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Abstract: In this paper we give a basic reproduction number R0 of an SEIRS model on regular
lattice using next-generation matrix approach. Our result is straightforward but differs from the basic
reproduction numbers for various fundamental epidemic models on the regular lattice which have been
shown so far. Sometimes it is caused by the difference of derivation methods for R0 although their
threshold of infectious rates for epidemic outbreak remain the same. Then we compare our R0 to the
ones by these previous studies from several epidemic points of view.

Keywords: basic reproduction number; lattice model; SEIRS; next-generation matrix; pair
approximation

1. Introduction

The basic reproduction number, usually expressed by R0, is one of the most important indices of
epidemic models. This quantity gives the criterion for determining whether the infectious disease can
spread into the whole population or not: when R0 > 1 an epidemic will result from the introduction
of infectious agent, whereas when R0 < 1 the number of infected is expected to decline (e.g., [1]).
Therefore it is known from the threshold principle, that R0 = 1 gives its threshold.

This equation for theshold also coincides with the condition for the threshold between stability and
instability of disease-free equilibrium, but we sometimes obtain different basic reproduction numbers
even if the stability conditions for disease-free equilibrium are the same. When this happens, we can
determine whether or not the infectious disease can expand, but it produces a possibility for us to make
a wrong evaluation of its propagation speed.

In simplest cases, the basic reproduction number can be calculated as the ratio of newly
reproduction rate of infectious individuals during the infected period of the focal infected individual.
Unfortunately, however, for more complicated models, it requires some other contrivances to obtain
the basic reproduction number in general.
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In such situations, the most outstanding invention for obtaining R0 is to use next-generation
matirix approach [2], in which R0 is defined as the spectral radius or dominant eigenvalue of the
next-generation matrix. The computation of R0 by the next-generation matrix is formulated by [3]
and [4] (these methods by next-generation matrix are reviewed by [5]). Since then, a tremendous
number of studies have adopted this method to obtain R0, and now it has become a standard approach
to finding R0. On the other hand, we should notice that we can only find a few examples of obtaining
R0 in spatial epidemic models by using the next-generation model. In [6], R0 was first obtained for
their infectious model on the lattice by using next-generation matrix.

The rest of this paper is organized as follows. Section 2 reviews the basic reproduction number of
SIR model, which gives us the most understandable derivation and result. In Section 3, we verify the
procedure for calculating the basic reproduction number by using the next-generation matrix shown in
the seminal work [3], and we apply it to SEIRS model on a regular lattice. In Section 4, we compare
our result with the previous studies so far.

2. SIR model and its basic reproduction number R0

First, we concentrate on the SIR model proposed by [7] as one of the most fundamental epidemic
models. This SIR model can be written as follows:

dρS

dt
= −βρSρI , (1)

dρI

dt
= βρSρI − σρI , (2)

dρR

dt
= σρI . (3)

Here, ρS , ρI , and ρR indicate the fractions of susceptible, infected and recovered individual,
respectively. The infection occurs by the right-hand side (RHS) in Eq (1) or the first term of the RHS
in Eq (2), which are assumed by the product of both fractions ρS and ρI , i.e., the law of mass action.
The recovery from infection randomly occurs by the second term of the RHS in Eq (2) or the RHS in
Eq (3). The rates β > 0 and σ > 0 indicate the unit time of speed of infection and recovery,
respectively.

To check the behavior after introduction of a small amount of infectious individuals into susceptible
population, or a small disturbance around the disease-free equilibrium (1, 0, 0), which is an equilibrium
of the system (1)–(3), one has to determine whether the disease can invade the population or not. Thus,
the linearization of Eq (2) around (1, 0, 0) becomes

dρI

dt
= βρI − σρI = (β − σ)ρI

and defining the ratio of infectious rate during the period of infected:

R0 =
β

σ
, (4)

then R0 > 1 if and only if β > σ.
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Compared with the above result, limiting transmission of the disease only within the nearest
neighboring individuals reduces the value of R0. Therefore, we review the derivation of R0 for SIR
model by [8] (the notation in [8] slightly differs from the one presented below, but we can have an
exact correspondence). First of all, Eq (2) corresponds to the following equation:

dρI

dt
= βρS I − σρI = (βqS/I − σ)ρI , (5)

where ρS I is the fraction of the nearest-neighboring pair S and I, and qS/I is the conditional probability
that the focal site has state S under the condition of state I in the nearest-neighbor site: ρS I = ρIqS/I .

At the initial phase of an infection invading, we can write the rate of I in Eq (5) as

dρI

dt

∣∣∣∣∣
t=0

= (βqS/I(0) − σ)ρI . (6)

Therefore, the basic reproduction number is defined as

R0 =
β

σ
qS/I(0) (7)

and then if R0 > 1, then the disease can spread into population on a lattice. So we need to give the
initial value of qS/I(0) at the neighborhood around the steady state without infectious individuals.

After the invasion of an infectious individual, the spatial structure with the dynamical steady state
would be soon reached, and so it can be used as an initial condition for the variable qS/I to determine
whether or not an infection will succeed to invade. Then we consider the dynamics of qS/I:

dqS/I

dt
=

d
dt
ρS I

ρI

=
dρS I

dt
1
ρI
−

dρI

dt
ρS I

ρ2
I

=

(
1 −

1
z

)
βqS/S qS/I −

β

z
qS/I −

(
1 −

1
z

)
βqI/S qS/I − βq2

S/I , (8)

where we use Eq (5) and the following relation:

dρS I

dt
= −β

{(
1 −

1
z

)
ρIS I +

1
z
ρS I

}
− σρS I + β

(
1 −

1
z

)
ρS S I

≈ −β

{(
1 −

1
z

)
ρ2

S I

ρS
+

1
z
ρS I

}
− σρS I + β

(
1 −

1
z

)
ρS SρS I

ρS

in which z is the number of nearest neighbors; e.g., z = 4 for two-dimensional square lattice and
approximated ρIS I ≈ ρ2

S I/ρS and ρS S I ≈ ρS SρS I/ρS come from pair approximation [9] in the second
equality (we explain pair approximation in the next section).

Here, setting qS/S = 1 and qI/S = 0 as a disease-free equilibrium, then Eq (8) becomes

dqS/I

dt
= βqS/I

[(
1 −

2
z

)
− qS/I

]
, (9)
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and so we obtain the steady state as qS/I = 1−2/z. Substituting this as an initial state into Eq (7) results
as

R0 =

(
1 −

2
z

)
β

σ
, (10)

which indicates that the basic reproduction number for SIR model on lattice or network by Eq (10) is
less than the one for the corresponding non-spatial model by Eq (4).

Based on the above idea the basic reproduction numbers for basic epidemic models on regular lattice
have been obtained by several studies [8, 10, 11]. In the next section we derive the basic reproduction
number for SEIRS model, which is considered as more generalized model than SIR model, by using
next-generation matrix introduced by [2] and studied extensively by [3].

3. Definition of R0 for an epidemic model on the lattice by using next-generation matrix

3.1. Next-generation matrix and R0

We can calculate R0 through the next-generation matrix by [3] as follows.
Consider the vector

x = (x1, · · · , xm, xm+1, · · · , xn)T

with xi ≥ 0 (i = 1, . . . , n). Here x1, · · · , xm corresponds to m population densities of infected classes.
Then disease free state is defined as

Xs = {x ≥ 0|xi = 0, i = 1, . . . ,m}.

The epidemic model is rewritten as

dxi

dt
= fi(x) = Fi(x) − Vi(x)

where Vi = V −
i − V +

i . Fi,V +
i ,V

−
i are the terms corresponding to the appearance of new infections in

compartment i, transfer of individuals into compartment i by all other means, and transfer of
individuals out of compartment i, respectively. Also, these functions Fi,Vi,V −

i ,V
+

i satisfy the
following conditions (A1)–(A5) with a disease free equilibrium x0:

(A1) x ≥ 0 =⇒ Fi,V
+

i ,V
−

i ≥ 0 (i = 1, . . . , n).
(A2) x = 0 =⇒ V −

i = 0.
(A3) Fi = 0 (i > m).
(A4) x ∈ Xs =⇒ Fi = V +

i = 0 (i = 1, . . . ,m).
(A5) All eigenvalues of −

[
∂Vi(x0)/∂x j

]
i=1,...,n
j=1,...,n

have negative real parts.

Then R0 is defined as the spectrum radius or dominant eigenvalue of next-generation matrix FV−1 :

R0 = ρ(FV−1),

where

F =

[
∂Fi

∂x j
(x0)

]
,V =

[
∂Vi

∂x j
(x0)

]
Mathematical Biosciences and Engineering Volume 16, Issue 6, 6708–6727.
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for 1 ≤ i, j ≤ m.
In the next subsections we use the above procedure to get R0’s for SEIRS epidemic model in both

cases of completely mixing and only the nearest neighboring infection on regular lattice.

3.2. R0 for SEIRS epidemic model for completely mixing population

In addition to the system (1)–(3) we use the notation ρE, ω, ν for the fraction of exposed individuals
(who are in incubation period during which the individual has been infected but is not yet infectious),
the rate of natural loss of immunity, transition rate to infectious, respectively. Then, we consider the
following SEIRS model:

dρS

dt
= −βρSρI + ωρR, (11)

dρE

dt
= βρSρI − νρE, (12)

dρI

dt
= νρE − σρI , (13)

dρR

dt
= σρI − ωρR. (14)

Observe that dρS /dt + dρE/dt + dρI/dt + dρR/dt = 0 and each variable indicates the fraction of each
state, we can assume the total sum of ρS + ρE + ρI + ρR = 1. Then we can choose only three variables,
ρS , ρE, ρI as independent, and so ρR = 1 − (ρS + ρE + ρI). Therefore, we get the following system from
Eqs (11)–(14):

dρS

dt
= −βρSρI + ω{1 − (ρS + ρE + ρI)}, (15)

dρE

dt
= βρSρI − νρE, (16)

dρI

dt
= νρE − σρI . (17)

To express this system in non-dimensional terms, we choose new variables as follows:

β̃ =
β

σ
, ν̃ =

ν

σ
, ω̃ =

ω

σ
, τ = σt.

Then the above system (15)–(17) is transformed as

dρS

dτ
= −β̃ρSρI + ω̃{1 − (ρS + ρE + ρI)}, (18)

dρE

dτ
= β̃ρSρI − ν̃ρE, (19)

dρI

dτ
= ν̃ρE − ρI . (20)

We consider {ρE, ρI} as population densities of infected class. Hence, when we check conditions
(A1)–(A5) for this system (18)–(20), we find three cases of vectors F and V as follows:

F =


0

β̃ρSρI

0

 and V =


−ω̃{1 − (ρS + ρE + ρI)} + β̃ρSρI

ν̃ρE

−ν̃ρE + ρI

 ,
Mathematical Biosciences and Engineering Volume 16, Issue 6, 6708–6727.
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F =


0
0
ν̃ρE

 and V =


−ω̃{1 − (ρS + ρE + ρI)} + β̃ρSρI

−β̃ρSρI + ν̃ρE

ρI

 ,
F =


0

β̃ρSρI

ν̃ρE

 and V =


−ω̃{1 − (ρS + ρE + ρI)} + β̃ρSρI

ν̃ρE

ρI

 .
Also, observe that the disease-free equilibrium is (ρS , ρE, ρI) = (1, 0, 0); the matrices F and V are given
as,

F =

(
0 β̃

0 0

)
and V =

(
ν̃ 0
−ν̃ 1

)
,

F =

(
0 0
ν̃ 0

)
and V =

(
ν̃ −β̃

0 1

)
,

F =

(
0 β̃

ν̃ 0

)
and V =

(
ν̃ 0
0 1

)
,

respectively. Then

FV−1 =

(
β̃ β̃

0 0

)
, FV−1 =

(
0 0
1 β̃

)
, FV−1 =

(
0 β̃

1 0

)
,

respectively. Therefore, basic reproduction numbers for these matrices become

R0 = β̃,R0 = β̃,R0 =

√
β̃, (21)

respectively. As pointed out by [3], we should choose F and V by appropriate epidemiological
interpretation rather than mathematically. The first and the second choices give the same basic
reproduction numbers, but both the second and the third include the terms of progression of
infectiousness in the vector F . Therefore, we should adopt the first choice which considers only
newly infected individuals.

3.3. R0 for SEIRS epidemic model for the nearest-neighboring infection

Using the same notatons in the previous sections and others, such as ρS S I , which indicates the
fraction of the triplet S S I, the dynamics of SEIRS model on regular lattice is written as follows:

dρS S

dτ
= −2β̃

(
1 −

1
z

)
ρS S I + 2ω̃ρS R, (22)

dρS E

dτ
= −β̃

(
1 −

1
z

)
(ρIS E − ρS S I) − ν̃ρS E + ω̃ρER, (23)

dρS I

dτ
= −β̃

{(
1 −

1
z

)
ρIS I +

1
z
ρS I

}
+ ν̃ρS E − ρS I + ω̃ρIR, (24)

dρS R

dτ
= −β̃

(
1 −

1
z

)
ρIS R + ρS I − ω̃(ρS R − ρRR), (25)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6708–6727.
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dρEE

dτ
= 2β̃

(
1 −

1
z

)
ρES I − 2ν̃ρEE, (26)

dρEI

dτ
= β̃

{(
1 −

1
z

)
ρIS I +

1
z
ρS I

}
+ ν̃(ρEE − ρEI) − ρEI , (27)

dρER

dτ
= β̃

(
1 −

1
z

)
ρIS R − ν̃ρER + ρEI − ω̃ρER, (28)

dρII

dτ
= 2ν̃ρEI − 2ρII , (29)

dρIR

dτ
= ρII − ρIR + ν̃ρER − ω̃ρIR, (30)

dρRR

dτ
= 2ρIR − 2ω̃ρRR,

where ρσσ′ = ρσ′σ holds due to symmetry.
Observe that by using (22)–(30),

dρS

dτ
=

dρS S

dτ
+

dρS E

dτ
+

dρS I

dτ
+

dρS R

dτ
= −β̃ρS I + ω̃ρR

= −β̃ρS I + ω̃{1 − (ρS + ρE + ρI)}, (31)
dρE

dτ
=

dρS E

dτ
+

dρEE

dτ
+

dρEI

dτ
+

dρER

dτ
= β̃ρS I − ν̃ρE, (32)

dρI

dτ
=

dρS I

dτ
+

dρEI

dτ
+

dρII

dτ
+

dρIR

dτ
= ν̃ρE − ρI , (33)

indicates that the system (31)–(33) including spatial structure corresponds to the non-spatial model
(18)–(20) in the previous subsection. And so, the system of nine equations (22)–(30) with the following
relation gives the dynamics of the nearest-neighboring pairs for spatial model: 1 = ρS + ρE + ρI + ρR =

(ρS S + ρS E + ρS I + ρS R) + (ρS E + ρEE + ρEI + ρER) + (ρS I + ρEI + ρII + ρIR) + (ρS R + ρER + ρIR + ρRR) =

(ρS S + ρEE + ρII + ρRR) + 2(ρS E + ρS I + ρS R + ρEI + ρER + ρIR), i.e., ρRR = 1− (ρS S + ρEE + ρII)− 2(ρS E +

ρS I + ρS R + ρEI + ρER + ρIR).
Unfortunately, however, the system (22)–(30) is not closed since triplet densities such as ρS S I may

change as time passes, whose dynamics also includes higher-order correlation functions (quartet
densities) and these procedures continue forever. Therefore, we adopt an approximation called pair
approximation [9] to this system. By pair approximation, conditional probabilities are defined:

qσ/σ′σ′′ =
ρσσ′σ′′

ρσ′σ′′
, (34)

and the effect of the site with state σ from the site with state σ′′ may be considered smaller compared
with the site with state σ′ because the former is the next-nearest neighbor, but the latter is the nearest
neighbor. Then we can approximate the conditional probability (34) as follows:

qσ/σ′σ′′ ≈ qσ/σ′ =
ρσσ′

ρσ′
. (35)

Using Eqs (34) and (35), we obtain
ρσσ′σ′′ ≈

ρσσ′ρσ′σ′′

ρσ′
. (36)
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Pair approximation (36) with ρS = ρS S + ρS E + ρS I + ρS R transforms Eqs (22)–(30) into the closed
system as follows:

dρS S

dτ
= −2β̃

(
1 −

1
z

)
ρS SρS I

ρS S + ρS E + ρS I + ρS R
+ 2ω̃ρS R, (37)

dρS E

dτ
= −β̃

(
1 −

1
z

) (
ρS IρS E

ρS S + ρS E + ρS I + ρS R
−

ρS SρS I

ρS S + ρS E + ρS I + ρS R

)
−ν̃ρS E + ω̃ρER, (38)

dρS I

dτ
= −β̃

{(
1 −

1
z

)
ρ2

S I

ρS S + ρS E + ρS I + ρS R
+

1
z
ρS I

}
+ ν̃ρS E − ρS I

+ω̃ρIR, (39)
dρS R

dτ
= −β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS E + ρS I + ρS R
+ ρS I

−ω̃[ρS R − {1 − (ρS S + ρEE + ρII)
−2(ρS E + ρS I + ρS R + ρEI + ρER + ρIR)}], (40)

dρEE

dτ
= 2β̃

(
1 −

1
z

)
ρS EρS I

ρS S + ρS E + ρS I + ρS R
− 2ν̃ρEE, (41)

dρEI

dτ
= β̃

{(
1 −

1
z

)
ρ2

S I

ρS S + ρS E + ρS I + ρS R
+

1
z
ρS I

}
+ ν̃(ρEE − ρEI)

−ρEI , (42)
dρER

dτ
= β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS E + ρS I + ρS R
− ν̃ρER + ρEI − ω̃ρER, (43)

dρII

dτ
= 2ν̃ρEI − 2ρII , (44)

dρIR

dτ
= ρII − ρIR + ν̃ρER − ω̃ρIR. (45)

We consider {ρS E, ρS I , ρEE, ρEI , ρER, ρII , ρIR} as population densities of infected class because these
variables include E or I. When we check conditions (A1)–(A5) for the system (37)–(45) with the
choice of F from the viewpoint of the reproduction of newly infected individuals, we can determine
only one possible set of vectors F and V :

F =



0
β̃
(
1 − 1

z

)
ρS S ρS I

ρS S +ρS E+ρS I+ρS R

0
0

2β̃
(
1 − 1

z

)
ρS EρS I

ρS S +ρS E+ρS I+ρS R

β̃
{(

1 − 1
z

)
ρ2

S I
ρS S +ρS E+ρS I+ρS R

+ 1
zρS I

}
β̃
(
1 − 1

z

)
ρS IρS R

ρS S +ρS E+ρS I+ρS R

0
0


Mathematical Biosciences and Engineering Volume 16, Issue 6, 6708–6727.
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and

V =



2β̃
(
1 − 1

z

)
ρS S ρS I

ρS S +ρS E+ρS I+ρS R
− 2ω̃ρS R

β̃
(
1 − 1

z

)
ρS IρS E

ρS S +ρS E+ρS I+ρS R
+ ν̃ρS E − ω̃ρER

β̃
{(

1 − 1
z

)
ρ2

S I
ρS S +ρS E+ρS I+ρS R

+ 1
zρS I

}
− ν̃ρS E + ρS I − ω̃ρIR

β̃(1− 1
z )

ρS IρS R
ρS S +ρS E+ρS I +ρS R

−ρS I+ω̃[ρS R−{1−(ρS S +ρEE+ρII )−2(ρS E+ρS I+ρS R+ρEI+ρER+ρIR)}]

2ν̃ρEE

−ν̃(ρEE − ρEI) + ρEI

ν̃ρER − ρEI + ω̃ρER

−2ν̃ρEI + 2ρII

−ρII + ρIR − ν̃ρER + ω̃ρIR



.

Observe that the first and the fourth elements correspond to the changes of variables ρS S and ρS R,
respectively, and that the disease-free equilibrium is
(ρS S , ρS E, ρS I , ρS R, ρEE, ρEI , ρER, ρII , ρIR) = (1, 0, 0, 0, 0, 0, 0, 0, 0),

F =



0 (1 − 1/z)β̃ 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 β̃/z 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


and

V =



ν̃ 0 0 0 −ω̃ 0 0
−ν̃ 1 + β̃/z 0 0 0 0 −ω̃

0 0 2ν̃ 0 0 0 0
0 0 −ν̃ ν̃ + 1 0 0 0
0 0 0 −1 ν̃ + ω̃ 0 0
0 0 0 −2ν̃ 0 2 0
0 0 0 0 −ν̃ −1 1 + ω̃


.

Then, the next-generation matrix is

FV−1 =



a11 a12 a13 a14 a15 a16 a17

0 0 0 0 0 0 0
0 0 0 0 0 0 0

a41 a42 a43 a44 a45 a46 a47

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(46)
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where

1
z − 1

a11 =
1

z − 1
a12 = a41 = a42 =

β̃

z + β̃
,

2
z − 1

a13 =
1

z − 1
a14 = 2a43 = a44 =

β̃ω̃{1 + (1 + ν̃)(ν̃ + ω̃)}
(z + β̃)(1 + ν̃)(1 + ω̃)(ν̃ + ω̃)

,

1
z − 1

a15 = a45 =
β̃ω̃(1 + ν̃ + ω̃)

(z + β̃)(1 + ω̃)(ν̃ + ω̃)
,

2
z − 1

a16 =
1

z − 1
a17 = 2a46 = a47 =

β̃ω̃

(z + β̃)(1 + ω̃)
.

The characteristic equation of this next-generation matrix (46) becomes

λ6
{
λ −

β̃[ν̃(1 + ν̃ + ω̃){(z − 1) + zω̃} + zω̃(1 + ω̃)]
(z + β̃)(1 + ν̃)(1 + ω̃)(ν̃ + ω̃)

}
= 0.

Therefore the spectral radius of the next-generation matrix, or the basic reproduction number, for
SEIRS model is

R0 = ρ(FV−1) =
β̃[ν̃(1 + ν̃ + ω̃){(z − 1) + zω̃} + zω̃(1 + ω̃)]

(z + β̃)(1 + ν̃)(1 + ω̃)(ν̃ + ω̃)
. (47)

When we set z→ ∞ then we obtain

R0 = β̃ as z→ ∞ (48)

which corresponds to R0 for the standard SEIRS, SEIR, SIRS, SIR, and SIS models as Eq (4) and (21).
Compared with Eq (48) and (47), epidemic breakout for the former only depends on the infectious rate
β̃, on the other hand, the latter depends not only on the infectious rate but also on other parameters,
progression to infectiousness ν̃ and rate of the natural loss of immunity ω̃.

In Figure 1, we show the dependence of these three parameters on the threshold value of R0 = 1.
We can see that critical infectious rate β̃ increases as transition rate to infectious ν̃ but decreases as rate
of the natural loss of immunity ω̃. This is reasonable because the period during infected 1/ν̃ is shorter
as ν̃ increases, then the strength of infection should be larger to maintain the value of R0. On the other
hand, if ω̃ increases, then the number of susceptibles, to some of which the focal infected individual
has not yet transmitted disease, increases, and so β̃ can be reduced for the critical R0 = 1.

In Figure 2, we show R0 against ν̃ and ω̃ when β̃ → ∞. If the infectious rate β̃ becomes very
large, then the focal infectious individual can immediately transmit the disease to all susceptibles in
the nearest neighbor. Therefore the maximum number of R0 should not exceed the number of the
nearest neighbor z. Indeed, we can get this extremal value as

ν̃(1 + ν̃ + ω̃){(z − 1) + zω̃} + zω̃(1 + ω̃)
(1 + ν̃)(1 + ω̃)(ν̃ + ω̃)

(49)

for β̃ → ∞. When ν̃ → 0 or ω̃ → 0, Eq (49) converges to z or z − 1, respectively. When ν̃ → ∞ or
ω̃ → ∞, Eq (49) becomes z − 1

1+ω̃
or z. Furthermore we can check that Eq (49) is greater than z − 1

and less than z by z − Eq (49) = ν̃(1 + ν̃ + ω̃)/(1 + ν̃)(1 + ω̃)(ν̃ + ω̃) > 0 and Eq (49) − (z − 1) =

ω̃{1 + (1 + ν̃)(ν̃ + ω̃)}/(1 + ν̃)(1 + ω̃)(ν̃ + ω̃) > 0. From Figure 2 we can observe that R0 approaches to
z = 4 or z − 1 = 3 for ν̃→ 0 or ω̃→ 0, respectively.
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�̃

�̃

�̃

Figure 1. Plot of β̃ to give the threshold value R0 = 1 against ν̃ and ω̃.

3.4. R0 for SEIR, SIRS, SIR, SIS epidemic models: simpler cases

We consider simpler epidemic models with reducing variables and parameters.
When R never returns to S and ω̃ becomes zero, then we get SEIR model with pair approximation:

dρS S

dτ
= −2β̃

(
1 −

1
z

)
ρS SρS I

ρS S + ρS E + ρS I + ρS R
,

dρS E

dτ
= −β̃

(
1 −

1
z

) (
ρS IρS E

ρS S + ρS E + ρS I + ρS R
−

ρS SρS I

ρS S + ρS E + ρS I + ρS R

)
−ν̃ρS E,

dρS I

dτ
= −β̃

{(
1 −

1
z

)
ρ2

S I

ρS S + ρS E + ρS I + ρS R
+

1
z
ρS I

}
+ ν̃ρS E − ρS I ,

dρS R

dτ
= −β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS E + ρS I + ρS R
+ ρS I ,

dρEE

dτ
= 2β̃

(
1 −

1
z

)
ρS EρS I

ρS S + ρS E + ρS I + ρS R
− 2ν̃ρEE,

dρEI

dτ
= β̃

{(
1 −

1
z

)
ρ2

S I

ρS S + ρS E + ρS I + ρS R
+

1
z
ρS I

}
+ ν̃(ρEE − ρEI)

−ρEI ,

dρER

dτ
= β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS E + ρS I + ρS R
− ν̃ρER + ρEI ,

dρII

dτ
= 2ν̃ρEI − 2ρII ,

dρIR

dτ
= ρII − ρIR + ν̃ρER.
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Figure 2. Plot of R0 with β̃→ ∞ against ν̃ and ω̃.

By similar calculation as SEIRS model for disease-free equilibrium, we obtain the next-generation
matrix and its characteristic equation as

FV−1 =



(z−1)β̃
z+β̃

(z−1)β̃
z+β̃ 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
β̃

z+β̃
β̃

z+β̃ 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


and

λ6
{
λ −

(z − 1)β̃
z + β̃

}
= 0.

Therefore the basic reproduction number for SEIR model is

R0 =
(z − 1)β̃

z + β̃
. (50)

When the exposed period can be neglected and we don’t need consider the state E, then we get SIRS
model with pair approximation:

dρS S

dτ
= −2β̃

(
1 −

1
z

)
ρS SρS I

ρS S + ρS I + ρS R
+ 2ω̃ρS R,

dρS I

dτ
= −β̃

{(
1 −

1
z

) (
ρ2

S I

ρS S + ρS I + ρS R
−

ρS SρS I

ρS S + ρS I + ρS R

)
+

1
z
ρS I

}
− ρS I

+ω̃ρIR,
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dρS R

dτ
= −β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS I + ρS R
+ ρS I

−ω̃[ρS R − {1 − (ρS S + ρII) − 2(ρS I + ρS R + ρIR)}],
dρII

dτ
= 2β̃

{(
1 −

1
z

)
ρ2

S I

ρS S + ρS I + ρS R
+

1
z
ρS I

}
− 2ρII ,

dρIR

dτ
= β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS I + ρS R
+ ρII − ρIR − ω̃ρIR.

We can consider {ρS I , ρII , ρIR} as population densities of infected class, and noticing that the first
and the third elements correspond to the changes of variables ρS S and ρS R, respectively, then the next-
generation matrix and its characteristic equation become

FV−1 =


(z−1)β̃

z+β̃
(z−1)β̃ω̃

2(z+β̃)(1+ω̃)
(z−1)β̃ω̃

(z+β̃)(1+ω̃)
2β̃

z+β̃
β̃ω̃

(z+β̃)(1+ω̃)
2β̃ω̃

(z+β̃)(1+ω̃)

0 0 0


and

λ2
{
λ −

β̃[(z − 1) + zω̃]
(z + β̃)(1 + ω̃)

}
= 0.

Therefore, the basic reproduction number for SIRS model is given as

R0 =
β̃[(z − 1) + zω̃]
(z + β̃)(1 + ω̃)

. (51)

Next, we move to SIR model without the natural loss of immunity from R to S. SIR model with pair
approximation is given as follows:

dρS S

dτ
= −2β̃

(
1 −

1
z

)
ρS SρS I

ρS S + ρS I + ρS R
,

dρS I

dτ
= −β̃

{(
1 −

1
z

) (
ρ2

S I

ρS S + ρS I + ρS R
−

ρS SρS I

ρS S + ρS I + ρS R

)
+

1
z
ρS I

}
−ρS I , (52)

dρS R

dτ
= −β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS I + ρS R
+ ρS I ,

dρII

dτ
= 2β̃

{(
1 −

1
z

)
ρ2

S I

ρS S + ρS I + ρS R
+

1
z
ρS I

}
− 2ρII ,

dρIR

dτ
= β̃

(
1 −

1
z

)
ρS IρS R

ρS S + ρS I + ρS R
+ ρII − ρIR.

By similar calculation as SIRS model for disease-free equilibrium, we obtain the next-generation
matrix and its characteristic equation as

FV−1 =


(z−1)β̃

z+β̃ 0 0
2β̃

z+β̃ 0 0
0 0 0


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and

λ2
{
λ −

(z − 1)β̃
z + β̃

}
= 0.

Therefore, the basic reproduction number for SIR model is given by

R0 =
(z − 1)β̃

z + β̃
. (53)

The last model SIS with pair approximation is given as follows:

dρS I

dτ
= −β̃

{(
1 −

1
z

) (
ρ2

S I

1 − ρS I − ρII
−

(1 − 2ρS I − ρII)ρS I

1 − ρS I − ρII

)
+

1
z
ρS I

}
−ρS I + ρII

dρII

dτ
= β̃

{(
1 −

1
z

)
ρ2

S I

1 − ρS I − ρII
+

1
z
ρS I

}
− ρII .

We can consider all the variables {ρS I , ρII} as population densities of infected class, then the next-
generation matrix and its characteristic equation become

FV−1 =

 (z−1)β̃
z+β̃

(z−1)β̃
z+β̃

β̃

z+β̃
β̃

z+β̃


and

λ

(
λ −

zβ̃
z + β̃

)
= 0.

Therefore, the basic reproduction number for SIS model is

R0 =
zβ̃

z + β̃
. (54)

3.5. R0 relations between various models

Here, we consider the relationships of R0 among various models. If there is no natural loss of
immunity, we set the model as ω̃ → 0 for SEIRS model. By taking ω̃ → 0 for Eq (47) R0 for SEIR
model becomes

β̃[ν̃(1 + ν̃ + ω̃){(z − 1) + zω̃} + zω̃(1 + ω̃)]
(z + β̃)(1 + ν̃)(1 + ω̃)(ν̃ + ω̃)

ω̃→0
−→

(z − 1)β̃
z + β̃

,

which coincides with Eq (50).
If the transition from E to I occurs instantaneously, i.e., the transition rate ν̃ is very large, then the

model can be interpreted as SIRS model. By taking the limit ν̃ → ∞ for Eq (47) R0 for SIRS model
becomes

β̃[ν(1 + ν̃ + ω̃){(z − 1) + zω̃} + zω̃(1 + ω̃)]
(z + β̃)(1 + ν̃)(1 + ω̃)(ν̃ + ω̃)

ν̃→∞
−→

β̃[(z − 1) + zω̃]
(z + β̃)(1 + ω̃)

,

which coincides with Eq (51).
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SIR model can be obtained by taking the limit of ω̃ → 0 for SIRS model (51). Therefore, R0 for
SIR model is

β̃[(z − 1) + zω̃]
(z + β̃)(1 + ω̃)

ω̃→0
−→

(z − 1)β̃
z + β̃

,

which coincides with Eq (53).
SIS model can be obtained by taking the limit of ω̃ → ∞ for SIRS model (51) by regarding the

transition from R to S as being instantaneous. So R0 for SIS model is obtained as

β̃[(z − 1) + zω̃]
(z + β̃)(1 + ω̃)

ω̃→∞
−→

zβ̃
z + β̃

,

which coincides with Eq (54).

3.6. Comparison with Monte Carlo simulation

In this paper, we adopted an approximation to evaluate R0, so in order to check its accuracy, we
would compare the result with the Monte Carlo simulation. To do this, we need an equation for some
variable corresponding to R0, which increases for R0 > 1 but decreases for R0 < 1. Fortunately, we
can find the variable for the SIR model, and so we explain it below.

SIR model gives the linearized equation of Eq (52) for ρS I around disease free equilibrium gives

dρS I

dτ
=

[(
1 −

1
z

)
β̃ −

(
1 +

1
z
β̃

)]
ρS I . (55)

The ratio of positive term to negative one (1 − 1/z)β̃/(1 + β̃/z) = (z − 1)β̃/(z + β̃) coincides with R0 by
Eq (53).

We can expect the newly produced number of S-I pairs as this quantity in Monte Carlo simulation.
Let us consider one infectious individual to invade into a susceptible population on two-dimensional
square lattice space z = 4 (Figure 3).

I	 S	S	

S	

S	
Figure 3. Four invaded S-I pairs by an introduction of only one I individual. We trace how
many S-I pairs are produced by each S-I pair.

There are four S-I pairs, then we trace how many S-I pairs are newly produced by the direct disease
transmission of this infectious to the neighboring susceptibles before changing I to R.
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(i) If the transition from I to R occurs, its probability is 1/(1+ β̃) and no newly S-I pairs are produced.

(ii) If the transition from I to R does not occur and one of four Ss is infected, its probability is 1−1/(1+

β̃). Then if the transition from I to R occurs, the probability becomes
{
1 − 1/(1 + β̃)

}
· 1/(1 + 3

4 β̃)
and three S-I pairs are produced.

(iii) If the transition from I to R does not occur and one of the four Ss is infected. And then if the
transition from I to R does not occur and one of the three Ss is infected. Then if the transition
from I to R occurs, the probability becomes

{
1 − 1/(1 + β̃)

}
·
{
1 − 1/(1 + 3

4 β̃)
}
· 1/(1 + 2

4 β̃). 2 × 3
S-I pairs are produced.

(iv) If the transition from I to R does not occur and one of the four Ss is infected. And if the transition
from I to R does not occur and one of the three Ss is infected. And if the transition from I to
R does not occur and one of two Ss is infected. Then if the transition from I to R occurs, the
probability becomes

{
1 − 1/(1 + β̃)

}
·
{
1 − 1/(1 + 3

4 β̃)
}
·
{
1 − 1/(1 + 2

4 β̃)
}
· 1/(1 + 1

4 β̃). 3 × 3 S-I
pairs are produced.

(v) At the remaining probability
{
1 − 1/(1 + β̃)

}
·
{
1 − 1/(1 + 3

4 β̃)
}
·
{
1 − 1/(1 + 2

4 β̃)
}
·
{
1 − 1/(1 + 1

4 β̃)
}
,

4 × 3 S-I pairs are produced.

The total sum of (i)–(v) over 4 (averaged for one S-I pair) gives 3β̃/(4 + β̃), which is the case of z = 4
in Eq (53).

In the real simulation space there are more sites around these five sites and tertiary infections that
can occur in these four Ss by the transmission from going around of secondary infections along the
loop. So, the number of newly produced S-I pairs are expected to be somehow small. The results are
shown in Figure 4.

R0
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Figure 4. Plot of R0 against β̃. We can evaluate R0 as the newly produced S-I pairs before
dissapearing for four invaded S-I pairs. Dots, Monte Carlo simulation; Dashed line, mean-
field approximation; Solid line, pair approximation.

Unfortunately we cannot succeed in finding a way of evaluating R0 by Monte Carlo simulation for
other models.
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4. Discussion

We obtained the basic reproduction number for SEIRS model on the regular lattice as Eq (47) by
using the next-generation matrix. Inaba [12] stated R0 is determined uniquely, but from the viewpoint
of [13], basic reproduction number by one method may not always agree with the one by another. Here
we compare it to the results of other previous studies.

Ringa and Bauch [11] gives a basic reproduction number for SEIRS model on the lattice as

R0 =
β̃(z − 1)2

z
[
(z − 1) +

β̃

ν̃

] , (56)

in which [11] uses the different notation n instead of z on page 158. It has much contrast to our Eq (47),
which is dependent on ω̃ but Eq (56) does not include it. In addition, observe that the effects of ν̃ are
completely opposite between them. Therefore, they have no coincidence on the critical condition for
disease outbreak. Ringa and Bauch [11] adopted several assumptions to derive R0. We cannot specify
which assumption most crucially causes the differences, but it shows the need to pay attention to use
additional kind of approximations.

Keeling [8] studied the SIR model on a network including regular lattice, and obtained the basic
reproduction number as

R0 =

(
1 −

2
z

)
β̃, (57)

as shown in Section 2. Equation (57) says R0 = 0 for z = 2 and then someone interprets it as disease
cannot invade into the susceptible population for any infectious rate on one-dimensional linear lattice
space. However, it is natural to consider that R0 is always positive and the threshold condition to
invade into the susceptible population is R0 = 1. Equation (53) gives 0 < R0 = β̃/(2+ β̃) < 1 for z = 2,
then the basic reproduction number is positive but less than the threshold one, so infectious disease
fails to invade on one dimensional lattice space.

When we carefully check the derivation of Eq (10) from Eqs (8) and (9), Eq (6) can be read as

dρI

dτ

∣∣∣∣∣
t=0

= (β̃qS/I(0) − 1)ρI =

{(
1 −

1
z

)
β̃ −

1
z
β̃ − 1

}
ρI .

It indicates that

R0 =

(
1 − 1

z

)
β̃

1
z β̃ + 1

, (58)

which coincides with Eq (53). Hence, there is no difference in the critical infectious rate for outbreak
between Eqs (53) and (57). However, the former is bounded by z − 1, where z is the number of nearest
neighboring individuals, but the latter is unbounded when the infectious rate β̃ goes to infinity.

Kiss et al. [13] distinguished two kinds of basic reproductive ratio as R0, an average number of
transmissions an individual causes, and R̄0, growth-based basic reproduction ratio. They exemplified
R̄0 by mean-field approximation for both SIS and SIR models, i.e.,

R̄MF
0 = β̃,
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and by pairwise approximation (= pair approximation) for SIS

R̄PW
0 =

1
2


(
1 −

2
z

)
β̃ − 1 +

√{(
1 −

2
z

)
β̃ − 3

}2

+ 8
{(

1 −
1
z

)
β̃ − 1

} (59)

and for SIR

R̄PW
0 =

(
1 −

2
z

)
β̃. (60)

For SIR they also give

R0 =
(1 − 1

z )β̃
1
z β̃ + 1

,

which coincides with Eq (58) because transmission probability before recovery is (β̃/z)/{(β̃/z) + 1} and
a newly infected individual has z − 1 susceptible neighbors. However, using Eq (55), we can interpret
transition rate of S-I pair to another as 1

z β̃ + 1 instead of 1, then growth-based basic reproduction ratio
also becomes Eq (58) but not Eq (60). Therefore, there seems no difference between the two basic
reproduction numbers by [13] for the SIR model. Here, we use z instead of their n.

Bauch [10] concentrates on SIS lattice model and gives the basic reproduction number as

R0 =
β̃(z − 2)

2z
−

1
2

+
1
2

√(
β̃(z − 2)

z
+ 1

)2

+ 8
β̃

z
(61)

in Eq (50) in [10], in which the author uses Q and β/ν instead of z and β̃, respectively. Equation (61)
is the same as Eq (59) by [13]. Observe that Eq (54) and (61) have the same critical infectious rate for
an outbreak. Bauch [10] claimed that the basic reproduction number obtained by ordinary pair
approximation as in Eq (61) is unbounded when β̃ goes to infinity. And then Bauch [10] proposed
another new approximation called “invasory pair approximation” and succeeded in obtaining a
bounded R0 for infinite large infectious rate. Alternatively we show another form of R0 by ordinary
pair approximation using the next-generation matrix, which satisfies boundedness for infinite large
infectious rate. Invasory pair approximation, in turn, gives the value −z−1+z2+

√
z4+2z3−5z2+2z+1
2(z−1) for β̃→ ∞,

which is easily seen to be greater than an integer z ≥ 2. On the other hand, the basic reproduction
number (54) is an increasing function of β̃ and gives z when β̃ goes to infinity. It seems reasonable
that the possible number of newly infected individuals is less than or equal to z, so ordinary pair
approximation is considered to give rather a good estimation than invasory pair approximation in this
meaning.

In the end, we should refer to the seminal work [14]. Trapman [14] gives a formal definition
of the asymptotic reproduction number and its alternative to be applicable by pair approximation.
Trapman [14] shows an example of SIR model on a regular network whose reproduction number can
be calculated exactly and can compare several R0’s including [8] and correspondence to Eq (53), which
is heuristically derived in [14]. This approach, i.e., comparison to an exact solution, clearly shows what
a better solution or an approximation is. So, we would like to propose such models with exact basic
reproduction number and evaluate the results obtained by th next-generation matrix.

In this paper, we derived basic reproduction number R0 for SEIRS, SEIR, SIRS, SIR, SIS models
on regular lattice space using the next-generation matrix approach with pair approximation. We cannot
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find an appropriate quantity or variable to compare these results with Monte Carlo simulation except
SIR model and then, we leave it as a future problem to estimate a basic reproduction number by Monte
Carlo simulation for other basic epidemic models.

Here, we consider the basic reproduction number R0 for fundamental epidemic models by using
next-generation matrix only on a regular lattice. However, realistic epidemics may usually occur on
heterogeneous networks, then we will study the effects of these spatial structures on R0 by next-
generation matrix approach in the future.
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