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1. Introduction

The dynamic relationship between prey and predator has been one of the most interesting topics
in the qualitative theory of population dynamics [1, 2]. For example, Bazykin [2] considered a prey-
predator system with the bounded functional response:

du
dt

= u − ku2 −
uv

1 + mu
,

dv
dt

= −av − bv2 +
uv

1 + mu
,

(1.1)
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where u and v represent the densities of the prey and predator, respectively. Here, a, b, k and m are
positive constants. The predator consumes the prey based on the prey-dependent functional response
u/(1 + mu), and the term −bv2 represents the self-limitation for the predator. The above model takes
account of not only the interspecies interactions between the prey species and predators, but also the
density dependence of predator species.

Recently, there is much evidence from biology and physiology to show that in many situations, espe-
cially when predators have to search, share or compete for food, the modeling and analysis of predator-
prey systems for each specific case should be further developed according to the ratio-dependent theory
[3, 4, 5], which can be roughly stated as that the per capita predator growth rate should depend on the
ratio of prey to predators, but not just prey numbers, so it should be the ratio-dependent function re-
sponse [6, 7, 8, 9], i.e., a function of u/v. On the basis of this consideration, substituting u/v

1+mu/v for u
1+mu

in the above-mentioned model (1.1), we arrive at the following system:
du
dt

= u − ku2 −
uv

mu + v
,

dv
dt

= −av − bv2 +
uv

mu + v
.

(1.2)

If ma < 1, system (1.2) has a unique positive equilibrium w̃ = (ũ, ṽ)T, where

ũ =
m(a + bṽ)

k
, ṽ =

m(1 − ma)
k + m2b

. (1.3)

Taking into account the inhomogeneous distribution of predator and prey populations in different
spatial locations, in this study we will incorporate diffusion and cross-diffusion to system (1.2) and
consider a more general system:

ut = d1∆u + d12∆v + u − ku2 −
uv

mu + v
, x ∈ Ω, t > 0,

vt = d21∆u + d2∆v − av − bv2 +
uv

mu + v
, x ∈ Ω, t > 0,

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.4)

where Ω is a fixed bounded domain with the sufficient smooth boundary ∂Ω in RN , ν is the outward
unit normal vector of the boundary ∂Ω, and ∆ is the Laplace operator. The positive constants d1

and d2 are the random diffusion coefficients of prey and predator, respectively, which describe the
natural dispersive forces of random movement of individuals. Here, d12 and d21 are the cross-diffusion
coefficients that express population fluxes of preys and predators due to the presence of other species
[10, 11, 12]. The non-flux boundary condition indicates that the system is self-contained with no
external energy exchange. For more related studies on dynamics of population models with diffusion
and cross-diffusion, we refer the reader to [12, 13, 14, 15, 16, 17] and references therein.

One of our motivations of this study lies in a fact that, in the past few decades there have been
continuous interests in the existence of positive steady states of diffusive predator-prey systems, and
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the majority of works have devoted to discovering the effect of diffusion on positive steady states
[18, 19, 20, 21, 22, 23, 24]. However, little attention has been paid to the case that both diffusion and
cross-diffusion are present in population systems [25, 26, 27, 28]. Therefore, the main purpose of this
paper is to make an attempt on the existence and non-existence of non-constant positive steady states
of system (1.4). The corresponding steady-state equations of system (1.4) are:

− d1∆u − d12∆v = u − ku2 −
uv

mu + v
,

− d21∆u − d2∆v = −av − bv2 +
uv

mu + v
,

∂u
∂ν

=
∂v
∂ν

= 0,

x ∈ Ω,

x ∈ Ω,

x ∈ ∂Ω.

(1.5)

This paper is organized as follows. In Section 2, we discuss a priori estimate of the positive steady
state for system (1.4), that is, a priori upper and lower bounds for positive solutions of the elliptic
system (1.5). In Section 3, we investigate the existence and non-existence of non-constant positive
solutions of system (1.5). In particular, the impact of diffusion and cross-diffusion on the existence of
non-constant positive steady states is explored.

2. A priori estimates

In this section, to establish a priori estimates of upper and lower bounds of positive solutions for
system (1.5) in a straightforward manner, we need the following two lemmas.

Lemma 2.1. [22, Maximun Principle] Assume that g ∈ C(Ω × R1).
(i) If ω ∈ C2(Ω)∩C1(Ω) satisfies ∆ω(x) + g(x, ω(x)) ≥ 0, x ∈ Ω; ∂ω

∂ν
≤ 0, x ∈ ∂Ω; and ω(x0) = max

Ω

ω,

then g(x0, ω(x0)) ≥ 0.
(ii) If ω ∈ C2(Ω)∩C1(Ω) satisfies ∆ω(x) + g(x, ω(x)) ≤ 0, x ∈ Ω; ∂ω

∂ν
≥ 0, x ∈ ∂Ω; and ω(x0) = min

Ω

ω,

then g(x0, ω(x0)) ≤ 0.

Lemma 2.2. [27, Harnack’s Inequality] Suppose that c(x) ∈ C(Ω). Let ω(x) ∈ C2(Ω) ∩ C1(Ω) be a
positive solution to

∆ω(x) + c(x)ω(x) = 0, x ∈ Ω;
∂ω

∂ν
= 0, x ∈ ∂Ω.

Then there exists a positive constant C∗ = C∗(‖c(x)‖∞, Ω) such that

max
Ω

ω ≤ C∗min
Ω

ω.

In the following, the positive constants C1, C2, C∗1, C∗2, c1 and c2 will rely upon the domain Ω.
However, while Ω is fixed, we will not mention this dependence explicitly. Also, for convenience, we
shall write Λ instead of the set of constants (a, b,m, k) in the sequel.

Theorem 2.1. [Upper Bounds] Suppose that d12
d1
≤ D and d21

d2
≤ D for an arbitrary fixed number D.

Then there exist positive constants Ci = Ci(D,Λ), i = 1, 2, such that the positive solution (u, v) of
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system (1.5) satisfies
max

Ω

u ≤ C1 and max
Ω

v ≤ C2. (2.1)

Proof. Set φ = d1u + d12v and ψ = d21u + d2v. Then the problem (1.5) becomes
−∆φ =

1−ku− v
mu+v

d1+d12
v
u
φ,

−∆ψ =
−a−bv+ u

mu+v
d21

u
v +d2

ψ,
∂φ

∂ν
=

∂ψ

∂ν
= 0,

x ∈ Ω,

x ∈ Ω,

x ∈ ∂Ω.

(2.2)

Let x1 ∈ Ω be a point satisfying φ(x1) = max
Ω

φ. Applying Lemma 2.1 to the first equation of (2.2),

we can obtain u(x1) ≤ 1
k and v(x1) ≤ m

k (1 − ku(x1)) ≤ m
k . Hence, we obtain

max
Ω

u ≤
1
d1

max
Ω

φ

=
1
d1

(d1u(x1) + d12v(x1))

≤
1
k

+
d12

d1
·

m
k

, C1.

(2.3)

Analogously, let x2 ∈ Ω be a point satisfying ψ(x2) = max
Ω

ψ. Using Lemma 2.1 to the second

equation of (2.2), we have v(x2) ≤ 1−ma
bm . Then we have

max
Ω

v ≤
1
d2

max
Ω

ψ

=
1
d2

(d21u(x2) + d2v(x2))

≤
d21C1

d2
+

1 − ma
bm

, C2.

(2.4)

�

Before presenting the lower bound, we present the following lemma.

Lemma 2.3. Let ma < 1, d1,n, d2,n, d12,n, d21,n be positive constants, n = 1, 2, ..., and (un, vn) be the
positive solution of system (1.5) with d1 = d1,n, d12 = d12,n, d21 = d21,n and d2 = d2,n. Suppose that
(d1,n, d2,n, d12,n, d21,n)→ (d1, d2, d12, d21), and (un, vn)→ (u∗, v∗) uniformly on Ω. If u∗ and v∗ are positive
constants, then (u∗, v∗) satisfies

1 − ku∗ −
v∗

mu∗ + v∗
= 0, −a − bv∗ +

u∗

mu∗ + v∗
= 0.

That is, (u∗, v∗) = (ũ, ṽ), is the unique positive constant solution of system (1.5).
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Proof. It is clear that
∫

Ω
un

(
1 − kun −

vn
mun+vn

)
dx = 0 holds for all n. If 1 − ku∗ − v∗

mu∗+v∗ > 0, then
1 − kun −

vn
mun+vn

> 0 as n is getting large. However, un is positive, so this is impossible. Similarly,
1 − ku∗ − v∗

mu∗+v∗ < 0 is impossible either. Hence, 1 − ku∗ − v∗
mu∗+v∗ = 0. Using the same argument leads

to −a − bv∗ + u∗
mu∗+v∗ = 0. Consequently, (u∗, v∗) = (ũ, ṽ). �

Theorem 2.2. (Lower Bounds). Assume that d and D are fixed positive constants. Then there exist
positive constants ci = ci(d,D,Λ), i = 1, 2, such that when d1, d2 ≥ d and d12

d1
, d21

d2
≤ D, the positive

solution (u, v) of system (1.4) satisfies

min
Ω

u ≥ c1 and min
Ω

v ≥ c2. (2.5)

Proof. By a straightforward calculation, we have∥∥∥∥∥∥∥∥
u
(
1 − ku − v

mu+v

)
d1u + d12v

∥∥∥∥∥∥∥∥
∞

≤
1
d1

(
1 + k max

Ω

u + max
Ω

{
1

mu
v + 1

})

=
1
d1

1 + k max
Ω

u +
1

min
Ω

(mu
v + 1)


≤

1
d1

(
2 + k max

Ω

u
)

≤
1
d1

(2 + kC1) ,

and ∥∥∥∥∥∥∥∥
v
(
−a − bv + u

mu+v

)
d21u + d2v

∥∥∥∥∥∥∥∥
∞

≤
1
d2

(
a + b max

Ω

v + max
Ω

{
1

m + v
u

})

=
1
d2

a + b max
Ω

v +
1

min
Ω

(m + v
u )


≤

1
d2

(
a + b max

Ω

v +
1
m

)
≤

1
d2

(
a +

1
m

+ bC2

)
.

Then, Lemma 2.2 indicates that there exist positive constants C∗1 = C∗1(d,Λ) and C∗2 = C∗2(d,Λ) such
that max

Ω

φ ≤ C∗1 min
Ω

φ and max
Ω

ψ ≤ C∗2 min
Ω

ψ. Thus we obtain

max
Ω

u

min
Ω

u
≤

max
Ω

φ

min
Ω

(
d1 + d12

v
u

)/ min
Ω

φ

max
Ω

(
d1 + d12

v
u

) =

max
Ω

φ

min
Ω

φ
·

max
Ω

(
d1 + d12

v
u

)
min

Ω

(
d1 + d12

v
u

) ≤ C∗1, (2.6)
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and
max

Ω

v

min
Ω

v
≤

max
Ω

ψ

min
Ω

(
d21

u
v + d2

)/ min
Ω

ψ

max
Ω

(
d21

u
v + d2

) =

max
Ω

ψ

min
Ω

ψ
·

max
Ω

(
d21

u
v + d2

)
min

Ω

(
d21

u
v + d2

) ≤ C∗2. (2.7)

Now, we estimate the positive lower bounds of u and v. Suppose that (2.5) is not true. Then there
exists a sequence {d1,n, d2,n, d12,n, d21,n}

∞
n=1 with (d1,n, d2,n, d12,n, d21,n) ∈ [d,∞) × [d,∞) × (0,∞) × (0,∞)

such that the positive solution (un, vn) of system (1.5) satisfies
− ∆(d1,nun + d12,nvn) = un − ku2

n −
unvn

mun + vn
,

− ∆(d21,nun + d2,nvn) = −avn − bv2
n +

unvn

mun + vn
,

∂νun = ∂νvn = 0,

x ∈ Ω,

x ∈ Ω,

x ∈ ∂Ω,

(2.8)

and

min
Ω

un → 0 or min
Ω

vn → 0, as n→ ∞. (2.9)

For (2.8), it follows from the standard regularity theorem of elliptic equations [29] that there exists a
subsequence of {(un, vn)}∞n=1, still denoted by {(un, vn)}∞n=1, and two nonnegative functions u, v ∈ C2(Ω)
satisfying (un, vn)→ (u, v) as n→ ∞ . Assume that (d1,n, d2,n, d12,n, d21,n)→ (d1, d2, d12, d21) ∈ [d,∞) ×
[d,∞) × (0,∞) × (0,∞). In view of inequalities (2.6) and (2.7), it is easy to see that either max

Ω

un → 0

or max
Ω

vn → 0, as n→ ∞.

So, there are three possible cases.
If max

Ω

un → 0 and max
Ω

vn → 0, then (un, vn) → (0, 0) uniformly on Ω, which is a contradiction to

Lemma 2.3.
If max

Ω

un → 0 and max
Ω

vn → v, where v is a positive constant. By integrating the second equation

of system (2.8) in Ω, it gives ∫
Ω

vn (a + bvn) dx = 0.

Then we get vn → −
a
b , which yields a contradiction to v > 0. Hence, min

Ω

u > 0.

Similarly, if max
Ω

un → u and max
Ω

vn → 0, where u is a positive constant. By integrating the first

equation of system (2.8) in Ω, it gives∫
Ω

un (1 − kun) dx = 0.

Then u = 1
k . It implies that (un, vn) →

(
1
k , 0

)
uniformly on Ω. Apparently, this leads to a contradiction

to Lemma 2.3. Consequently, min
Ω

v > 0. �
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3. Non-constant positive steady states

In this section, we study the non-existence and existence of non-constant positive steady states of
system (1.5).

3.1. Non-existence of non-constant positive steady states

To consider the non-existence of non-constant solutions of system (1.5) in this subsection, for con-
venience, we denote

f (u, v) = u − ku2 −
uv

mu + v
, g(u, v) = −av − bv2 +

uv
mu + v

.

Theorem 3.1. Let d∗2 be a fixed positive constant and satisfy µ1d∗2 >
1
m , where µ1 is the least positive

eigenvalue of −∆ on Ω under the Neumann boundary condition. Then there exists a positive constant
D1 = D1(Λ, d∗2) such that when d1 ≥ D1 and d2 ≥ d∗2, system (1.5) with d12 = d21 = 0 has no non-
constant positive solution.

Proof. Suppose that w = (u, v)T is a positive solution of system (1.5). Let ϕ̃ = 1
|Ω|

∫
Ω
ϕdx for any

ϕ ∈ L1(Ω). Multiplying the first two equations of (1.5) by u − ũ and v − ṽ, respectively, and then
integrating on Ω, by integration by parts we obtain∫

Ω

d1|∇u|2dx +

∫
Ω

d2|∇v|2dx

=

∫
Ω

f (u, v)(u − ũ)dx +

∫
Ω

g(u, v)(v − ṽ)dx

=

∫
Ω

[ f (u, v) − f (ũ, ṽ)](u − ũ)dx +

∫
Ω

[g(u, v) − g(ũ, ṽ)](v − ṽ)dx

=

∫
Ω

{
1 − k(u + ũ) −

vṽ
(mu + v)(mũ + ṽ)

}
(u − ũ)2

+

∫
Ω

{
−

muũ
(mu + v)(mũ + ṽ)

+
vṽ

(mu + v)(mũ + ṽ)

}
(u − ũ)(v − ṽ)dx

+

∫
Ω

{
− a − b(v + ṽ) +

muũ
(mu + v)(mũ + ṽ)

}
(v − ṽ)2dx

≤

∫
Ω

{
(u − ũ)2 +

muũ + vṽ
(mu + v)(mũ + ṽ)

|u − ũ||v − ṽ| +
1
m

(v − ṽ)2
}
dx. (3.1)

In view of Theorems 2.1 and 2.2, using Young’s inequality to (3.1) we find∫
Ω

d1|∇u|2dx +

∫
Ω

d2|∇v|2dx

≤

∫
Ω

{
(u − ũ)2 + 2L|u − ũ||v − ṽ| +

1
m

(v − ṽ)2
}
dx

≤

∫
Ω

{ (
1 +

L
ε

)
(u − ũ)2 +

(
1
m

+ εL
)

(v − ṽ)2
}
dx (3.2)
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for some positive constant L, where ε is the arbitrary small positive constant arising from Young’s
inequality.

Using Poincaré’s inequality, we see that µ1

∫
Ω

(u − ũ)2dx ≤
∫

Ω
|∇u|2dx and µ1

∫
Ω

(v − ṽ)2dx ≤∫
Ω
|∇v|2dx, where µ1 is the least positive eigenvalue of −∆ on Ω under the Neumann boundary con-

dition. It follows from inequality (3.2) that

µ1

∫
Ω

[
d1(u − ũ)2 + d2(v − ṽ)2]dx ≤

∫
Ω

{ (
1 +

L
ε

)
(u − ũ)2 +

(
1
m

+ εL
)

(v − ṽ)2
}
dx.

Choosing a sufficiently small ε0 > 0 such that d∗2µ1 ≥
1
m + ε0L, and taking D1 ,

1
µ1

(1 + L
ε0

), we arrive
at the desired result (u, v) = (ũ, ṽ). �

3.2. Existence of non-constant positive solutions

From the discussion in the preceding subsection, we know that when the cross-diffusion terms are
absent, there might be no non-constant positive solutions for system (1.5). In this subsection, we shall
discuss the existence of non-constant positive solutions of system (1.5) with respect to cross-diffusion
coefficients d21 and d12 as the other parameters d1 and d2 are fixed by means of the Leray-Schauder
degree theory.

To facilitate the discussion, we rewrite system (1.5) as −∆Φ(w) = F(w),
∂w
∂ν

= 0,
x ∈ Ω,

x ∈ ∂Ω,
(3.3)

where w = (u, v)T, Φ(w) = (φ, ψ)T, and F(w) = ( f (u, v), g(u, v))T.

Let X =

{
w ∈

[
C1(Ω)

]2 ∣∣∣∣∂w
∂ν

= 0 on ∂Ω

}
, and define

X+ = {w ∈ X|w > 0 on Ω},

B(c) = {w ∈ X|c−1 < u, v < c on Ω},

where c is a positive constant that is guaranteed to exist by Theorems 2.1 and 2.2.
Assume that

d1d2 − d12d21 , 0. (3.4)

SinceΦw(w) =

 d1 d12

d21 d2

, the determinant detΦw(w) is nonzero for all non-negative w,Φ−1
w (w) exists

and detΦ−1
w (w) is of the same sign as detΦw(w). Thus, w is a positive solution of system (3.3) if and

only if

G(w) , w − (I − ∆)−1{Φ−1
w (w)[F(w) + ∇wΦww(w)∇w] + w

}
= 0, w ∈ X+, (3.5)

where (I − ∆)−1 is the inverse of I − ∆ in X under the homogeneous Neumann boundary condition.
Since G(·) is a compact perturbation of the identity operator, for any B = B(c), the Leray-Schauder
degree of deg(G(·), 0,B) is well-defined if G(w) , 0 on ∂B.
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Note that

DwG(w̃) = I − (I − ∆)−1{Φ−1
w (w̃)Fw(w̃) + I

}
,

where

Φw(w̃) =

 d1 d12

d21 d2

 , Fw(w̃) =

− m2ũ2

(mũ+ṽ)2 − mũ2

(mũ+ṽ)2

ṽ2

(mũ+ṽ)2 − ũṽ
(mũ+ṽ)2 − bṽ

 .
We recall that if DwG(w̃) is invertible, the index of G at w̃ is defined by

index(G(·), w̃) = (−1)γ,

where γ is the total number of eigenvalues of DwG(w̃) with negative real parts (counting multiplicities),
then the degree deg(G(·), 0,B) is equal to the sum of the indices over all isolated solutions when G = 0
in B(c), provided that G , 0 on ∂B.

Let 0 = µ0 < µ1 < µ2 < · · · be the eigenvalues of the operator −∆ on Ω under the ho-
mogeneous Neumann boundary condition and E(µi) be the eigenspaces with respect to µi. Let
{φi j; j = 1, 2, · · · , dim E(µi)} be a set of orthonormal basis of E(µi) and Xi j = {cφi j|c ∈ R2}.

Denote

X =

{
w ∈

[
C1(Ω)

]2 ∣∣∣∣∂w
∂ν

= 0 on ∂Ω

}
and Xi j = {cφi j | c ∈ R2}.

Then

X =

∞⊕
i=1

Xi and Xi =

dim E(µi)⊕
j=1

Xi j.

We refer to the decomposition above in the following discussions of the eigenvalues of DwG(w̃).
We know that Xi j is invariant under DwG(w̃) for each i ∈ N and each j ∈ [1, dim E(µi)] ∩ N, i.e.,
DwG(w̃)w ∈ Xi j for any w ∈ Xi j. Thus, λ is an eigenvalue of DwG(w̃) on Xi j if and only if it is an
eigenvalue of the matrix

I −
1

1 + µi

[
Φ−1

w (w̃)Fw(w̃) + I
]

=
1

1 + µi

[
µiI −Φ−1

w (w̃)Fw(w̃)
]
.

Hence, DwG(w̃) is invertible if and only if the matrix

I −
1

1 + µi

[
Φ−1

w (w̃)Fw(w̃) + I
]

is non-singular for any i ≥ 0.
Denote

H(µ) = H(w̃; µ) , det
{
µI −Φ−1

w (w̃)Fw(w̃)
}
. (3.6)

We observe that if H(µi) , 0, then for each 1 ≤ j ≤ dim E(µi), the number of negative eigenvalues of
DwG(w̃) on Xi j is odd if and only if H(µi) < 0.

We summarize our result as follows.
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Theorem 3.2. Assume that the matrix µiI −Φ−1
w (w̃)Fw(w̃) is non-singular for an arbitrary i ≥ 0. Then

there holds

index(G(·), w̃) = (−1)σ,

where σ =
∑

i≥0,H(µi)<0
dim E(µi).

According to the above Theorem, we need to consider the sign of H(µi) in order to calculate the
index of (G(·), w̃). In addition, by (3.6) we have

H(µ) = det
{
Φ−1

w (w̃)
}

det
{
µΦw(w̃) − Fw(w̃)

}
.

Hence, we need to consider the signs of det
{
Φ−1

w (w̃)
}

and det
{
µΦw(w̃) − Fw(w̃)

}
, respectively.

By a direct calculation we get

det
{
Φ−1

w (w̃)
}

=
1
A
,

det
{
µΦw(w̃) − Fw(w̃)

}
= Aµ2 − Bµ + C , A(µ),

(3.7)

where

A = d1d2 − d12d21,

B = −
m2ũ2

(mũ + ṽ)2 d2 −

(
ũṽ

(mũ + ṽ)2 + bṽ
)

d1 −
ṽ2

(mũ + ṽ)2 d12 +
mũ2

(mũ + ṽ)2 d21,

C = det
{
Fw(w̃)

}
=

maũṽ
(mũ + ṽ)2 + kbũṽ > 0.

Let µ̃1 and µ̃2 be the two roots of A(µ) = 0 with Re{µ̃1} ≤ Re{µ̃2}. Then µ̃1µ̃2 = C
A , which is of the

same sign as A.
Next, we discuss the dependence ofA(µ) on d12 and d21, respectively. Due to the following limits:

lim
d12→∞

A
d12

= −d21 < 0, lim
d21→∞

A
d21

= −d12 < 0,

lim
d12→∞

B
d12

= −
ṽ2

(mũ + ṽ)2 < 0, lim
d21→∞

B
d21

=
mũ2

(mũ + ṽ)2 > 0,

it follows from (3.7) that

lim
d12→∞

A(µ)
d12

= µ

[
−d21µ +

ṽ2

(mũ + ṽ)2

]
,

lim
d21→∞

A(µ)
d21

= µ

[
−d12µ −

mũ2

(mũ + ṽ)2

]
.

(3.8)

Note that the above two limits hold only when d12 (or d21) is chosen to be large enough. This is certainly
possible if A = d1d2 − d12d21 < 0 for the fixed d1 and d2. In this case, we have

det
{
Φ−1

w (w̃)
}

=
1
A
< 0 and µ̃1µ̃2 =

C
A
< 0.

Based on the above analyses, in summary we obtain the following results.
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Theorem 3.3. Assume A < 0. Then there exists a positive constant d∗12 such that when d12 ≥ d∗12, both
of the two roots µ̃1(d12) and µ̃2(d12) ofA(µ) = 0 are real and satisfy

lim
d12→∞

µ̃1(d12) = 0,

lim
d12→∞

µ̃2(d12) =
ṽ2

d21(mũ + ṽ)2 , µ̄ > 0,
(3.9)

where 
µ̃1(d12) < 0 < µ̃2(d12),

A(µ; d12) < 0 when µ ∈ (−∞, µ̃1(d12)) ∪ (µ̃2(d12),∞),

A(µ; d12) > 0 when µ ∈ (µ̃1(d12), µ̃2(d12)).

(3.10)

Theorem 3.4. Assume A < 0. Then there exists a positive constant d∗21 such that when d21 ≥ d∗21, both
of the two roots µ̃1(d21) and µ̃2(d21) ofA(µ) = 0 are real and satisfy

lim
d21→∞

µ̃1(d21) = −
mũ2

d12(mũ + ṽ)2 ,
¯̄µ < 0,

lim
d21→∞

µ̃2(d21) = 0,
(3.11)

where 
µ̃1(d21) < 0 < µ̃2(d21),

A(µ; d21) < 0 when µ ∈ (−∞, µ̃1(d21)) ∪ (µ̃2(d21),∞),

A(µ; d21) > 0 when µ ∈ (µ̃1(d21), µ̃2(d21)).

(3.12)

The following theorem is regarding the existence of non-constant positive solutions to system (3.3)
with respect to the cross-diffusion coefficient d12, while all of other parameters are fixed.

Theorem 3.5. Suppose that A < 0, and the parameters Λ, d1, d2 and d21 are fixed. Let µ̄ be given by

(3.9). If µ̄ ∈ (µn, µn+1) for some n ≥ 1, and the sum σn =
n∑

i=1
dim E(µi) is odd, then there exists a positive

constant d∗12 such that when d12 ≥ d∗12, system (3.3) has at least one non-constant positive solution.

Proof. According to Theorem 3.3, there exists a positive constant d∗12 such that, if d12 ≥ d∗12, then (3.10)
holds and

µ̃1(d12) < 0 = µ0 < µ̃2(d12), µ̃2(d12) ∈ (µn, µn+1). (3.13)

It suffices to prove that for all d12 ≥ d∗12, system (3.3) has at least one non-constant positive solution.
By the way of contradiction, we assume that this is not true for some d12 (≥ d∗12). By applying the
homotopy invariance of the topological degree, we can see a contradiction explicitly.

For any fixed d12 that satisfies d12 ≥ d∗12, we take d̂2 ≥ d∗2 and d̂1 ≥ D1, where µ1d∗2 > 1
m and

D1 = D1(Λ, d∗2) are given by Theorem 3.1. For t ∈ [0, 1], we define

Φ(t; w) =

[td1 + (1 − t)d̂1]u + td12v
td21u + [td2 + (1 − t)d̂2]v

 .
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Consider the system  −∆Φ(t; w) = F(w),
∂w
∂ν

= 0,
x ∈ Ω,

x ∈ ∂Ω.
(3.14)

Then w is a non-constant positive solution of system (3.3) if and only if it is a positive solution of
system (3.14) when t = 1. It is obvious that w̃ is the unique positive constant solution of system (3.14)
for any t ∈ [0, 1]. From (3.5), we know that for any t ∈ [0, 1], w is a positive solution of system (3.3) if
and only if

G(t; w) , w − (I − ∆)−1{Φ−1
w (t; w)[F(w) + ∇wΦww(t; w)∇w] + w

}
= 0, for w ∈ X+.

Analogous to (3.6), we set

H(t, µ) = det
{
Φ−1

w (t, w̃)
}

det
{
µΦw(t, w̃) − Fw(w̃)

}
.

It is easy to see that G(1; w) = G(w) and

DwG(t; w̃) = I − (I − ∆)−1{Φ−1
w (t; w̃)Fw(w̃) + I

}
.

In particular, we obtain

DwG(0; w̃) = I − (I − ∆)−1{Φ̂−1
w (w̃)Fw(w̃) + I

}
,

DwG(1; w̃) = I − (I − ∆)−1{Φ−1
w (w̃)Fw(w̃) + I

}
= DwG(w̃),

where

Φ̂w(w̃) =

d̂1 0
0 d̂2

 and Φw(w̃) =

 d1 d12

d21 d2

 .
More specifically, when t = 1, from (3.6) and (3.7) we have

H(1, µ) = H(µ)

= det
{
Φ−1

w (w̃)
}
det

{
µΦw(w̃) − Fw(w̃)

}
(3.15)

= det
{
Φ−1

w (w̃)
}
A(µ),

where
det

{
Φ−1

w (w̃)
}

=
(
det

{
Φw(w̃)

})−1
=

1
A
< 0,

andA(µ) is defined by (3.7).
According to (3.10), (3.13) and (3.15), we deduce that

H(1, µ0) = H(0) < 0,

H(1, µi) < 0 when 1 ≤ i ≤ n,

H(1, µi+1) > 0 when i ≥ n + 1.
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Therefore, zero is not an eigenvalue of the matrix µiI −Φ−1
w (w̃)Fw(w̃) for any i ≥ 0, and∑

i≥0,H(1,µi)<0

dim E(µi) =

n∑
i=1

dim E(µi) = σn

is odd. It follows from Theorem 3.2 that

index(Φ(1; ·), w̃) = (−1)γ = (−1)σn = −1. (3.16)

When t = 0, we have

H(0, µ) = det
{
Φ̂−1

w (w̃)
}
det

{
µΦ̂w(w̃) − Fw(w̃)

}
= det

{
Φ̂−1

w (w̃)
}
Â(µ),

(3.17)

where
det

{
Φ̂−1

w (w̃)
}

=
(
d̂1d̂2

)−1
> 0,

and we use Â(µ) to represent A(µ) given in (3.7) under the restriction of d12 = d21 = 0. In this case,
by Theorem 3.1 it implies that G(0; w)=0 only has the positive constant solution w̃ in X+. By a direct
calculation we have

Â(µ) = d̂1d̂2µ
2 +

[(
ũṽ

(mũ + ṽ)2 + bṽ
)

d̂1 +
m2ũ2

(mũ + ṽ)2 d̂2

]
µ +

maũṽ
(mũ + ṽ)2 + kbũṽ,

and so H(0, µi) > 0 for all i ≥ 0.
Discussing in the same manner, we can prove that

index(Φ(0; ·), w̃) = (−1)0 = 1. (3.18)

According to Theorems 2.1 and 2.2, there exists a positive constant c such that the positive solution
of system (3.14) satisfies c−1 < u and v < c for any t ∈ [0, 1]. Thus for any t ∈ [0, 1], there holds
Φ(t; w) , 0 on ∂B(M). By the homotopy invariance of the topological degree, we have

deg(Φ(1; ·), 0,B(M)) = deg(Φ(0; ·), 0,B(M)). (3.19)

Note that both Φ(1; w) = 0 and Φ(0; w) = 0 have the unique positive solution w̃ in B(M). From
(3.16) and (3.18) we get  deg(Φ(0; ·), 0,B(M)) = index(Φ(0; ·), w̃) = 1,

deg(Φ(1; ·), 0,B(M)) = index(Φ(1; ·), w̃) = −1,
(3.20)

which yields a contradiction with (3.19). �

Processing in an analogous way as we just did in the proof of Theorem 3.5, we can obtain the
following result regarding the existence of non-constant positive steady states for system (3.3) with
respect to the cross-diffusion coefficient d21. So, we omit the proof.

Theorem 3.6. Suppose that A < 0, and the parameters Λ, d1, d2 and d12 are fixed. Let ¯̄µ be given

by (3.11). If ¯̄µ ∈ (µn, µn+1) for some n ≥ 1, and the sum σn =
n∑

i=1
dim E(µi) is odd, then there exists

a positive constant d∗21 such that when d21 ≥ d∗21, system (3.3) has at least one non-constant positive
solution.
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