rate d5.
Productively infected cells are killed by CTLs at rate b. Table 1 gives the definitions and values of
parameters. The model diagram is shown in Figure 1 existing mathematical models [5–8].

In this paper, we attempt to explore the effect of CTL immune response on viral infection
dynamics. Our model also includes antiretroviral therapy, latently infected cells and cell-to-cell viral
transmission. In the next section, the well-posedness of solutions, reproduction numbers and existence
of the equilibria are introduced. In Section 3, we prove the local or global stability of three equilibria.
In Section 4, we carry out some numerical examples to confirm our theoretical results and explain the
role of CTL immune response. Finally, a brief discussion and conclusion are given in Section 5.
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α

Figure 1. Schematic diagram of model (3). Variables S , L, I, V and Z represent uninfected
CD4+ T cells, latently infected CD4+ T cells, productively infected CD4+ T cells, free virus
and CTL, respectively. See parameter description and values in Table 1.

Table 1. Parameter notations and sources for their values.

Parameter Definition Units Value Sources
λ Production rate of uninfected cells cells · ml−1day−1 104 [2, 10, 13]
β Infection rate of cells by cell-free virus ml · virion−1day−1 10−8 ∼ 10−5 [2, 10, 26]
d1 Death rate of uninfected cells day−1 0.03 [27]
a Rate of cell-to-cell viral transmission ml · cell−1day−1 10−6 ∼ 10−2 [28, 29]
α Activation rate of latently infected cells day−1 0.01 [10, 15, 30]
d2 Death rate of latently infected cells day−1 0.001 [10, 13]
d3 Death rate of productively infected cells day−1 1 [10, 15, 26]
b Immune-induced clearance rate for productively infected cells ml · cell−1day−1 0.0024 [31]
N Viral burst size virion · cell−1day−1 100 ∼ 5000 [2, 10, 30, 32]
d4 Viral clearance rate day−1 23 [10, 15, 26]
c Production rate of CTLs by productively infected cells ml · cell−1day−1 0.01 ∼ 1 [33, 34]
d5 Death rate of CTLs day−1 0.01 ∼ 1 [33, 35]
ε Overall drug efficacy no unit 0 ∼ 1 [5–8, 10]
f Fraction of infection leading to latency no unit 0.5 [36]

2. Basic results

In this section, we establish the well-posedness of solutions of model (3) because this model
describes the evolution of cells and free viruses. Furthermore, we give the reproduction numbers R0,
R1 and existence conditions of the positive equilibria of the model (3).

2.1. Well-posedness of solutions

We assume that initial conditions associated with system (3) are

S (0) ≥ 0, L(0) ≥ 0, I(0) ≥ 0, V(0) ≥ 0, Z(0) ≥ 0.

The following theorem shows that for nonnegative initial values, the solutions are nonnegative and
bounded.

Theorem 2.1. For any nonnegative initial conditions (S (0), L(0), I(0),V(0),Z(0)), system (3) has a
unique solution. Moreover, this solution is nonnegative and bounded for all t ≥ 0.
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Proof. By the classical differential equations theory, we confirm that model (3) has a unique local
solution (S (t), L(t), I(t),V(t),Z(t)) in t ∈ [0, tp), where 0 < tp < +∞. S (t) is positive for all t ∈ [0, tp).
Indeed, assuming the contrary, let t1 ∈ [0, tp) represent the first time such that S (t1) = 0 and Ṡ (t1) ≤ 0.
From the first equation of model (3), we obtain Ṡ (t1) = λ > 0, which contradicts with Ṡ (t1) ≤ 0. Thus,
S (t) > 0 for all t ∈ [0, tp). We have

Z(t) = Z(0)e
∫ t

0 (cI(η)−d5)dη ≥ 0

when Z(0) ≥ 0. In particular, Z(t) > 0 if Z(0) > 0. From the fourth equation of system (3), we obtain

V(t) = e−d4t(
∫ t

0
Nd3I(η)ed4ηdη + V(0))

Thus, V(t) ≥ 0 for all t ≥ 0 as long as I(t) ≥ 0. Then, it is critical to show the nonnegativity
of L(t) and I(t). Similar to the arguments in S (t) > 0, we assume that t2 ∈ [0, tp) and t3 ∈ [0, tp)
are the first times when L(t) and I(t) reach zero respectively, and t0 = min

{
t2, t3

}
. If t0 = t2, then

L(t2) = 0, L̇(t2) ≤ 0 and I(t2) > 0. According to the second equation of system (3), we obtain
L̇(t2) = f (1 − ε)βS (t2)V(t2) + f aS (t2)I(t2) > 0 which contradicts L̇(t2) ≤ 0. Similarly, if t0 = t3, from
the third equation of (3), we can find another contradiction. Therefore, the solutions of system (3)
satisfying the nonnegative initial conditions are non-negative.existing mathematical models [5–8].

Next, we prove the boundedness of solutions. It follows from the first equation of model (3) that
Ṡ (t) ≤ λ − d1S (t). This implies lim supt→∞ S (t) ≤ λ

d1
. Thus, S (t) is ultimately bounded. To prove that

L(t), I(t) and Z(t) are bounded, we define a Lyapunov functional

Q(t) = S (t) + L(t) + I(t) +
b
c

Z(t)

Obviously, Q(t) ≥ 0 for t ≥ 0. Differentiating Q(t) along the solution of model (3) yields that
dQ(t)

dt
= λ − d1S (t) − d2L(t) − d3I(t) −

bd5

c
Z(t)

≤ λ − mQ(t)

where m = min
{
d1, d2, d3, d5

}
, thus lim supt→∞ Q(t) ≤ λ

m . This implies that Q(t) is eventually bounded
and hence L(t), I(t) and Z(t) are bounded, denote by M1, M2 and M3. From the fourth equation of
(3), we have V̇(t) ≤ Nd3M2 − d4V(t), which means that lim supt→∞ V(t) ≤ Nd3 M2

d4
. Thus, V(t) is also

ultimately bounded. Hence, every local solution can be prolonged up to any time tp > 0, which means
that the solution exists globally. This completes the proof. �

2.2. Reproduction numbers and equilibria

It is obvious that model (3) always has an infection-free equilibrium E f = (S f , L f , I f ,V f ,Z f ) =

( λd1
, 0, 0, 0, 0), implying HIV infection die out. Using the next-generation method [37], the matrices for

the new infection term F and the remaining transfer term V are given by:

F =


0 f aS f f (1 − ε)βS f

0 (1 − f )aS f (1 − f )(1 − ε)βS f

0 0 0

 , V =


α + d2 0 0
−α d3 0
0 −Nd3 d4
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Thus, the basic reproduction number under treatment, R0, is computed to be:

R0 = ρ(F · V−1)

=
λ(d3βN(1 − ε) + ad4)(α + d2(1 − f ))

d1d3d4(α + d2)

=
λβN(1 − ε)(α + d2(1 − f ))

d1d4(α + d2)
+
λa(α + d2(1 − f ))

d1d3(α + d2)

(4)

where ρ indicates the spectral radius of the next-generation operator F · V−1. Clearly, the first part
of R0 denotes the average number of productively infected cells from the cell-free virus infection,
whereas the second part is the average number of productively infected cells from the cell-to-cell viral
transmission. When R0 > 1, in addition to equilibrium E f , model (3) admits another equilibrium Ew,

Ew = (S w, Lw, Iw,Vw, 0)

= (
λ

d1R0
,

d1d3d4

(d3βN(1 − ε) + ad4)(α + d2(1 − f ))
(R0 − 1),

d1d4

d3βN(1 − ε) + ad4
(R0

− 1),
Nd1d3

d3βN(1 − ε) + ad4
(R0 − 1), 0)

Ew is called infected equilibrium without immune response, meaning that HIV infection is successful
but CTL immune response is absent in this case.

We define the CTL immune response reproduction number R1 of model (3) by

R1 =
cIw

d5
=

d1d4c
d5(d3βN(1 − ε) + ad4)

(R0 − 1) (5)

In (5), cIw represents the amount of CTLs produced from productively infected cells at Ew per unit
time, and 1

d5
is the average survival time of CTLs. By multiplying the above quantities together, we

can obtain that the expected number of CTLs generated from one CTL during its life time through the
stimulation of productively infected cells, that is R1. If R1 > 1, there exists an infected equilibrium
with immune response (except for E f and Ew),

Ec = (S c, Lc, Ic,Vc,Zc)

where

S c =
cλd4

d3d5βN(1 − ε) + ad4d5 + cd1d4

Lc =
d5λ f (d3βN(1 − ε) + ad4)

(a + d2)(d3d5βN(1 − ε) + ad4d5 + cd1d4)

Ic =
d5

c

Vc =
Nd3d5

cd4

and

Zc =
d3d5(d3βN(1 − ε) + ad4)

b(d3d5βN(1 − ε) + ad4d5 + cd1d4)
(R1 − 1)
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This equilibrium denotes the state in which both the viruses and CTLs are present.

3. Stability of the equilibria E f , Ew and Ec

In this section, we will classify the local or global stability of the three equilibria of (3).

3.1. Stability of the infection-free equilibrium E f

Firstly, we have the following local stability result for the infection-free equilibrium E f .

Theorem 3.1. The infection-free equilibrium, E f , is locally asymptotically stable for R0 < 1.

Proof. The Jacobian matrix of model (3) at E f is

A =


−d1 0 −a λ

d1
−(1 − ε)β λ

d1
0

0 −α − d2 f a λ
d1

f (1 − ε)β λ
d1

0
0 α −d3 + (1 − f )a λ

d1
(1 − f )(1 − ε)β λ

d1
0

0 0 Nd3 −d4 0
0 0 0 0 −d5


From this, the characteristic equation can be written in the form

(δ + d1)(δ + d5)(δ3 + a1δ
2 + a2δ + a3) = 0 (6)

where
a1 = α + d2 + d3 + d4 −

aλ(1− f )
d1

a2 = (α + d2)(d3 + d4) + d3d4 −
aλd4(1− f )

d1
−

aλ(α+d2(1− f ))
d1

−
Nd3βλ(1− f )(1−ε)

d1

a3 = (α + d2)d3d4 −
λ(d3βN(1−ε)+ad4)(α+d2(1− f ))

d1

It is easy to see that (6) has eigenvalues δ1 = −d1 and δ2 = −d5, which are negative. The remaining
eigenvalues are determined by the following equation,

δ3 + a1δ
2 + a2δ + a3 = 0 (7)

Because R0 < 1, the inequalities d3 −
aλ(1− f )

d1
> 0 and d3(α + d2) − aλ(α+d2(1− f ))

d1
> 0 hold. Consequently,

we have

a1 > α + d2 + d4 > α + d2 > 0

a2 > d3d4 −
aλd4(1 − f )

d1
−

Nd3βλ(1 − f )(1 − ε)
d1

and

a3 = (α + d2)d3d4(1 − R0) > 0

We can conclude that

a1a2 − a3 > (α + d2)(d3d4 −
λ(1 − f )(ad4 + Nd3β(1 − ε))

d1
) − (α + d2)d3d4(1 − R0)

=
λ fα
d1

(ad4 + Nd3β(1 − ε))

> 0
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By the Routh-Hurwitz criterion, we show that all roots of (6) have negative real parts. Hence, the
infection-free equilibrium E f is locally asymptotically stable when R0 < 1. �

Theorem 3.1. only establishes the local stability of infection-free equilibrium E f . However, the
research about global stability of equilibrium is crucial in answering the question of whether this
equilibrium is induced ultimately. Thereby, we focus on the global stability analysis of E f in the next
section. For the global stability of E f , we have the following theorem.

Theorem 3.2. If R0 < 1, then the infection-free equilibrium E f is globally asymptotically stable.

Proof. Consider the following Lyapunov functional

H f = (α + d2(1 − f ))(S − S f − S f ln
S
S f

) + αL + (α + d2)I +
(α + d2(1 − f ))S f

d4

· β(1 − ε)V +
b(α + d2)

c
Z

(8)

Calculating the time derivative of H f along the positive solutions of model (3) and using the equalities

λ = d1S f and α + d2(1 − f ) = (α + d2)(1 − f ) + fα, we derive

dH f

dt

∣∣∣
(3)

=(α + d2(1 − f ))(1 −
S f

S
)(d1S f − (1 − ε)βS V − d1S − aS I) + α( f (1 − ε)

·βS V − (α + d2)L + f aS I) + (α + d2)((1 − f )(1 − ε)βS V + αL + aS I

·(1 − f ) − d3I − bIZ) +
β(1 − ε)(α + d2(1 − f ))S f

d4
(Nd3I − d4V) +

b
c

·(α + d2)(cIZ − d5Z)

= − (α + d2(1 − f ))
d1(S − S f )2

S
+ a(α + d2(1 − f ))S f I − d3(α + d2)I

+
βNd3(1 − ε)(α + d2(1 − f ))

d4
S f I −

(α + d2)
c

bd5Z

= − (α + d2(1 − f ))
d1(S − S f )2

S
−

b(α + d2)d5

c
Z + d3(α + d2)(R0 − 1)I

(9)

Thus, we have that dH f

dt

∣∣∣
(3)
≤ 0 under the assumption that R0 < 1. Furthermore, it is easy to verify that

when dH f

dt

∣∣∣
(3)

= 0, Z = I = 0 and S = S f hold. This implies L = V = 0. Thus, the largest compact

invariant set in
{
(S , L, I,V,Z) ∈ R5

+ : dH f

dt

∣∣∣
(3)

= 0
}

is the singleton set
{
E f

}
. From LaSalle invariance

principle [38], we conclude that the infection-free equilibrium E f is globally asymptotically stable
when R0 < 1. �

3.2. Global stability of the infected equilibrium without immune response Ew

According to the above analysis, we know E f becomes unstable and a new equilibrium Ew emerges
when R0 > 1. For the global stability of Ew, we have the following theorem.

Theorem 3.3. If R1 < 1 < R0, then the infected equilibrium without immune response Ew is globally
asymptotically stable.
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Proof. Define

Hw =(α + d2(1 − f ))(S − S w − S w ln
S
S w

) + α(L − Lw − Lw ln
L
Lw

) + (α + d2)(I

−Iw − Iw ln
I
Iw

) +
β(1 − ε)(α + d2(1 − f ))

d4
S w(V − Vw − Vw ln

V
Vw

) +
(α + d2)

c
·bZ

(10)

Calculating the derivative of Hw along solutions of system (3) yields

dHw

dt

∣∣∣
(3)

=(α + d2(1 − f ))(1 −
S w

S
)(λ − (1 − ε)βS V − d1S − aS I) + α(1 −

Lw

L
)

·( f (1 − ε)βS V − (α + d2)L + f aS I) + (α + d2)(1 −
Iw

I
)((1 − f )(1 − ε)

·βS V + αL + (1 − f )aS I − d3I − bIZ) +
β(1 − ε)(α + d2(1 − f ))S w

d4

·(1 −
Vw

V
)(Nd3I − d4V) +

b(α + d2)
c

(cIZ − d5Z)

(11)

Substituting equalities λ = (1 − ε)βS wVw + d1S w + aS wIw and Nd3Iw = d4Vw into (11), we have

dHw

dt

∣∣∣
(3)

=(α + d2(1 − f ))(1 −
S w

S
)((1 − ε)βS wVw + d1S w + aS wIw − (1 − ε)βS V

−d1S − aS I) + α f (1 − ε)βS V − α(α + d2)L + α f aS I − α f (1 − ε)β
S Lw

L

·V − f aα
S ILw

L
+ α(α + d2)Lw + (α + d2)(1 − f )(1 − ε)βS V + (α + d2)

·αL − d3(α + d2)I + (α + d2)(1 − f )aS I − b(α + d2)IZ − (α + d2)(1 − f )

·β(1 − ε)
S VIw

I
− (α + d2)(1 − f )aS Iw + b(α + d2)IwZ − α(α + d2)

IwL
I

+d3(α + d2)Iw +
βNd3(1 − ε)(α + d2(1 − f ))S w

d4
I − β(α + d2(1 − f ))(1

−ε)S wV − β(1 − ε)(α + d2(1 − f ))
S wV2

wI
VIw

+ β(α + d2(1 − f ))(1 − ε)S w

·Vw + b(α + d2)IZ −
b(α + d2)d5

c
Z

(12)

Since

(α + d2)Lw = f (1 − ε)βS wVw + f aS wIw,

d3Iw = (1 − f )(1 − ε)βS wVw + αLw + (1 − f )aS wIw,

α + d2(1 − f ) = (α + d2)(1 − f ) + α f ,

d3(α + d2) = (α + d2(1 − f ))aS w +
βNd3(1 − ε)(α + d2(1 − f ))S w

d4
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it follows that
dHw

dt

∣∣∣
(3)

= − (α + d2(1 − f ))
d1(S − S w)2

S
− β(1 − ε)(α + d2)(1 − f )S V − α fβ(1

−ε)S V − a(α + d2)(1 − f )S I − aα f S I + β(1 − ε)(α + d2)(1 − f )S wVw

+α fβ(1 − ε)S wVw + a(α + d2)(1 − f )S wIw + aα f S wIw + β(1 − ε)(α + d2

·(1 − f ))S wV + a(α + d2(1 − f ))S wI − β(1 − ε)(α + d2)(1 − f )
S 2

wVw

S

−β(1 − ε)α f
S 2

wVw

S
− a(α + d2)(1 − f )

S 2
wIw

S
− αa f

S 2
wIw

S
+ α f (1 − ε)βS V

−α(α + d2)L + α f aS I − α f (1 − ε)β
S VLw

L
− f aα

S ILw

L
+ α f (1 − ε)βS wVw

+ fαaS wIw + (α + d2)(1 − f )(1 − ε)βS V + α(α + d2)L − d3(α + d2)I

+(α + d2)(1 − f )aS I − b(α + d2)IZ − (α + d2)(1 − f )(1 − ε)β
S VIw

I
− (α

+d2)(1 − f )aS Iw + b(α + d2)IwZ − α f (1 − ε)β
S wVwIwL

LwI
− α f a

S wI2
wL

LwI
+(α + d2)(1 − f )(1 − ε)βS wVw + α f (1 − ε)βS wVw + α f aS wIw + (α + d2)

·(1 − f )aS wIw +
βNd3(α + d2(1 − f ))

d4
(1 − ε)S wI − β(1 − ε)(α + d2(1 − f ))

·S wV − β(1 − ε)(α + d2)(1 − f )
S wV2

wI
VIw

− β(1 − ε)α f
S wV2

wI
VIw

+ β(1 − ε)

·(α + d2)(1 − f )S wVw + β(1 − ε)α f S wVw + b(α + d2)IZ −
b(α + d2)d5

c
Z

= − (α + d2(1 − f ))
d1(S − S w)2

S
+

b(α + d2)d5

c
(R1 − 1)Z + β(1 − ε)(α

+d2)(1 − f )S wVw(3 −
S w

S
−

VwI
VIw
−

S VIw

S wVwI
) + β(1 − ε)α f S wVw(4 −

S w

S

−
IwL
LwI
−

VwI
VIw
−

S VLw

S wVwL
) + α(α + d2)(1 − f )S wIw(2 −

S w

S
−

S
S w

) + αa f

·S wIw(3 −
S w

S
−

IwL
ILw
−

S ILw

S wIwL
)

(13)

Since the arithmetic mean is greater than or equal to geometric mean ( 1
n

n∑
i=1

xi ≥
n

√
n∏

i=1
xi), the last four

terms of (13) is non-positive. Hence, when R1 < 1 < R0, the inequalitydHw
dt

∣∣∣
(3)
≤ 0 holds. We note that

dHw
dt

∣∣∣
(3)

= 0 if and only if S = S w, L = Lw, I = Iw, V = Vw and Z = 0. Thus, the largest invariant set

in
{
(S , L, I,V,Z) ∈ R5

+ : dHw
dt

∣∣∣
(3)

= 0
}

is the singleton set
{
Ew

}
. This proves the global stability of Ew by

applying LaSalle invariance principle. �
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3.3. Global stability of the infected equilibrium with immune response Ec

In this section, we will focus on the stability of the infected equilibrium with immune response Ec.
Thus, we always assume that R1 > 1.

Theorem 3.4. If R1 > 1, then the infected equilibrium with immune response Ec is globally
asymptotically stable.

Proof. Let

Hc =(α + d2(1 − f ))(S − S c − S c ln
S
S c

) + α(L − Lc − Lc ln
L
Lc

) + (α + d2)(I − Ic

−Ic ln
I
Ic

) +
β(1 − ε)(α + d2(1 − f ))

d4
S c(V − Vc − Vc ln

V
Vc

) +
b(α + d2)

c
(Z − Zc

−Zc ln
Z
Zc

)

(14)

Then, the time derivative of Hc along solutions of model (3) is given by
dHc

dt

∣∣∣
(3)

=(α + d2(1 − f ))(1 −
S c

S
)(λ − (1 − ε)βS V − d1S − aS I) + α(1 −

Lc

L
)( f (1

−ε)βS V − (α + d2)L + f aS I) + (α + d2)(1 −
Ic

I
)((1 − f )(1 − ε)βS V + αL

+(1 − f )aS I − d3I − bIZ) +
β(1 − ε)(α + d2(1 − f ))S c

d4
(1 −

Vc

V
)(Nd3I

−d4V) +
b(α + d2)

c
(1 −

Zc

Z
)(cIZ − d5Z)

=(α + d2(1 − f ))(1 −
S c

S
)((1 − ε)βS cVc + d1S c + aS cIc − (1 − ε)βS V − d1

·S − aS I) + α f (1 − ε)βS V − α(α + d2)L + α f aS I − α f (1 − ε)β
S VLc

L

− f aα
S ILc

L
+ α(α + d2)Lc + (α + d2)(1 − f )(1 − ε)βS V + α(α + d2)L − d3

·(α + d2)I + (α + d2)(1 − f )aS I − b(α + d2)IZ − (α + d2)(1 − f )(1 − ε)

·β
S VIc

I
− (α + d2)(1 − f )aS Ic + b(α + d2)IcZ − α(α + d2)

IcL
I

+ d3(α

+d2)Ic +
βNd3(1 − ε)(α + d2(1 − f ))S c

d4
I − β(1 − ε)(α + d2(1 − f ))S cV

−β(1 − ε)(α + d2(1 − f ))
S cV2

c I
VIc

+ β(1 − ε)(α + d2(1 − f ))S cVc + b(α + d2)

·IZ −
b(α + d2)d5

c
Z − b(α + d2)IZc +

b(α + d2)d5

c
Zc

= − (α + d2(1 − f ))
d1(S − S c)2

S
− β(1 − ε)(α + d2)(1 − f )S V − α fβ(1

−ε)S V − a(α + d2)(1 − f )S I − aα f S I + β(1 − ε)(α + d2)(1 − f )S cVc

+α fβ(1 − ε)S cVc + a(α + d2)(1 − f )S cIc + aα f S cIc + β(1 − ε)(α + d2(1

− f ))S cV + a(α + d2(1 − f ))S cI − β(1 − ε)(α + d2)(1 − f )
S 2

cVc

S
− β(1
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−ε)α f
S 2

cVc

S
− a(α + d2)(1 − f )

S 2
c Ic

S
− αa f

S 2
c Ic

S
+ α f (1 − ε)βS V − α

·(α + d2)L + α f aS I − α f (1 − ε)β
S VLc

L
− f aα

S ILc

L
+ α f (1 − ε)βS cVc

+ fαaS cIc + (α + d2)(1 − f )(1 − ε)βS V + α(α + d2)L − d3(α + d2)I + (α

+d2)(1 − f )aS I − b(α + d2)IZ − (α + d2)(1 − f )(1 − ε)β
S VIc

I
− (α + d2)

·(1 − f )aS Ic + b(α + d2)IcZ − α f (1 − ε)β
S cVcIcL

LcI
− α f a

S cI2
c L

LcI
+ (α

+d2)(1 − f )(1 − ε)βS cVc + α f (1 − ε)βS cVc + α f aS cIc + (α + d2)(1 − f )a

·S cIc − (α + d2)bIcZc +
βNd3

d4
(α + d2(1 − f ))(1 − ε)S cI − β(1 − ε)(α

+d2(1 − f ))S cV − β(1 − ε)(α + d2)(1 − f )
S cV2

c I
VIc

− β(1 − ε)α f
S cV2

c I
VIc

+ β

·(1 − ε)(α + d2)(1 − f )S cVc + β(1 − ε)α f S cVc + b(α + d2)IZ −
b(α + d2)

c

·d5Z − b(α + d2)IZc +
b(α + d2)d5

c
Zc

= − (α + d2(1 − f ))
d1(S − S c)2

S
+ β(1 − ε)(α + d2)(1 − f )S cVc(3 −

S c

S

−
VcI
VIc
−

S VIc

S cVcI
) + β(1 − ε)α f S cVc(4 −

S c

S
−

IcL
LcI
−

VcI
VIc
−

S VLc

S cVcL
) + α

·(α + d2)(1 − f )S cIc(2 −
S c

S
−

S
S c

) + αa f S cIc(3 −
S c

S
−

IcL
ILc
−

S ILc

S cIcL
)

where the equalities

λ = (1 − ε)βS cVc + d1S c + aS cIc Nd3Ic = d4Vc

(α + d2)Lc = f (1 − ε)βS cVc + f aS cIc α + d2(1 − f ) = (α + d2)(1 − f ) + α f

d3Ic = (1 − f )(1 − ε)βS cVc + αLc + (1 − f )aS cIc − bIcZc

and

d3(α + d2) = (α + d2(1 − f ))aS c +
βNd3(1 − ε)(α + d2(1 − f ))S c

d4
− b(α + d2)Zc

have been used.

The arithmetic-geometric mean inequality ( 1
n

n∑
i=1

xi ≥
n

√
n∏

i=1
xi) implies dHc

dt

∣∣∣
(3)
≤ 0 with equality

if and only if S = S c, L = Lc, I = Ic, V = Vc and Z = Zc. Thus, the largest invariant set in{
(S , L, I,V,Z) ∈ R5

+ : dHc
dt

∣∣∣
(3)

= 0
}

is the singleton set
{
Ec

}
. It follows from LaSalle invariance principle

that the equilibrium Ec is globally asymptotically stable when R1 > 1. This completes the proof of the
theorem. �
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4. Numerical simulations

In this section, we give some numerical simulations to validate our theoretical results and show the
effect of CTL immune response on HIV infection dynamics. The parameter values or ranges used in
the numerical simulations are presented in Table 1 existing mathematical models [5–8].

When β = 2.4 × 10−8, a = 10−6, N = 200, c = 0.15, d5 = 0.9, ε = 0.87, and the other parameter
values are the same as those in Table 1, we can compute that R0 = 0.3268 < 1. In this case, model
(3) has a unique infection-free equilibrium E f : (S f , L f , I f ,V f ,Z f ) = (333333, 0, 0, 0, 0). Numerical
simulations for equilibrium E f are shown in Figure 2, which indicate that all state variables, except for
S , converge to zero and S converges to 333333. This supports our results in theorem 3.2 that E f is
globally asymptotically stable when R0 < 1.

Figure 2. Dynamics predicted by model (3) when the basic reproduction number is less
than 1. We choose β = 2.4 × 10−8, a = 10−6, N = 200, c = 0.15, d5 = 0.9,
ε = 0.87, and other parameter values are listed in Table 1. The infection-free equilibrium
E f : (S f , L f , I f ,V f ,Z f ) = (333333, 0, 0, 0, 0) is globally asymptotically stable and the
infection dies out. Initial conditions are S (0) = 106, L(0) = 32, I(0) = 56, V(0) = 48
and Z(0) = 79.

For the case where β = 2.4 × 10−7, a = 10−6, N = 2000, c = 0.01, d5 = 0.9 and ε = 0.897, we have
the basic reproduction number R0 = 1.0021 > 1 and the CTL immune response reproduction number
R1 = 0.2259 < 1. According to theorem 3.3, the infected equilibrium without immune response
Ew : (S w, Lw, Iw,Vw, 0) = (332623, 968.11, 20.33, 1767.85, 0) is globally asymptotically stable. That
is, the HIV infection becomes chronic but CTL immune response is absent in such a situation [39].
This result is numerically demonstrated in Figure 3.

If the drugs are less effective than the previous scenario, for example, choosing ε = 0.89, then the
basic reproduction number becomes R0 = 1.0486 > 1 and the CTL immune response reproduction
number becomes R1 = 4.9173 > 1. From theorem 3.4, the infected equilibrium with immune response
Ec : (S c, Lc, Ic,Vc,Zc) = (330070, 4450.07, 90, 7826.09, 15.9794) is globally asymptotically stable.
This means that both CTL immune response and viral infection have been successfully established in
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this case. The numerical result in Figure 4 agrees with the theoretical result (see the case with CTL). In
order to show the effect of CTL immune response, the infected equilibrium without immune response
also be plotted in Figure 4. We found that CTL immune response reduces viral load by 4.75 times, and
increases uninfected CD4+ T cells by 1.04 times. Moreover, in the presence of CTL immune response,
the concentrations of infected cells are reduced obviously (decrease 4.2 times and 4.6 times for latently
and productively infected cells, respectively). These findings suggest that CTL immune response plays
an indispensable role in the dynamics of virus infection.

Figure 3. Dynamics predicted by model (3) when the basic reproduction number is greater
than 1 and the CTL immune response reproduction number is less than 1. We choose
β = 2.4 × 10−7, a = 10−6, N = 2000, c = 0.01, d5 = 0.9, ε = 0.897, and other
parameter values are listed in Table 1. The infected equilibrium without immune response
Ew : (S w, Lw, Iw,Vw, 0) = (332623, 968.11, 20.33, 1767.85, 0) is globally asymptotically
stable. Initial conditions are S (0) = 332600, L(0) = 973, I(0) = 17, V(0) = 1700 and
Z(0) = 21.

Through the above numerical analysis, we can qualitatively and quantitatively obtain the
relationships between CTL immune response and HIV infection. However, how CTL-related
parameters affect the dynamical behavior of system (3) remains unclear. Thus, taking the production
rate of CTLs c as example, we will carry out some numerical simulations to examine its influence on
HIV infection dynamics. When c = 0.01, 0.02, 0.04, we observe that all solution trajectories converge
to the infected equilibrium with immune response. For the case c = 0.01, the concentration of
uninfected CD4+ T cells and CTLs are at their lowest level, but the levels of the infected cells
(latently and productively infected cells) and virus are maximum in this situation. As c increases, we
found that the stabilized level of infected cells and viruses decrease, while CTLs and uninfected cells
increase. We also examine the effect of the death rate of CTLs, d5, on the system’s dynamics.
Contrary to the above case, increasing d5 in model (3) reduces the concentrations of uninfected cells
and CTLs, but increases the level of infected cells and viruses (figure not shown). Generally speaking,
CTL immune response contributes to viral inhibition.
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Figure 4. Dynamics predicted by model (3) when the CTL immune response reproduction
number is greater than 1. Here ε = 0.89 , and other parameters are the same as those
in Figure 3. The infected equilibrium with immune response Ec : (S c, Lc, Ic,Vc,Zc) =

(330070, 4450.07, 90, 7826.09, 15.9794) is globally asymptotically stable. To study the effect
of CTL immune response, we also plot the dynamics when CTL immune response are not
taken into consideration. The red solid line represents the state that CTL cells are present, the
blue dashed line is the state that CTL cells are absent. Initial conditions are S (0) = 300317,
L(0) = 21963, I(0) = 495.55, V(0) = 39801 and Z(0) = 10.

Figure 5. Effect of the production rate of CTLs c on the dynamics of the system (3) (green
dot-dashed line for c = 0.01, blue dashed line for c = 0.02 and red solid line for c = 0.04).
The other parameters are same as those in Figure 4. The initial conditions are S (0) = 317879,
L(0) = 11074, I(0) = 213, V(0) = 8846 and Z(0) = 10.
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Figure 6. Relationship between the reproduction numbers and parameters in model (3). (a)
The basic reproduction number R0 changes with the overall drug efficacy ε and the cell-
to-cell viral transmission rate a. (b) The CTL immune response reproduction number R1

changes with the overall drug efficacy ε and the production rate of CTLs c. The all parameter
values are the same as those in Figure 4.

Based on the analysis in Section 3, we know that the stability of equilibria E f , Ew and Ec is
determined by the reproduction numbers R0 and R1. When the basic reproduction number R0 is less
than one, the viruses are cleared and the infection dies out (i.e., the case in which E f is globally
asymptotically stable). When the basic reproduction number R0 is greater than one, viruses cannot be
eradicated. However, adding CTLs to system (2) (i.e. R1 > 1) has a positive role in the reduction of
infected cells and the increase of uninfected cells (see Figure 4). Thus, in order to prevent the risk of
HIV infection, we should seek for the strategies that decreases the basic reproduction number R0 to
below one or increases the CTL immune response reproduction number R1 to above one. Figure 6a
shows the relationship among R0, the overall drug efficacy ε and the cell-to-cell viral transmission
rate a. We found that the drug efficacy should be maintained at a constant greater than 0.857 to satisfy
R0 < 1, even if a is small enough (a = 10−6 ml · cell−1day−1). In other words, maintaining constant
drug effectiveness of at least 85.7% may theoretically eradicate virus from infected individuals, but it
is unattainable at present. This is because the efficacy of current therapy may be as low as 68% [40],
and additional viral compartments and sanctuary sites may exist in infected individuals [7,9]. To relax
the requirement on drug efficacy, the production rate of CTLs c should increase, as shown in Figure
6b. This suggests CTL immune response is important, which should not be ignored in studying HIV
infection dynamics.

5. Conclusion and discussion

In the last decades, a number of mathematical models with respect to HIV infection have been
introduced [5, 7, 15, 21, 22, 25, 41, 42], and these models have greatly improved our understanding of
HIV pathogenesis and antiretroviral treatment. A HIV infection model, including uninfected CD4+ T
cells, latently infected CD4+ T cells, productively infected CD4+ T cells, free virus and antiretroviral
therapy, has been analyzed by Perelson et al. [42]. In addition to cell-free virus infection, cell-to-cell
viral transmission is another route of HIV infection and is thought to be more efficient than cell-free
virus infection [17–19]. Thus, Mojaver et al. [5] studied the extended one of model developed by
Perelson et al. [42] by including cell-to-cell viral transmission. In Ref. [43], Wang et al. investigated
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the global properties a mathematical model considering uninfected CD4+ T cells, infected CD4+ T
cells, free virus and CTLs, and found that CTL immune response play a critical role in antiviral
defense. However, the importance of these factors was rarely discussed in a model. For this purpose,
we develop a HIV infection model with CTL immune response, antiretroviral therapy, cell-to-cell
viral transmission and latently infected cells in this paper.existing mathematical models [5–8].

For this mathematical model, the positivity and boundedness of the solutions have been established
firstly. Secondly, we show that this model exists three possible equilibria: infection-free equilibrium
E f , infected equilibrium without immune response Ew and infected equilibrium with immune
response Ec, depending on the basic reproduction number R0 and the CTL immune response
reproduction number R1. Furthermore, R0 and R1 also determine the local or global properties of the
model (3). More specifically, we have proven that, (i) if R0 < 1, then equilibrium E f is globally
asymptotically stable, implying that the virus can be eventually cleared; (ii) if R1 < 1 < R0 , then
equilibrium Ew is globally asymptotically stable, implying that the infection becomes chronic but
CTL immune response has not be successfully activated; (iii) if R1 > 1, equilibrium Ec is globally
asymptotically stable, implying that the infection becomes chronic and there are persistent CTL
immune response. Finally, some numerical simulations are carried out, in which we found that the
numerical results are in good agreement with theoretical results.existing mathematical models [5–8].

Adding CTLs to system (2) causes some changes in the theoretical and numerical results. Indeed,
the number of steady states increases from two to three compared with the results given in [5], which
affects the overall dynamics analysis of the system (3). For example, a new threshold, the CTL
immune response reproduction number R1 is introduced to clearly explain the existence and stability
of equilibria. The numerical results show that CTL immune response plays an essential role in HIV
control by increasing uninfected cells and reducing infected cells and free viruses (see Figure 4). This
implies that in the presence of CTL immune response, the control of infection is better than only drug
treatment. We also demonstrate the effect of CTL-associated parameter c on cells and virus dynamics
(see Figure 5). A larger production rate of CTLs leads to a lower level of infected cells, a lower viral
load, and a higher level of uninfected cells. These suggest that although the activation of CTL
immune response is unable to eradicate virus, it plays an important role in the increase of the
uninfected cells and the reduction of the infected cells and virus.existing mathematical models [5–8].

From the stability analysis of equilibria, we know that the infection dies out if R0 < 1. Thus, a
strategy to eradicate HIV should focus on reducing R0 to lower one. To this end, the overall drug
efficacy need to be maintained in at least 85.7%, despite the negligible cell-to-cell viral transmission
rate (see Figure 6a). However, this constant drug efficacy is difficult to achieve for some patients
infected with HIV. Moreover, many patients cannot physically tolerate antiviral therapy and afford the
cost, the immune therapy (such as, antigenic boost and structured treatment interruption) may be a
way that controls HIV infection.existing mathematical models [5–8].

In conclusion, both theoretical and numerical results show that CTL immune response is a
important factor, and should not be ignored in HIV infection. In this paper, we assume that the drug
efficacy is a constant. However, the drug concentration in plasma varies widely, depending on the
half-life of drugs, the amount of drug intake and the adherence of patients. How these will affect the
viral load dynamics remains to be further investigated.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6822–6841.



6839

Acknowledgments

The authors express gratitude to the anonymous referee for his/her helpful suggestions and the
partial supports of the Postgraduate Research and Practice Innovation Program of Jiangsu Province
(KYCX18 0375), the CSC (201806840119) and the National Natural Science Foundations of China
(11671206).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. A. S. Perelson, D. E. Kirschner and R. D. Boer, Dynamics of HIV infection of CD4+ T cells, Math.
Biosci., 114 (1993), 81–125.

2. Y. Wang, J. Liu and L. Liu, Viral dynamics of an HIV model with latent infection incorporating
antiretroviral therapy, Adv. Differ. Equations, 225 (2016).

3. WHO, 10 facts on HIV/AIDS, 2017. Available from: http://www.who.int/features/factfiles/hiv/zh/.

4. WHO, HIV/AIDS: Fact sheet, 2017. Available from:http://www.who.int/mediacentre/factsheets/fs360/en/.

5. A. Mojaver and H. Kheiri, Mathematical analysis of a class of HIV infection models of CD4+

T-cells with combined antiretroviral therapy, Appl. Math. Comput., 259 (2015), 258–270.

6. X. Wang, X. Song, S. Tang, et al., Dynamics of an HIV Model with Multiple Infection Stages and
Treatment with Different Drug Classes, Bull. Math. Biol., 78 (2016), 322–349.

7. L. Rong and A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J.
Theor. Biol., 260 (2009), 308–331.

8. J. M. Kitayimbwa, J. T. Mugisha and R. A. Saenz, The role of backward mutations on the within-
host dynamics of HIV-1, J. Math. Biol., 67 (2013), 1111–1139.

9. S. Palmer, L. Josefsson and J. M. Coffin, HIV reservoirs and the possibility of a cure for HIV
infection, J. Intern. Med., 270 (2011), 550–560.

10.L. Rong and A. S. Perelson, Modeling Latently Infected Cell Activation: Viral and Latent Reservoir
Persistence, and Viral Blips in HIV-infected Patients on Potent Therapy, Plos Comput. Biol., 5
(2009).

11. F. Maldarelli, S. Palmer, M. S. King, et al., ART suppresses plasma HIV-1 RNA to a stable set
point predicted by pretherapy viremia, Plos Pathog., 3 (2007).

12. H. S. Ariel, C. L. Lu, K. Florian, et al., Broadly Neutralizing Antibodies and Viral Inducers
Decrease Rebound from HIV-1 Latent Reservoirs in Humanized Mice, Cell, 158 (2014), 989–999.

13. X. Wang, G. Mink, D. Lin, et al., Influence of raltegravir intensification on viral load and 2-LTR
dynamics in HIV patients on suppressive antiretroviral therapy, J. Theor. Biol., 416 (2017), 16–27.

14. A. Bosque, K. A. Nilson, A. B. Macedo, et al., Benzotriazoles Reactivate Latent HIV-1 through
Inactivation of STAT5 SUMOylation, Cell Rep., 18 (2017), 1324–1334.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6822–6841.

http://dx.doi.org/10.1016/0025-5564(93)90043-A
http://dx.doi.org/10.1016/0025-5564(93)90043-A
http://dx.doi.org/10.1186/s13662-016-0952-x
http://dx.doi.org/10.1016/j.amc.2015.02.064
http://dx.doi.org/10.1007/s11538-016-0145-5
http://dx.doi.org/10.1016/j.jtbi.2009.06.011
http://dx.doi.org/10.1016/j.jtbi.2009.06.011
http://www.ams.org/mathscinet-getitem?mr=MR3111984&return=pdf
http://dx.doi.org/10.1007/s00285-012-0581-2
http://dx.doi.org/10.1111/j.1365-2796.2011.02457.x
http://www.ams.org/mathscinet-getitem?mr=MR2575020&return=pdf
http://dx.doi.org/10.1371/journal.pcbi.1000533
http://dx.doi.org/10.1371/journal.ppat.0030046
http://dx.doi.org/10.1016/j.cell.2014.07.043
http://dx.doi.org/10.1016/j.jtbi.2016.12.015
http://dx.doi.org/10.1016/j.celrep.2017.01.022


6840

15. S. Pankavich, The Effects of Latent Infection on the Dynamics of HIV, Differ. Equ. Dyn. Syst., 24
(2016), 281–303.

16.C. M. Pinto, Persistence of low levels of plasma viremia and of the latent reservoir in patients under
ART: A fractional-order approach, Commun. Nonlinear Sci. Numer. Simulat., 43 (2017), 251–260.

17. D. C. Johnson and M. T. Huber, Directed egress of animal viruses promotes cell-to-cell spread, J.
Virol., 76 (2002), 1–8.

18. D. Mazurov, A. Ilinskaya, G. Heidecker, et al., Quantitative comparison of HTLV-1 and HIV-1
cell-to-cell infection with new replication dependent vectors, Plos Path., 6 (2010).

19. H. Sato, J. Orenstein, D. Dimitrov, et al., Cell-to-cell spread of HIV-1 occurs within minutes and
may not involve the participation of virus particles, Virology, 186 (1992), 712–724.

20. C. J. Duncan, R. A. Russell and Q. J. Sattentau, High multiplicity HIV-1 cell-to-cell transmission
from macrophages to CD4+ T cells limits antiretroviral efficacy, AIDS, 27 (2013), 2201–2206.

21. J. Wang, J. Pang, T. Kuniya, et al., Global threshold dynamics in a five-dimensional virus model
with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput., 241
(2014), 298–316.

22. Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed
delays, J. Math. Anal. Appl., 375 (2010), 14-27.

23. Z. Yuan, Z. Ma and X. Tang, Global stability of a delayed HIV infection model with nonlinear
incidence rate, Nonlinear Dynam., 68 (2012), 207–214.

24. Z. Yuan and X. Zou, Global threshold dynamics in an HIV virus model with nonlinear infection
rate and distributed invasion and production delays, Math. Biosci. Eng., 10 (2013), 483–498.

25. R. Arnaout, M. Nowak and D. Wodarz, HIV-1 dynamics revisited: biphasic decay by cytotoxic
lymphocyte killing?, Proc. R. Soc. London, 265 (2000), 1347–1354.

26. J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci.
B, 112 (2015), 5467–5472.

27.Y. Wang, Y. Zhou, F. Brauer, et al., Viral dynamics model with CTL immune response incorporating
antiretroviral therapy, J. Math. Biol., 67 (2013), 901-934.

28. H. Pourbashash, S. S. Pilyugin, C. McCluskey, et al., Global analysis of within host virus models
with cell-to-cell viral transmission, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3341–3357.

29. B. Song, J. Lou and Q. Wen, Modelling two different therapy strategies for drug T-20 on HIV-1
patients, J. Appl. Math. Mech., 32 (2011), 419–436.

30. D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math.
Biol., 64 (2002), 29–64.

31. K. Allali, J. Danane and Y. Kuang, Global analysis for an HIV infection model with CTL immune
response and infected cells in eclipse phase, Appl. Sci., 7 (2017), 861.

32. L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 Drug Resistance During Antiretroviral
Treatment, Bull. Math. Biol., 69 (2007), 2027–2060.

33. H. Zhu, Y. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-
response delay, Comput. Math. Appl., 62 (2011), 3091–3102.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6822–6841.

http://dx.doi.org/10.1007/s12591-014-0234-6
http://dx.doi.org/10.1016/j.cnsns.2016.07.009
http://dx.doi.org/10.1128/JVI.76.1.1-8.2002
http://dx.doi.org/10.1128/JVI.76.1.1-8.2002
http://dx.doi.org/10.1371/journal.ppat.1000788
http://dx.doi.org/10.1016/0042-6822(92)90038-Q
http://dx.doi.org/10.1097/QAD.0b013e3283632ec4
http://dx.doi.org/10.1016/j.amc.2014.05.015
http://dx.doi.org/10.1016/j.jmaa.2010.08.025
http://dx.doi.org/10.1007/s11071-011-0219-8
http://dx.doi.org/10.3934/mbe.2013.10.483
http://dx.doi.org/10.1098/rspb.2000.1149
http://dx.doi.org/10.1073/pnas.1419162112
http://dx.doi.org/10.1073/pnas.1419162112
http://www.ams.org/mathscinet-getitem?mr=MR3096543&return=pdf
http://dx.doi.org/10.1007/s00285-012-0580-3
http://dx.doi.org/10.3934/dcdsb.2014.19.3341
http://dx.doi.org/10.1007/S10483-011-1427-8
http://dx.doi.org/10.1006/bulm.2001.0266
http://dx.doi.org/10.1006/bulm.2001.0266
http://dx.doi.org/10.3390/app7080861
http://www.ams.org/mathscinet-getitem?mr=MR2329191&return=pdf
http://dx.doi.org/10.1007/s11538-007-9203-3
http://dx.doi.org/10.1016/j.camwa.2011.08.022


6841

34.X. Wang, A. M. Elaiw and X. Song, Global properties of a delayed HIV infection model with CTL
immune response, Appl. Math. Comput., 218 (2012), 9405–9414.

35. B. M. Adams, H. T. Banks, M. Davidian, et al., HIV dynamics: Modeling, data analysis, and
optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10–49.

36. L. Rong and A. S. Perelson, Asymmetric division of activated latently infected cells may explain
the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 217
(2009), 77–87.

37. P. Driessche and P. Watmough, Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.

38. J. P. LaSalle, The stability of dynamical systems, Philadelphia, 1976.

39. X. Tian and R. Xu, Global stability and Hopf bifurcation of an HIV-1 infection model with
saturation incidence and delayed CTL immune response, Appl. Math. Comput., 237 (2014), 146–
154.

40. M. Louie, C. Hogan, M. D. Mascio, et al., Determining the relative efficacy of highly active
antiretroviral therapy, J. Infect. Dis., 187 (2003), 896–900.

41.M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent viruses,
Science, 272 (1996), 74–79.

42. A. S. Perelson, P. Essunger, Y. Cao, et al., Decay characteristics of HIV-1-infected compartments
during combination therapy, Nature, 387 (1997), 188–191.

43. J. Wang, M. Guo, X. Liu, et al., Threshold dynamics of HIV-1 virus model with cell-to-cell
transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291
(2016), 149–161.

c© 2019 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6822–6841.

http://dx.doi.org/10.1016/j.amc.2012.03.024
http://dx.doi.org/10.1016/j.cam.2005.02.004
http://www.ams.org/mathscinet-getitem?mr=MR2489340&return=pdf
http://dx.doi.org/10.1016/j.mbs.2008.10.006
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://www.ams.org/mathscinet-getitem?mr=MR481301&return=pdf
http://dx.doi.org/10.1137/1.9781611970432
http://dx.doi.org/10.1016/j.amc.2014.03.091
http://dx.doi.org/10.1086/368164
http://dx.doi.org/10.1126/science.272.5258.74
http://dx.doi.org/10.1038/387188a0
http://dx.doi.org/10.1016/j.amc.2016.06.032
http://creativecommons.org/licenses/by/4.0

	Introduction
	Basic results
	Well-posedness of solutions
	Reproduction numbers and equilibria

	Stability of the equilibria Ef, Ew and Ec
	Stability of the infection-free equilibrium Ef
	Global stability of the infected equilibrium without immune response Ew
	Global stability of the infected equilibrium with immune response Ec

	Numerical simulations
	Conclusion and discussion

