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Abstract: In this paper, we formulate two within-host infection models to simulate dynamics of the
drug sensitive and drug resistant malaria parasites, where the first model solely considers the within-
host competition between these two strains, and the second model further considers the immune re-
sponse. Detailed theoretical analysis of the second model are made, including the existence, stability
and bifurcation of the equilibrium, which have also been verified by numerical simulations. Both
theoretical and numerical results show that competition or chronic control of drug sensitive parasites
could inhibit the evolution of drug resistant ones to some extent. However, if the immune response is
considered, periodic solution could be observed, and they will persist for all relatively small treatment
rate. This may lead to the recurrence of resistance for the chronic control strategy, even though it could
delay the resistance emergence. In addition, global sensitivity analysis is implemented to provide the
information on the significance of model parameters on the state variables.
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1. Introduction

According to the World Malaria Report 2017 [1], an estimated 216 million cases of malaria occurred
worldwide, and an estimated 445,000 deaths resulted from malaria globally. Reducing mortality and
morbidity rates is a great challenge in malaria control. Currently, the principle tools for malaria erad-
ication are antimalarial drugs and their combinations. Chloroquine and pyrimethamine, the two key
roles of antimalarial drugs, have become less effective with monotherapy treatment during the last few
decades in many countries. Artemisinin, an alternative antimalarial drug, shows a high eliminate rate
of malaria parasites, based on its strong ability to kill almost all of the asexual stages of parasite devel-
opment in the blood. However, drug resistance is still inescapable. Therefore, it is critical to balance
the relationship between the drug use and the evolution of resistance effectively, thereby extending the
useful lifespan of antimalarial drugs.

The effective lifespan of antimalarial drugs relies not only on the probability of the emergence
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of drug resistance from the very beginning, but also on the spread rate of drug resistant parasites
in the population [2]. High-dose of antimalarial chemotherapy, which aims at cleaning the whole
sensitive parasites as soon as possible, is a clearly feasible regimen [3]. However, it may be a risky
strategy once some resistant parasites survive, because the antimalarial drugs could help drug resistant
parasites to remove drug sensitive competitors [4]. This may result in competitive release of drug
resistant parasites [5, 6]. Competition between drug sensitive and drug resistant parasites, if it occurs,
would be a pivotal factor affecting the spread of drug resistance. The reason is that the fitness cost
of resistance in untreated hosts and benefits of resistance in treated hosts increase significantly by
competitive interaction [7, 8]. Low-dose of antimalarial chemotherapy, allowing several drug sensitive
parasites alive to compete with resistant ones for suppressing the rise of them, may be a viable treatment
to better manage the drug resistance. The hardest part of the treatment is to find a critical point that
could keep a balance between felicitously alleviating symptoms and suppressing resistant parasites [3].

Additionally, it is worthwhile to focus on the host immunity that contributes to the process of par-
asites clearance and resistance management [9]. Immune response may work on narrowing down the
mutant-selection window and cleaning resistant parasites [10]. As a vital part of immunity, antibodies
can target the sporozoite stage, decrease the infection rate and parasite proliferation rate as well as the
number of blood-stage parasites [9]. In the absence of the immune response, the selection of resis-
tant mutants may increase to a higher level [11]. Yet, a quantitative understanding which treats host
immunity as a player in optimal treatment of resistant infections remains under-developed [12].

Mathematical models often show their convenience and flexibility as a way to characterize interac-
tions between different state variables. In [13], Mackinnon et al. presented an epidemiological model
to explore the drug resistance in malaria sexual cycle(i.e. from one host to the next) by tracking the
relative size of host population infected with resistant parasites. The model not only incorporated
two types of parasites (drug sensitive and drug resistant), but also considered the effect of drug treat-
ment.The influence of treatment on drug resistance was further analyzed in [14]. Moreover, in order to
explore whether the competitive release could contribute to the spread of resistance, Hansen et al. [15]
presented a general, between-host epidemiological model that explicitly took into account the effect
of coinfection and competitive release. For the sake of studying the effect of immunity, Chiyaka et al.
[16] considered two intra-host models of malaria: with and without immune response, and extended
the two models incorporating the antimalarial drug treatment to analyze the relationship between the
drug efficacy level and infection elimination. And Li et al. [17] studied the blood-stage dynamics
of malaria in an infected host by considering the immune effector. Plenty of theoretical analysis and
numerical simulations were made to reveal how immune cells interacted with infected red blood cells
and merozoites. In addition, Bushman et al. [18] modeled immune responses by developing a nested
individual-based model consisted of a population of human hosts. They concluded that within-host
competition was a key factor in shaping the evolution of drug resistance in P. falciparum.

In this paper, we develop mathematical models to understand the evolution of drug resistance within
an infected host by considering competition (which is between drug sensitive parasites and drug re-
sistant parasites), drug treatment, and immune response. In order to explicit the effect of immunity,
we construct two models with and without considering the immune response, and make a detailed
theoretical analysis of the two systems, including the existence of equilibrium and their stability as
well as Hopf bifurcation for the system with immunity. Later, these results are verified by numerical
simulations, indicating that competition could inhibit the evolution of drug resistant parasites to some
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extent. Therefore, appropriate treatment, which allows some sensitive parasites to remain to suppress
resistant ones, would delay the emergence of resistance. If the aggressive drug treatment is adopted,
a completely opposite result that the competitive release of drug resistant parasites is obtained. These
results are in line with the experimental outcomes from [8]. However, when the immune response is
considered, periodic solution, caused by Hopf bifurcation, are observed for relatively small treatment
rates. Moreover, numerical simulations indicate that the direction of Hopf bifurcation is backward and
the Hopf branch can be extended for all the parameter values less than the critical bifurcation value.
This implies that the recurrence of resistance may happen for the chronic control strategy, even though
it could delay the spread of resistance. Hence, a reasonable and appropriate level of the adjustment of
drug dose is of great importance in practice. Finally, sensitivity analysis is performed to identify the
relative significant parameters on outcome variables, which can provide a reference to make an optimal
policy on resistance management and disease control.

The paper is organized as follows. Two mathematical models are formulated and analyzed in section
2. In particular, we perform detailed analysis for the system with immunity, finding out that Hopf
bifurcation could occur under appropriate conditions. Theoretical results are numerically verified in
section 3. Other than this, global sensitivity analysis, the global extension of Hopf bifurcation branch
are also carried out. The main results of this paper and the potential application are discussed in section
4. In section 5, we list some long but tedious formulas for the coefficients that are used in the stability
analysis.

2. Model formulation

We construct two within-host dynamical models of malaria parasite infection. The first model aims
to study issues related to the evolution of drug resistance in the absence of immunity. The second
model explores the effect of the immune response on the spread of drug resistance completely based
on the first model. It is normally supposed that the parasites population consists of diversiform of
strains, which are classified as sensitive and resistant from the phenotype. An individual host could
have different types of infections, for instance, a single strain is comprised of all the same types of
parasites, hence, infection with one identical type is regarded as a single strain infection, while two
identical types are regarded as mixed strain infection.

2.1. Within-host model in the absence of immune response

The ODEs system is employed to describe the dynamics of within-host infection, including three
cell populations: uninfected red blood cells, S (t); drug sensitive malaria parasites, Is(t); drug resistant
malaria parasites, Ir(t). The ODEs for the within-host model is as follows:

S ′(t) = Λ − β1S Is − β2S Ir − d1S ,

I′s(t) = αβ1S Is + pαβ2S Ir − γ1IsIr − (d2 + µ)Is,

I′r(t) = (1 − p)αβ2S Ir − γ2IsIr − d3Ir,

(2.1)

The model (2.1) assumes that new RBCs have a production rate is Λ with a natural life expectancy
of 1/d1 days. The uninfected RBCs become infected by drug sensitive parasites and drug resistant
parasites with rates of β1 and β2 respectively. Merozoites released from the liver cells invade RBCs to
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intake nutrients for fissure reproduction, eventually growing up to a mature schizont to burst RBCs and
releasing a number of merozoties by a single infected red blood cell. The burst size is measured by α.
Unlike the bacteria, the parasite is genetically unstable from one generation to the next so that a red
blood cell infected by resistant stain may produce offspring which are drug sensitive [6]. The parameter
p is the proportion of drug sensitive parasites released from the red blood cell infected by resistant
parasites. Since resources and ecology space are limited within a host, hence, strains in a mixed
infection have to compete with each other. Our model also depicts the influence of competition by
using γ1Is(t)Is(t) and γ1Is(t)Is(t), which is convenient for us to explore how the competition influences
the evolution of drug resistance. The drug resistant parasites and sensitive parasites die at a rate of
d2 and d3. When malaria is treated by antimalarial drugs, the intensity of antimalarial drug use is
measured by µ. Parameters and their biological interpretations are given in Table 1. Moreover, it is
worthwhile to note that most within-host dynamical models take infected red blood cells into account
[17, 19], and the dynamic behavior of the within-host system can be described in more detail in this
way. However, our paper mainly focuses on the interaction between the drug resistant parasites and
drug sensitive parasites, hence for the simplification, the infected red blood cells are not involved in
our model.

Table 1. Parameters in model.

Para Definition Estimate value Ref

α number of merozoites that an infected RBC can produce 30 /cell [20]

β1 infection rate of drug sensitive malaria parasites 9.2 × 10−10 µl/cell/day [20]

β2 infection rate of drug resistant malaria parasites 9.52 × 10−9 µl/cell/day [20]

γ1 Competitive coefficient varies

γ2 Competitive coefficient varies

Λ production rate of RBC 4.15 × 104 cells/µl/day [17]

d1 decay rate of RBC 8.33 × 10−3/day [21]

d2 decay rate of drug sensitive malaria parasites 0.15/day [21]

d3 decay rate of drug resistant malaria parasites 0.17/day [21]

µ the level of drug treatment varies

p proportion of drug sensitive parasites released 0.42 estimated

from an infected RBC by drug-resistance parasites

b1 removal rate of drug sensitive parasites by immune system 5 × 10−9 µl/cell/day [17]

b2 removal rate of drug resistant parasites by immune system 5 × 10−9 µl/cell/day [17]

c1 proliferation rate of immune cells by drug sensitive parasites 4.5 × 10−5 µl/cell/day [17]

c2 proliferation rate of immune cells by drug resistant parasites 5 × 10−6 µl/cell/day [17]

θ 1/θ half saturation constant for drug sensitive parasites 10−4 µl/cell [17]

δ 1/δ half saturation constant for drug sensitive parasites 10−4 µl/cell [17]

d4 decay rate of immune cells 0.01/day [21]
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To determine the interior equilibrium P∗ = (S ∗, I∗s , I
∗
r ) of system (2.1), we set the right hand side of

(2.1) be zero. It then follows from the last two equation of (2.1) that

I∗s =
(1 − p)αβ2S ∗ − d3

γ2
(2.2)

and
I∗r =

(αβ1S ∗ − d2 − µ)[(1 − p)αβ2S ∗ − d3]
γ1[(1 − p)αβ2S ∗ − d3] − pαβ2γ2S ∗

. (2.3)

Substituting I∗r and I∗s into the first equation of (2.1), we get that S ∗ satisfies

f (S ∗) := k1S ∗3 + k2S ∗2 + k3S ∗ + k4 = 0, (2.4)

where
k1 = − α2β1β

2
2(1 − p)2(γ1 + γ2),

k2 =αβ2(1 − p)[2β1γ1d3 + β1γ2d3 + β2γ2(d2 + µ)] − αβ2γ2d1[γ1(1 − p) − pγ2],
k3 =Λαβ2γ2[γ1(1 − p) − pγ2] − β1γ1d2

3 − β2γ2d3(d2 + µ) + γ1γ2d1d3,

k4 = − Λγ1γ2d3.

2.2. Within-host model in the presence of immune response

Host immunity against malaria parasite is complicated and stage-specific. Many interdependent
players, such as different cell types and cytokines, participate at varying degrees [10]. For the sake
of simplicity, pathogen-immune interactions are typically treated as predator-prey interactions, which
has been studied in many literatures [22, 23]. The two types of parasites played the prey role against a
shared predator species (immune cells). Then the dynamics of the host immunity can be described as
follows:

S ′(t) = Λ − β1S Is − β2S Ir − d1S ,

I′s(t) = αβ1S Is + pαβ2S Ir − γ1IsIr − (d2 + µ)Is −
b1IsE
1 + θIs

,

I′r(t) = (1 − p)αβ2S Ir − γ2IsIr − d3Ir −
b2IrE
1 + δIr

,

E′(t) =
c1IsE

1 + θIs
+

c2IrE
1 + δIr

− d4E,

(2.5)

From the above dynamical model, the function of b1IsE
1+θIs

and b2IrE
1+δIr

represent the elimination of drug
sensitive parasites Is and drug resistant parasites Ir by immune cells E respectively, where b1 and b2 are
the removal rate of drug sensitive parasites and resistant ones, 1/θ and 1/δ are saturation constants that
simulate immune cells to grow at half their maximum rate [17]. We assume that the net multiplication
rate of immune cells stimulated by the drug sensitive parasites and sensitive ones are c1IsE

1+θIs
and c2IrE

1+δIr
,

where k1 and k2 are the multiplication rate of lymphocytes due to the interactions between immune cells
and drug sensitive parasites and drug resistant parasites respectively. The immune cells have a death
rate of d4. In addition, the meaning of other terms in this model can refer to the Eq (2.1). Parameters and
their biological interpretations are given in Table 1. In this case, to compute the specific expression of
the interior equilibrium is extremely difficult, hence we mainly utilize the numerical method to analyze
it.
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2.3. Dynamical behavior of the system

In order to observe the dynamical behavior of system (2.5), we first study the existence of equilib-
rium of system (2.5) in R4

+, where R4
+ = {(S , Is, Ir, E) : S ≥ 0, Is ≥ 0, Ir ≥ 0, E ≥ 0}. Note that the

equilibrium of system (2.5) must satisfy the following equations.

Λ − β1S Is − β2S Ir − d1S = 0,

αβ1S Is + pαβ2S Ir − γ1IsIr − (d2 + µ)Is −
b1IsE
1 + θIs

= 0,

(1 − p)αβ2S Ir − γ2IsIr − d3Ir −
b2IrE
1 + δIr

= 0,

c1IsE
1 + θIs

+
c2IrE

1 + δIr
− d4E = 0,

(2.6)

Following the references[24] and [25], we obtain the basic reproduction number of our system, which
is

R0 = ρ(FV−1) = max
{

Λαβ1

d1(d2 + µ)
,
Λαβ2(1 − p)

d1d3

}
:= max{R1,R2}.

Then we can have the following Lemma.

Lemma 2.1. System (2.5) has a unique non-negative equilibrium which is the malaria-free equilibrium
P0 = (Λ/d1, 0, 0, 0), if R0 ≤ 1 and at least two equilibria if R0 > 1. More precisely,

(A) system (2.5) has two equilibria: P0 = (Λ/d1, 0, 0, 0) and P1 = (S 1, Is1 , 0, 0) if R1 > 1, where
S 1 = Λ

d1R1
, Is1 =

(R1−1)d1
β1

;
(B) system (2.5) has three equilibria: P0 = (Λ/d1, 0, 0, 0), P1 = (S 1, Is1 , 0, 0) and P3 = (S 3, Is3 , 0, E3)

if R1 > max {L, 1}, where L =
β1
d1

(c1 − d4θ) + d4, S 3 = Λ
β1(c1−d4θ)+d1d4

, Is3 = c1−d4θ
d4

, E3 = 1
b1

(αβ1S 3 −

(d2 + µ))(1 + θIs3);
(C) system (2.5) has four equilibria: P0 = (Λ/d1, 0, 0, 0), P1 = (S 1, Is1 , 0, 0), P2 = (S 2, Is2 , Ir2 , 0) and

P3 = (S 3, Is3 , 0, E3) if R1 > max {L, 1}, R2 > 1 and k1S 2
3 + k2S 2

2 + k3S 2 + k4 = 0 has a positive
solution S 2 with

(H1) d3
(1−p)αβ2

< S 2 < min
{

d2+µ

αβ1
, γ1d3
αβ2(γ1(1−p)−γ2 p)

}
; or

(H2) max
{

d2+µ

αβ1
, d3

(1−p)αβ2

}
< S 2 <

γ1d3
αβ2(γ1(1−p)−γ2 p)

where Is2 =
(1−p)αβ2S 2−d3

γ2
, Ir2 =

(αβ1S 2−d2−µ)((1−p)αβ2S 2−d3)
γ1((1−p)αβ2S 2−d3)−pαβ2γ2S 2

;
(D) system (2.5) has five equilibria: P0 = (Λ/d1, 0, 0, 0), P1 = (S 1, Is1 , 0, 0), P2 = (S 2, Is2 , Ir2 , 0), P3 =

(S 3, Is3 , 0, E3) and P4 = (S 4, Is4 , Ir4 , E4), if R1 > max {L, 1}, R2 > 1 and k1S 2
3+k2S 2

2+k3S 2+k4 = 0
has a positive solution S 2 satisfying (H1) or (H2), moreover, l1Ir4

5+l2Ir4
4+l3Ir4

3+l4Ir4
2+l5Ir4 +l6 =

0 has a positive solution Ir4 satisfying

(H3) c2 − d4δ > 0, ∆ < 0 and S 4 >
γ2Ir4 +d3

(1−p)αβ2
; or

(H4) c2 − d4δ > 0, ∆ ≥ 0, Ir4(1,2) =
−(β2e2−β1e3+d1)±

√
∆

2β2
, and without loss of generality, let Ir4(1) > Ir4(2) ,

if Ir4 > Ir4(1) or Ir4 < Ir4(2) , and S 4 >
γ2Ir4 +d3

(1−p)αβ2
;
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where

S 4 =
Λ

β1Is4 + β2Ir4 + d1
, Is4 =

e1 − e3Ir4

e2 + Ir4

, E4 =
1
b2

((1 − p)αβ2S 4 − γ2Is4 − d3)(1 + δIr4),

e1 =
d4

c1δ + c2θ − d4δθ
, e2 =

c1 − d4θ

c1δ + c2θ − d4δθ
, e3 =

c2 − d4δ

c1δ + c2θ − d4δθ
,

∆ = (β2e2 − β1e3 + d1)2 − 4β2(β1e1 + d1e2),

and the expressions of l1 to l6 are shown in (2.20).

Proof. The existence of P0 can be obtained directly from (2.6) by setting Is = Ir = E = 0, the existence
of P1 can be obtained from (2.6) by setting Ir = E = 0, and the existence of P3 can be obtained from
(2.6) by setting Ir = 0. Then we would seek conditions for the existence of P2 and P4 of (2.6). For the
existence of P2, we have P2 = (S 2, Is2 , Ir2 , 0) as setting E2 = 0. The following formulations of Is2 and
Ir2 are obtained from (2.6), where

Is2 =
(1 − p)αβ2S 2 − d3

γ2
, (2.7)

Ir2 =
(αβ1S 2 − d2 − µ)((1 − p)αβ2S 2 − d3)
γ1((1 − p)αβ2S 2 − d3) − pαβ2γ2S 2

, (2.8)

It is clear that Is2 > 0 and Ir2 > 0 if the following conditions hold:

R1 > max
{
β1

d1
(c1 − d4θ) + d4, 1

}
,R2 > 1, S 2 > 0,

(1 − p)αβ2S 2 − d3 > 0,
αβ1S 2 − d2 − µ > 0,
γ1((1 − p)αβ2S 2 − d3) − pαβ2γ2S 2 > 0.

(2.9)

From (2.9), we have

d3

(1 − p)αβ2
< S 2 < min

{
d2 + µ

αβ1
,

γ1d3

αβ2(γ1(1 − p) − γ2 p)

}
or

max
{

d2 + µ

αβ1
,

d3

(1 − p)αβ2

}
< S 2 <

γ1d3

αβ2(γ1(1 − p) − γ2 p)
,

(2.10)

Now, we discuss the existence of S 2. Substituting (2.7) and (2.8) into the first equation of (2.6), we
obtain that

k1S 2
3 + k2S 2

2 + k3S 2 + k4 = 0, (2.11)

where

k1 = − α2β1β
2
2(1 − p)2(γ1 + γ2) < 0,

k2 =αβ2(1 − p)[2β1γ1d3 + β1γ2d3 + β2γ2(d2 + µ)] − αβ2γ2d1[γ1(1 − p) − pγ2],
k3 =Λαβ2γ2[γ1(1 − p) − pγ2] − β1γ1d2

3 − β2γ2d3(d2 + µ) + γ1γ2d1d3,

k4 = − Λγ1γ2d3 < 0.
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To sum up, if R1 > max {L, 1}, R2 > 1 and (2.11) has a positive solution S 2 with condition (2.9),
then P2 = (S 2, Is2 , Ir2 , 0) is the equilibrium of (2.6), which implies statement (C) holding. Next, we
discuss the existence of the positive equilibrium P4 = (S 4, Is4 , Ir4 , E4) of system (2.5). Suppose that
(S 4, Is4 , Ir4 , E4) is a positive solution of (2.6). From (2.6), we have

S 4 =
Λ

β1Is4 + β2Ir4 + d1
=

Λ(e2 + Ir4)
β2I2

r4
+ (β2e2 + d1 − β1e3)Ir4 + β1e1 + d1e2

,

Is4 =
e1 − e3Ir4

e2 + Ir4

,

E4 =
1
b2

((1 − p)αβ2S 4 − γ2Is4 − d3)(1 + δIr4),

(2.12)

It is clear that S 4 > 0, Is4 > 0 and E4 > 0 if the following conditions hold:

Ir4 > 0, e1 − e3Ir4 > 0, (2.13)

(1 − p)αβ2S 4 − γ2Is4 − d3 > 0, (2.14)

β2I2
r4

+ (β2e2 + d1 − β1e3)Ir4 + β1e1 + d1e2 > 0. (2.15)

From (2.13), we obtain that

0 < Ir4 <
e1

e3
=

d4

c2 − d4δ
, (2.16)

and hence, from (2.16), we infer that
c2 − d4δ > 0. (2.17)

Based from (2.14), we obtain that

S 4 >
γ2Ir4 + d3

(1 − p)αβ2
. (2.18)

The (2.15) can be held in the following two cases, we first let

F(Ir4) = β2I2
r4

+ (β2e2 + d1 − β1e3)Ir4 + β1e1 + d1e2.

Then we analyze the roots of F(Ir4) = 0, set ∆ = (β2e2 − β1e3 + d1)2 − 4β2(β1e1 + d1e2),

(I) Note that F(Ir4) = 0 has two real roots Ir4(1,2) if ∆ > 0, where

Ir4(1,2) =
−(β2e2 − β1e3 + d1) ±

√
∆

2β2
,

when β2e2 − β1e3 + d1 > 0, the two roots of F(Ir4) = 0 are negative, then P4 exists if Ir4 > 0 and
both (2.17) and (2.18) hold. When β2e2 − β1e3 + d1 < 0, the two roots of F(Ir4) = 0 are positive,
we assume that Ir4(1) > Ir4(2) , then P4 exists if Ir4 > Ir4(1) or Ir4 < Ir4(1) and both (2.17) and (2.18)
hold.

(II) Note that F(Ir4) = 0 has no roots if ∆ < 0, then P4 exists if both (2.17) and (2.18) hold.
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Substituting (2.12) into the third equation of (2.6), we have the following equation

l1Ir4
5 + l2Ir4

4 + l3Ir4
3 + l4Ir4

2 + l5Ir4 + l6 = 0, (2.19)

where

l1 = −

(
b1β2δ(d3 + γ2) + b2β2γ1θ

)
(c2 − d4δ)2

(c1δ + c2θ − d4δθ)2 ,

l2 =

(
αb1β2δΛ(p − 1) − αb2β2Λpθ

)
(c2 − d4δ)

(c1δ + c2θ − d4δθ)
+

(
b1β1δ(d3 + γ2) + b2β1γ1θ

)
(c2 − d4δ)3

(c1δ + c2θ − d4δθ)3

−
(c2 − d4δ)2

(c1δ + c2θ − d4δθ)2

(
b1β2(d3 + γ2) + b2β1γ1 + b2θ(d1γ1 + β2(d2 + µ)) + b1d1δ(d3 + γ2)

)
−

(
b1β2δ(d3 + γ2) + b2β2γ1θ

) ( (c2 − d4δ)2(c1 − d4θ)
(c1δ + c2θ − d4δθ)3 −

2d4(c2 − d4δ)
(c1δ + c2θ − d4δθ)2

)
+ αb2β2Λp,

l3 =
c2 − d4δ

c1δ + c2θ − d4δθ

(
b2(d1γ1 + β2(d2 + µ) + d1(d2 + µ) − αβ1Λ + β2γ1) + αb1β2Λ(p − 1)

)
−

2d4(c2−d4δ)

(c1δ+c2θ−d4δθ)2
(
b1β2(d3 + γ2) + b2β1γ1 + b2θ(d1γ1 + β2(d2 + µ)) + b1d1δ(d3 + γ2)

)
−

(
αb1β2δΛ(p − 1) − d2αb2β2Λpθ

) ( d4

c1δ
+ c2θ − d4δθ −

2(c2 − d4δ)(c1 − d4θ)
(c1δ + c2θ − d4δθ)2

)
−

(c2 − d4δ)2

(c1δ + c2θ − d4δθ)2

(
b2θ(d1(d2 + µ) − αβ1Λ) + b1d1(d3 + γ2) + b2β1(d2 + µ)

)
−

(
b1β2δ(d3 + γ2) + b2β2γ1θ

) ( d2
4

c1δ
+ c2θ − d4δθ

)2

−
2d4(c2 − d4δ)(c1 − d4θ)

(c1δ + c2θ − d4δθ)3


+

(c2−d4δ)3

(c1δ + c2θ − d4δθ)3

(
b1β1(d3+γ2)−b2β1θ(d2 + µ) − 3d4(b1β1δ(d3 + γ2) + b2β1γ1θ)

)
+

(c1 − d4θ)
(c1δ + c2θ − d4δθ)

(
3αb2β2Λp − (c2 − d4δ)2

)
,

l4 =
(c2 − d4δ)(c1 − d4θ)2

(c1δ + c2θ − d4δθ)3 −
2d4(c1 − d4θ)

(c1δ + c2θ − d4δθ)2
(
αb1β2δΛ(p − 1) − αb2β2Λpθ

)
−

(c2 − d4δ)2(c1 − d4θ)
(c1δ + c2θ − d4δθ)3 −

2d4(c2 − d4δ)
(c1δ + c2θ − d4δθ)2)(b2θ(d1(d2 + µ)

− αβ1Λ + b1d1(d3 + γ2)

+ b2β1(d2 + µ) −
d4

(c1δ + c2θ − d4δθ)
−

2(c2 − d4δ)(c1 − d4θ)
(c1δ + c2θ − d4δθ)2b2(d1γ1 + β2(d2 + µ))

+ b2

(
d1(d2 + µ) − αβ1Λ

)
+ b2β2γ1 + αb1β2Λ(p − 1) −

d2
4

(c1δ + c2θ − d4δθ)2

−
2d4(c2 − d4δ)(c1 − d4θ)

(c1δ + c2θ − d4δθ)3b1β2(d3 + γ2)
+ b2β1γ1 + b2θ

(
d1γ1 + β2(d2 + µ)

)
+ b1d1δ(d3 + γ2)
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−
3d4

(
b1β1(d3 + γ2)−b2β1θ(d2 + µ)

)
(c2 − d4δ)2

(c1δ + c2θ − d4δθ)3 +
3d2

4

(
b1β1δ(d3 + γ2) + b2β1γ1θ

)
(c2−d4δ)

(c1δ + c2θ − d4δθ)3

−
d2

4

(
b1β2δ(d3 + γ2) + b2β2γ1θ

)
(c1 − d4θ)

(c1δ + c2θ − d4δθ)3 +
3αb2β2Λp(c1 − d4θ)2

(c1δ + c2θ − d4δθ)2 ,

l5 =
(c2 − d4δ)(c1 − d4θ)2

(c1δ + c2θ − d4δθ)3 −
2d4(c1 − d4θ)

(c1δ + c2θ − d4δθ)2b2

(
d1γ1 + β2(d2 + µ)

) + b2

(
d1(d2 + µ) − αβ1Λ

)
+ b2β2γ1 + αb1β2Λ(p − 1)−

d2
4

(c1δ + c2θ−d4δθ)2 −
2d4(c2 − d4δ)(c1 − d4θ)

(c1δ + c2θ−d4δθ)3b2θ
(
d1(d2 + µ) − αβ1Λ

)
+ b1d1(d3+γ2)+b2β1(d2 + µ)−

d3
4

(
b1β1δ(d3 + γ2) + b2β1γ1θ

)
(c1δ + c2θ − d4δθ)3 −

d4αb1β2δΛ(p−1)(c1 − d4θ)2

(c1δ + c2θ − d4δθ)3

+
d4αb2β2Λpθ(c1−d4θ)2

(c1δ+c2θ−d4δθ)3 +
3d2

4

(
b1β1(d3+γ2)−b2β1θ(d2+µ)

)
(c2−d4δ)

(c1δ+c2θ − d4δθ)3 +
αb2β2Λp(c1 − d4θ)3

(c1δ+c2θ−d4δθ)3

−
d2

4(c1 − d4θ)
(c1δ + c2θ − d4δθ)3

(
b1β2(d3 + γ2) + b2β1γ1 + b2θ(d1γ1 + β2(d2 + µ)) + b1d1δ(d3 + γ2)

)
,

l6 = −
d3

4

(
b1β1(d3 + γ2) − b2β1θ(d2 + µ)

)
(c1δ + c2θ − d4δθ)3 −

d2
4(c1 − d4θ)b2θ

(c1δ + c2θ − d4δθ)3

(
d1(d2 + µ) − αβ1Λ

)
−

d4(c1−d4θ)2

(c1δ + c2θ − d4δθ)3

(
b2(d1γ1+β2(d2+µ))+b2(d1(d2+µ)−αβ1Λ) + b2β2γ1+αb1β2Λ(p−1)

)
−

d2
4(c1 − d4θ)

(c1δ + c2θ − d4δθ)3

(
b1d1(d3+γ2)+b2β1(d2+µ)

)
.

(2.20)
Therefore, according to the above analysis and inference, system (2.6) have a positive solution, which
implies statement (D) holds. This completes the proof. �

Then we begin to analyze the stability of these equilibria of system (2.5). Computing the Jacobian
matrix of system (2.5) at point P = (S , Is, Ir, E), we have

J(P) =


−β1Is − β2Ir − d1 −β1S −β2S 0
αβ1Is + pαβ2Ir A1 pαβ2S − γ1Is −

b1Is
1+θIs

(1 − p)αβ2Ir −γ2Ir (1 − p)αβ2S − γ2Is − d3 −
b2E

(1+δIr)2 −
b2Ir

1+θIr

0 c1E
(1+θIs)2

c2E
(1+δIr)2

c1Is
1+θIs

+ c2Ir
1+δIr
− d4

 ,
where A1 = αβ1S − γ1Ir − d2 − µ −

b1E
(1+θIs)2 .

2.3.1. Local stability of the malaria-free equilibrium P0

At the malaria-free equilibrium P0 = (Λ/d1, 0, 0, 0), the Jacobian matrix is

J(P0) =


−d1 −β1

Λ
d1

−β2
Λ
d1

0
0 αβ1

Λ
d1
− d2 − µ pαβ2

Λ
d1

0
0 0 (1 − p)αβ2

Λ
d1

0
0 0 0 −d4

 ,
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and the characteristic equation is

(Λ + d1)
(
Λ −

(
αβ1

Λ

d1
− d2 − µ

)) (
Λ −

(
(1 − p)αβ2

Λ

d1
− d3

))
(Λ + d4) = 0. (2.21)

According to (2.21), all eigenvalues could be negative if R0 < 1 , and one of the eigenvalues is positive
if R0 > 1. Then we can get the following lemma.

Lemma 2.2. The malaria-free equilibrium P0 of system (2.5) is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

2.3.2. Local stability of the malaria infection equilibrium P1

If R1 > 1, the system (2.5) has a malaria infection equilibrium P1 = (S 1, Is1 , 0, 0) with

S 1 =
Λ

d1R1
, Is1 =

(R1 − 1)d1

β1
.

The Jacobian matrix at P1 is

J(P1) =


−β1Is1 − d1 −β1S 1 −β2S 1 0
αβ1Is1 αβ1S 1 − d2 − µ pαβ2S 1 − γ1Is1 −

b1Is1
1+θIs1

0 0 (1 − p)αβ2S 1 − γ2Is1 − d3 0
0 0 0 c1Is1

1+θIs1
− d4

 ,
and the characteristic equation is(

λ −

(
c1Is1

1 + θIs1

− d4

)) (
λ −

(
(1 − p)αβ2S 1 − γ2Is1 − d3

))(
λ2 + m1λ + m2

)
= 0, (2.22)

where m1 = β1Is1 + d1 − αβ1S 1 + d2 + µ,m2 = αβ2
1S 1Is1 − (β1Is1 + d1)(αβ1S 1 − (d2 + µ)).

By the Routh-Hurwitz criterion, the roots of (2.22) have negative real parts if and only if

c1Is1

1 + θIs1

− d4 < 0, (1 − p)αβ2S 1 − γ2Is1 − d3 < 0, m1 > 0, m2 > 0. (2.23)

On the basis of above analysis and combining with the Lemma 2.1 and 2.2, we have the following
theorem.

Theorem 2.1. If R1 > 1, then system (2.5) has two equilibria: P0 = (Λ/d1, 0, 0, 0) and P1 =

(S 1, Is1 , 0, 0). Moreover, the malaria-free equilibrium P0 is unstable, and the malaria infection equilib-
rium P1 is locally asymptotically stable if the inequalities in (2.23) hold.

2.3.3. Local stability of the malaria infection equilibrium P2

From lemma 2.1, we know that system (2.5) has four equilibria: P0 = (Λ/d1, 0, 0, 0), P1 =

(S 1, Is1 , 0, 0), P2 = (S 2, Is2 , Ir2 , 0) and P3 = (S 3, Is3 , 0, E3).
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The local stability of P2 is established from the Jacobian matrix at P2, which is given by

J(P2) =


−β1Is2 − β2Ir2 − d1 −β1S 2 −β2S 2 0
αβ1Is2 + pαβ2Ir2 αβ1S 2 − γ1Ir2 − d2 − µ pαβ2S 2 − γ1Is2 −

b1Is2
1+θIs2

(1 − p)αβ2Ir2 −γ2Ir2 (1 − p)αβ2S 2 − γ2Is2 − d3 −
b2Ir2

1+θIr2

0 0 0 c1Is2
1+θIs1

+
c2Ir2

1+δIr1
− d4


,

and the characteristic equation is

λ4 + r1λ
3 + r2λ

2 + r3λ + r4 = 0, (2.24)

where the expressions of r1, r2, r3 and r4 are shown in Appendix due to their complexity.
By using the Routh-Hurwitz criterion, the roots of (2.24) have negative real parts if and only if

r1 > 0, r1r2 − r3 > 0, (r1r2 − r3)r3 − r2
1r4 > 0, (r1r2 − r3)r3r4 − r2

1r2
4 > 0. (2.25)

Hence, we obtain the following theorem based on above analysis and Lemma 2.1 and 2.2.

Theorem 2.2. If R1 > max
{
β1
d1

(c1 − d4θ) + d4, 1
}
, R2 > 1 and k1S 2

3 + k2S 2
2 + k3S 2 + k4 = 0 has

a positive solution S 2 with d3
(1−p)αβ2

< S 2 < min
{

d2+µ

αβ1
, γ1d3
αβ2(γ1(1−p)−γ2 p)

}
or max

{
d2+µ

αβ1
, d3

(1−p)αβ2

}
< S 2 <

γ1d3
αβ2(γ1(1−p)−γ2 p) . Then system (2.5) has four equilibria P0, P1, P2 and P3, where P0 is always unstable,
P1 is locally asymptotically stable if the inequalities in (2.23) hold, P2 is locally asymptotically stable
if the inequalities in (2.25) hold and P3 is locally asymptotically stable if the inequalities in (2.27) hold.

2.3.4. Local stability of the malaria infection equilibrium P3

From lemma 2.1, we know that system (2.5) has three equilibria: P0 = (Λ/d1, 0, 0, 0), P1 =

(S 1, Is1 , 0, 0) and P3 = (S 3, Is3 , 0, E3).
The local stability of P3 is established from the Jacobian matrix at P3, which is given by

J(P3) =


−β1Is3 − d1 −β1S 3 −β2S 3 0
αβ1Is3 αβ1S 3 − d2 − µ −

b1E3
(1+θIs3 )2 pαβ2S 3 − γ1Is3 −

b1Is3
1+θIs3

0 0 (1 − p)αβ2S 3 − γ2Is3 − d3 − b2E3 0
0 c1E3

(1+θIs3 )2 c2E3
c1Is3

1+θIs3
− d4

 .
and the characteristic equation is

λ4 + s1λ
3 + s2λ

2 + s3λ + s4 = 0, (2.26)

where the expressions of s1, s2, s3 and s4 are shown in Appendix.
By employing the Routh-Hurwitz criterion, the roots of (2.26) have negative real parts if and only

if
s1 > 0, s1s2 − s3 > 0, (s1s2 − s3)s3 − s2

1s4 > 0, (s1s2 − s3)s3s4 − s2
1s2

4 > 0. (2.27)

Hence, we obtain the following theorem based on above analysis and Lemma 2.1 and 2.2.

Theorem 2.3. If R1 > max
{
β1
d1

(c1 − d4θ) + d4, 1
}
, then system (2.5) has three equilibria P0, P1 and P3,

where P0 is unstable, P1 is locally asymptotically stable if the inequalities in (2.23) hold, and P3 is
locally asymptotically stable if the inequalities in (2.27) hold.
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2.3.5. Local stability of the malaria infection equilibrium P4

From Lemma 2.1, we know tha system (2.5) has five equilibria: P0 = (Λ/d1, 0, 0, 0), P1 =

(S 1, Is1 , 0, 0), P2 = (S 2, Is2 , Ir2 , 0) and P3 = (S 3, Is3 , 0, E3), P4 = (S 4, Is4 , Ir4 , E4) .
The local stability of P4 is established from the Jacobian matrix at P4, which is given by

J(P4) =


−β1Is4 − β2Ir4 − d1 −β1S 4 −β2S 4 0
αβ1Is4 + pαβ2Ir4 A1 pαβ2S 4 − γ1Is4 −

b1Is4
1+θIs4

(1 − p)αβ2Ir4 −γ2Ir4 (1 − p)αβ2S 4 − γ2Is4 − d3 −
b2E4

(1+δIr4 )2 −
b2Ir4

1+θIr4

0 c1E4
(1+θIs4 )2

c2E4
(1+δIr4 )2

c1Is4
1+θIs4

+
c2Ir4

1+δIr4
− d4


,

where A1 = αβ1S 4 − γ1Ir4 − d2 − µ −
b1E4

(1+θIs4 )2 . The characteristic equation is

λ4 + t1λ
3 + t2λ

2 + t3λ + t4 = 0, (2.28)

where the expressions of t1, t2, t3 and t4 are shown in Appendix.
By employing the Routh-Hurwitz criterion, the roots of (2.26) have negative real parts if and only

if
t1 > 0, t1t2 − t3 > 0, (t1t2 − t3)t3 − t2

1t4 > 0, (t1t2 − t3)t3t4 − t2
1t2

4 > 0. (2.29)

Hence, we obtain the following theorem on the existence and stability of positive equilibrium based on
above analysis and Lemma 2.1 and 2.2.

Theorem 2.4. If R1 > max
{
β1
d1

(c1 − d4θ) + d4, 1
}
, R2 > 1, and k1S 2

3 + k2S 2
2 + k3S 2 + k4 = 0 has a

positive solution S 2 satisfying (H1) or (H2), and l1Ir4
5 + l2Ir4

4 + l3Ir4
3 + l4Ir4

2 + l5Ir4 + l6 = 0 has a
positive solution Ir4 satisfying either (H3) or (H4) or (H5). Then system (2.5) has five equilibria P0,
P1, P2, P3 and P4, where P0 is unstable, P1 is locally asymptotically stable if the inequalities in (2.23)
hold, P2 is locally asymptotically stable if the inequalities in (2.25) hold , P3 is locally asymptotically
stable if the inequalities in (2.27) hold , P4 is locally asymptotically stable if the inequalities in (2.29)
hold.

According to the previous analysis, we know that P4 is an interior positive equilibrium. For this
equilibrium, we are interested in when it becomes unstable and Hopf bifurcation occurs. Following
the analysis of a fourth-order characteristic equation in Ruan and Wolkowicz [26], we need to satisfy
conditions, which make characteristic equation (2.28) having two roots with a negative real part and a
pair of conjugate purely imaginary roots, which are

t1 > 0, t4 > 0, t1t2 − t3 > 0, (t1t2 − t3)t3 − t2
1t4 = 0. (2.30)

Next, we would verify the transversal condition to prove the occurrence of Hopf bifurcation at the
positive equilibrium P4. We choose µ as a bifurcation parameter. Define

ψ(µ) = (t1(µ)t2(µ) − t3(µ))t3(µ) − t2
1(µ)t4(µ). (2.31)

Suppose that there exists a µ∗ > 0 so that t1(µ∗) > 0, t4(µ∗) > 0, t1(µ∗)t2(µ∗) − t3(µ∗) > 0 and ψ(µ∗) = 0.

Then equation (2.28) has four roots, ±ωi, λ1 and λ2, where ω =

√
t3(µ∗)
t1(µ∗) , Re(λ1) < 0 and Re(λ2) < 0.
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When 0 < |µ − µ∗| � 1,we assume that equation (2.28) has four roots, ξ(µ) ± ω(µ)i, λ1(µ) and λ2(µ),
where ξ(µ∗) = 0, ω(µ∗) = ω, λ1(µ∗) = λ1 and λ2(µ∗) = λ2. Then we compute the derivative of ξ(µ) with
respect to µ at µ∗. Note that

(ξ(µ) + iω(µ))4 + t1(µ)(ξ(µ) + iω(µ))3 + t2(µ)(ξ(µ) + iω(µ))2 + t3(µ)(ξ(µ) + iω(µ)) + t4(µ) = 0. (2.32)

We obtain the following result by (2.31)

dξ(µ)
dµ

∣∣∣∣
µ=µ∗

= −
t1(µ∗)

2((t1(µ∗)t2(µ∗) − 2t3(µ∗))2 + t1(µ∗)3t3(µ∗))
dψ(µ)

dµ

∣∣∣∣
µ=µ∗

.

Hence, the transversal condition holds under some conditions. According to the Hopf bifurcation
theorem, we have the following theorem about bifurcation at the positive equilibrium P4.

Theorem 2.5. Assume that system (2.5) has a positive equilibrium at P4. If there exists a µ∗ > 0 so
that t1(µ∗) > 0,t4(µ∗) > 0,t1(µ∗)t2(µ∗) − t3(µ∗) > 0, ψ(µ∗) = 0, and dξ(µ)

dµ

∣∣∣
µ=µ∗
, 0, then Hopf bifurcation

occurs at µ = µ∗, and a periodic solution appears near P4 when µ passes through µ∗.

2.4. Sobol’ sensitivity analysis method

Sobol’ sensitivity analysis method is one of the global sensitivity methods, which is performed over
the entire parameter space, and all parameters could vary simultaneously. The core of this method is
variance decomposition to measure the sensitivity of parameters [27, 28]. Assuming a mathematical
model is described by a function

y = f (x) = f (x1, x2, ..., xn) (2.33)

where x = (x1, x2, ..., xn) represent the input parameters, which defined on a n-dimensional unit cube
Hn = {x|0 ≤ xi ≤ 1, i = 1, 2, ..., n}, and y = f (x) is the model output variable. According to the Sobol’
method, y = f (x) can be decomposed into single model parameters and subitem functions of parameter
interaction:

f (x) = f0 +

n∑
i=1

fi(xi) +

n∑
i=1

n∑
i, j

fi j(xi, x j) + ... + f1,2,...,n(x1, x2, ...., xn) (2.34)

The number of all subitems is 2n, and the subitem function is obtained by calculating the following
multiple integrals:

f0 =

∫ 1

0
f (x)dx

fi(xi) =

∫ 1

0
f (x)

∏
k,i

dxk − f0

fi j(xi, x j) =

∫ 1

0
f (x)

∏
k,i, j

dxk − f0 − fi(xi) − f j(x j)

(2.35)

Similarly, other subitem functions of a high order can be achieved. f0 is a constant, and the integral of
every summand over any of its own variables is zero:∫ 1

0
fi1,...,is(xi1, ..., xis)dxk = 0, 1 ≤ i1 ≤ i2 ≤ ... ≤ is ≤ n, 1 ≤ s ≤ k (2.36)
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The subitem functions in equation (2.35) satisfy equation (2.36), it can be inferred that every subitem
functions in equation (2.34) is orthogonal, that is:∫

Hn
fi1,...,is(xi1 , ..., xis) f j1,..., jl(x j1 , ..., x jl)dx = 0, for (xi1 , ..., xis) , (x j1 , ..., x jl) (2.37)

Based on the above properties, the variance of output variable V(y) can be decomposed as follows:

V(y) =

n∑
i=1

Vi(xi) +

n∑
i=1

n∑
i, j

Vi j(xi, x j) + ... + V1,2,...,n(x1, x2, ...., xn) (2.38)

where Vi1,...,is =
∫ 1

0
f 2
i1,...,is

(xi1 , ..., xis)dxi1 , ..., xis is the partial variance corresponding to the subitem func-
tion of equation (2.34). The Sobol global sensitivity indices are defined by

S i1,i2,....,is =
Vi1,i2,....,is

V(y)
(2.39)

For instance, S i = Vi
V(y) is the first order Sobol’ index, and S i j =

Vi j

V(y) is the second order Sobol’ index.
And the total effect sensitivity index as an extension of the Sobol sensitivity indices, which is defined
as the ratio of the sum of the related sensitivity indices:

S Ti = S i + S i j(i, j) + ... + S 1...i...s (2.40)

Total effect indices have great significance. Parameter xi has no impact on the outcome variable in the
case S Ti = 0 and vice versa, which indicates that the condition S Ti = 0 is necessary and sufficient for
xi to be a noninfluential factor. Hence, the total Sobol’ indices not only characterized the contribution
of the concerned parameters but also their interactions. The calculation of Sobol’ sensitivity indices
involves the computation of multiple integrals, which are very complicated and difficult especially for
the complex nonlinear models. Therefore, the Monte Carlo method is employed to approximate the
multiple integral solutions.

3. Numerical results

The paper illustrates some numerical results on the within-host dynamical models with and without
considering the immune response.

3.1. Within-host model in the absence of immune response

Initially, we take into account the within-host dynamical model without involving the immune re-
sponse. In order to examine the influence of competition, we observe the solution of Ir by varying the
competitive coefficients and fixing the remaining parameters as in Table 1 (here we set µ = 0.1, be-
cause it is not given in Table 1). The function of “ode45” provided by MATLAB software is employed
to calculate the solution of Ir, where the time (days) ranges from 0 to 1500. Five different groups of
competitive coefficients are chosen and sorted in ascending order. (First group : γ1 = γ2 = 0.00001,
second group : γ1 = γ2 = 0.0001, third group : γ1 = γ2 = 0.001, fourth group : γ1 = γ2 = 0.01, fifth
group : γ1 = γ2 = 0.1). We illustrate the results in the box-and-whisker plot, and each box-and-whisker
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corresponds to a set of solutions of Ir for a given group of competitive coefficients. Figure 1 displays
that the number of both drug sensitive parasites and drug resistant parasites decreases with the increas-
ing intensity of competition. However, comparing Figure 1(a) with Figure 1(b), it is observed that the
descending rate of the number of sensitive parasites is much faster than resistant ones. Moreover, the
number of drug resistant parasites is roughly one order of magnitude larger than that of sensitive par-
asites. This phenomenon may imply that drug sensitive parasites are more susceptible to competition
than resistant ones with the same competitive coefficients in each circumstance.
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Figure 1. Number of drug sensitive parasites (a) and drug resistant parasites (b) in different
competitive intensity without considering the effect of immune response. Simulations were
run in five cases of competition intensity (First group : γ1 = γ2 = 0.00001, second group
: γ1 = γ2 = 0.0001, third group : γ1 = γ2 = 0.001, fourth group : γ1 = γ2 = 0.01,
fifth group : γ1 = γ2 = 0.1). Box-and-whisker plots show median, interquartile range, and
maximum/minimum.

Now, fix one of the competitive coefficients γ1 and vary another one γ2 to observe the number of
two types of parasites, and the remaining parameters are as in Table 1 (here we set µ = 0.1, because it
is not given in Table 1). Figure 2 (a) and (b) illustrate that the number of resistant parasites constantly
declines with the reduction of competitive ability. Especially, when the competitive ability of resistant
parasites is under sensitive ones, the number of resistant parasites will decline sharply by about five
orders of magnitude. The number of sensitive parasites is precious few comparing with resistant ones
as their competitive ability is lower than resistant ones (Figure 2 (c)). But they would exceed resistant
parasites once they develop a higher competitive ability (Figure 2 (d)). It can be deduced that sensitive
parasites are able to competitively suppress resistant parasites when the sensitive population achieves
a higher competitive ability. Especially, the higher the competitive ability of sensitive parasites are,
the more the competitive suppression on resistant parasites are, and the fewer the number of resistant
population is. Wale et al. demonstrated that a parasite nutrient could mediate competition between
a drug resistant and drug sensitive strain of the malaria parasite. Hence, they tried to intensify the
competitive suppression on drug resistant parasites by reducing the availability of the nutrient in a host
environment, and results show that with resistant parasites struggling to replicate, susceptible parasites
outcompeted them before they can emerge [29]. These experimental findings are consistent with our
numerical results.

The model also reproduces the relationship between drug treatment and the spread of drug resis-
tance. Figure 3 depicts the trend of the number of drug resistant parasites with the ranging treatment
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Figure 2. Number of drug resistant parasites(Ir) (solid lines) and drug sensitive parasites(Is)
(dotted line) in four different levels of competitive coefficient γ2. The competitive coefficient
γ1 = 0.003 is fixed, and γ2 is varying from lower than γ1 ( γ2 = 0.001 and γ2 = 0.002) to
higher than γ1 (γ2 = 0.004 and γ2 = 0.005).

level. We mainly vary the parameter µ (µ = 0, 1, 5) and fix the remaining parameters as in Table 1
(here we set γ1 = γ2 = 0.001, because they are not given in Table 1). High level chemotherapy leads
to a large production of drug resistant parasites. The more aggressive the chemotherapy is, the more
the drug sensitive population will be reduced, which accordingly will promote the competitive release
of resistant parasites, leading them to maintain at a high level ultimately. The results are also in line
with experimental findings of [4, 30]. In particular, it can be discovered that high level chemotherapy
also accelerates the evolution of drug resistance. Both the peak and equilibrium of the number of drug
resistant parasites appear much earlier than low level chemotherapy.
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Figure 3. The impact of antimalarial drug on resistant parasites(Ir) without considering the
immune response, three levels of drug treatment (µ = 0, µ = 1, µ = 5) are examined in this
simulation respectively.
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3.2. Within-host model in the presence of immune response

Now, the role of immune response is added into the mathematical model. Three cases are studied
in our paper, including the single strain infection, mixed strains infection (incorporate the competition)
and mixed strains infection (incorporate the competition and the immune response). They are set to
have same parameters as in Table 1 (here we set γ1 = γ2 = 0.001 and µ = 0.1). Figure 4 (a) plots
that, in single infections with drug resistant parasites, the number of drug resistant parasites stands at a
quite high level. Whereas in mixed strains infection (Figure 4 (b)), the number of resistant populations
drops roughly by two orders of magnitude. The influence of both competition and immune response
on drug resistance is shown in Figure 4 (c). The result reveals that the number of resistant population
downs unceasingly to two orders of magnitude, indicating that the immune response could inhibit the
spread of drug resistance to some extent. This is in accord with the experimental result of Ataide in [9]
that immunity may play an important role in the emergence and transmission potential of artemisinin-
resistant parasites.
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Figure 4. Number of drug resistant parasites in different cases, including single strain in-
fection (a), mixed strains infection(incorporate competition) (b) and mixed strains infection
(incorporate competition and immunity response) (c). Box-and-whisker plots show median,
interquartile range, and maximum/minimum.

The impact of the ratio of initial drug sensitive and resistant parasites is also examined on the
prevalence of drug resistant strains. We take all parameters as in Table 1 (here we set γ1 = γ2 = 0.001
and µ = 0.1). Figure 5 (a) presents the effect of different initial values of drug sensitive parasites on
drug resistant parasites without considering the immune response. As the initial value of drug sensitive
parasites Is(0) = 10, Is(0) = 1000 and Is(0) = 100000, the number of drug resistant parasites peaked
on the 140th, 160th and 220th day, respectively. The case Is(0) = 100000 is the latest among the
three cases. It can be deduced that a large initial number of drug sensitive parasites could delay the
emergence of the peak. This phenomenon may result from the competition between the two parasites,
and drug resistant parasites can be suppressed by sensitive ones when they have a large initial number.

If the effect of the immune response is incorporated, Figure 5 (b) shows that the number of drug
resistant parasites reduces by around 3 to 4 orders of magnitude. As the initial value of drug sensitive
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parasites Is(0) = 10, Is(0) = 1000 and Is(0) = 100000, the number of drug resistant parasites peaked
on the 40th, 50th and 460th day, respectively. Compared with Figure 5 (a), the peak of drug resis-
tant parasites comes about 100 days earlier in the case of Is(0) = 10 and Is(0) = 1000. This may be
explained by immunosuppression. On this account, parasites would be eliminated in large quantities,
especially, only a few parasites could survive when the given initial number of drug sensitive parasites
is relatively small. Hence, the number of two types of parasites may remain the same order of mag-
nitude, thereby leading to the failure of competitive suppression on drug resistant parasites. However,
the peak of drug resistant parasites in the case of Is(0) = 100000 appears around 240 days later than
the same case without considering the immune response. This may be because the initial number of
drug sensitive parasites is much larger, hence immune cells are unable to kill these parasites as fast as
possible, so that there are enough sensitive parasites left to play a role in suppressing resistant ones.
Nevertheless, the values of both the peak and equilibrium of drug resistant parasites remain at low
levels since the total cardinal number of two types of parasites is relatively small, which is reduced by
immune cells. Wale et al. [29] had an analogous experiment to investigate the intensity of competition
between strains of P. chabaudi in the period before they were cleared by the immune system. They
discovered that immunity could be responsible for the clearance and the post-peak control of malaria
infections, which also explained Figure 5 (b) to some extent.
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Figure 5. The effect of initial value of drug sensitive parasites on drug resistant parasites in
different two conditions: (a) in the absence of the immune response, (b) in the presence of
the immune response, where given three levels of the initial value of drug sensitive parasites:
Is(0) = 10, Is(0) = 1000, Is(0) = 100000, and fixed the initial value of drug resistant parasites
Ir(0) = 20 and the initial value of immune cells E(0) = 40000000.

The above analysis has shown that within-host competition and immune mechanisms are able to
inhibit the spread of drug resistance. The following step is measuring how the drug treatment level
influences the number of drug resistant parasites. Figure 6 illustrates the simulation results with three
different levels of antimalarial drug treatment (one of which equals zero, in order to examine the effect
from competition alone ) combined with three different competitive intensities. Equilibrium values of
two parasites gradually fall with the rise of the immunity level in every case. And the number of two
parasites moves in a similar trend, but the sensitive type always goes below the resistant one.

Figure 6 (a)-(c) depict the simulation results with no drug use and different levels of competitive in-
tensity. It is observed that resistant parasites take more time to reach equilibrium with the increasingly
fierce competition. Under the lowest level of competitive intensity (γ1 = γ2 = 0.001) (Figure 6 (a)),
the gap of the number between the two parasites is also the lowest. This may indicate that drug sen-
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sitive parasites can survive more equally with resistant parasites in a loose competitive environment.
The resistant population has not shown its strong aggressiveness yet. However, the gap would be sig-
nificantly widened once the competition is intensified( Figure 6 (b) (c)), indicating that drug resistant
parasites are able to survive in all settings, moreover, the number of drug resistant parasites is larger
in a highly fierce competition setting. In addition, the immune response also plays an important role
in controlling the number of parasites. The aforementioned gap is narrowed due to the immune effect
in each case(Figure 6 (a)-(c)). Especially, in the case of high level competition and low level immune
response (Figure 6 (c)), drug resistant parasites exhibit a tendency of decaying oscillation until they
reach equilibrium eventually. It also spends the longest time among these three cases. In conclusion,
the results demonstrate that in highly immunity settings and competition is light, drug resistant par-
asites are inclined to remain at a low level. But if the competition is strengthened, the death rate of
drug sensitive parasites keeps increasing to leave more ecological space for resistant ones, which may
actually ascend their survival rate.

Figure 6 (d)-(i) present simulation results including drug treatment and competition, which mainly
yield several observations. First of all, with the increase of drug treatment level, accordingly, drug
resistance expands rapidly without exception. This can be observed from Figure 6 (d) (g), Figure 6 (e)
(h), and Figure 6 (f) (i), respectively, which provide a clear comparison between low- and high- drug
dose. This may arise from the competitive release. Aggressive chemotherapy aims to kill sensitive
parasites such that resistant parasites could benefit from this behavior in a resource-limited environ-
ment. Secondly, the number of resistant parasites stands at a low level with light treatment and a low
level of competitive intensity (Figure 6 (d)). Moreover, the spread of drug resistance is again depressed
by enhanced immunity. Thirdly, the case of aggressive drug treatment and a low level of competitive
intensity(Figure 6 (g)) describes the process of oscillation attenuation of drug resistant parasites and
reach the equilibrium ultimately, which is fairly similar to the case with high level of competitive in-
tensity and zero-dose of antimalarial drug(Figure 6 (c)). Immunity effectively diminishes the value of
peak and equilibrium, thereby highlighting its importance. Fourthly, with the ascending level of both
competitive intensity and antimalarial drug dose, the gap between the amount of two parasites is get-
ting wide. It is clear that case Figure 6 (i) (γ1 = γ2 = 0.005, µ = 5) presents the widest gap of all cases,
particular for a relatively low level of the immune response. Lastly, when the competition is relatively
moderate(Figure 6 (e) (h)), the tendency of two parasites varies between the case of high level and low
level of competitive intensity(Figure 6 (d) (f) and Figure 6 (g) (i)).

To summarize, the results of these simulations could boil down to a fact that immune response is a
real threat to resistant parasites. If equal proportions of infections are treated in low- and high-level of
immune response settings, a higher proportion of hosts will be treated in a high-level of immune re-
sponse settings. Similarly, Ataide et al. also studied the effect of both low- and high- level of immunity
on the emergence of drug resistant mutant parasites. Results suggest that low levels of immunity may
facilitate the transmission of resistant parasites, and resistant parasites may be better able to persist
compared with the case of high immunity [9]. Moreover, the number of drug resistant parasites would
be increased by employing antimalarial drug treatment, especially the aggressive regimen, which refers
to the accelerated spread of drug resistance in a host accompanying with the elimination of drug sensi-
tive competitors.

Many studies have suggested that oscillations are frequently observed in the immune system [17,
31]. Figure 6 (c) and Figure 6 (g) exactly describe this phenomenon of “decaying oscillation”[31]. On
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the basis of the above analysis, if the dissipation of energy could be controlled, the regular periodic
oscillation is possible to appear. In the case of Figure 6 (c), when the level of immune response is at
a high level, the curve depicts a tendency of decaying oscillation of the drug resistant parasites, but
there is no analogous phenomenon when the competitive intensity is much lower(Figure 6 (a) and (b)).
Similarly, in terms of the Figure 6 (g), the phenomenon of decaying oscillation shows again when the
competitive intensity is light and the level of immune response is high with aggressive drug treatment.
Nonetheless, decaying oscillation disappears with the increasing competitive intensity (Figure 6 (h)
and (i)).
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Figure 6. Number of drug resistant parasites(Ir) and drug sensitive parasites(Is) in four
different levels of immune response with varying level of antimalarial drug treatment (µ) and
the competitive intensity(γ1, γ2). For all figures, solid lines represent drug resistant parasites,
dotted lines represent drug sensitive parasites.

In order to explore the interior equilibrium P4 of system (2.5), we choose γ1 = γ2 = 0.01,
µ = 0.26408 and take all other parameters as in Table 1. Then, P4 = (4972109.16, 58.46, 1732.77,
16284461.14), which is stable by checking the stability conditions (2.29), see Figure 7. Furthermore,
using the software Matcont (a Matlab package for numerical bifurcation analysis of ODEs), we also
detect that the system (2.5) undergoes a Hopf bifurcation at P4 as µ passes through a critical value
µ = 0.20408. In addition, the transversality condition ξ′(µ∗) , 0 holds, the first Lyapunov coefficient
equals −8.076492 × 10−3, indicating a supercritical bifurcation, see Figure 8. For instance, if we set
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µ = 0.10408, then P4 is unstable and a stable periodic solution can be observed, see Figure 9.
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Figure 7. The phase diagram of interior equilibrium P4=(4972109.16, 58.46, 1732.77,
16284461.14) when parameters γ1 = γ2 = 0.01, µ = 0.26408.

3.3. Sensitivity analysis

The value of sensitivity analysis can be reflected in the natural level of variation in several aspects of
the model, including epidemiological and immunological [19]. Generally, global sensitivity analysis is
rather complicated in dealing with high-dimensional models from the point of methodology. However,
it is still worthwhile to perform for providing further insights on the dynamical infection process of
within-host as well as resistance management.

In this paper, a uniform distribution within 20% of nominal values was used for sampling with a
base sample size of 2,000 simulations. Sobol’ sensitivity analysis was conducted in two cases, with
and without considering the immunity of the within-host dynamical system , respectively. Sobol’
results are shown in Figure 10 and Figure 11. As for the first case (Figure 10), parameter Λ and d1

are significant for uninfected RBCs (S ). It is clear to figure out that parameters α, β1, d2, γ1, γ2 can
be labeled as significant for drug sensitive parasites (Is). Notice that α, p, γ1, γ2, d3 have a significant
influence on drug resistant parasites(Ir).

For another case (Figure 11), the immune effect is added to the dynamical system, therefore, our
interest is to observe the variation of the sensitivity of all parameters after the immune response is
involved. Parameters p, d1,Λ, γ1, γ2 rank the top five in the sensitivity ranking of uninfected RBCs
(S ). It seems that competition has a relatively significant influence on uninfected RBCs (S ) in the
current system. Parameters p, α, β2, c1, d4 can be labeled as significant for drug sensitive parasites (Is),
where the proliferation rate of immunity effectors (c1) plays an important role after incorporating the
immune response. Values of Sobol’ index of parameters p, γ1, γ2, α, b2 are much higher than other
parameters. Similarly, the removal rate of drug resistant parasites by immune system (b2) could affect
Ir more, indicating that parameters related to immunity act actually on state variables, in particular for
Is and Ir. For the immunity effectors (E), parameters p, α, γ2, β2, c2 have a critical influence.
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(a) (b)

(c) (d)
Figure 8. The figure depicts the points of bifurcation for the system parameter µ. The Hopf
bifurcation occur at the point µ = 0.20408, which is labeled as “ H ”. The first Lyapunov
coefficient equals −8.076492 × 10−3, which is referred as a supercritical bifurcation. When
µ crosses the threshold value, the system(2.5) becomes asymptotically stable. Blue areas
represent the periodic solution. And parameter values are specified in the numerical section.
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Figure 9. The phase diagram of periodic solution bifurcated from interior equilibrium P4 =

(4972147.30, 59.02, 1726, 14978311.39) when parameters γ1 = γ2 = 0.01, µ = 0.10408.
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Magnitude of Global Sensitivities: SOBOL Total Effect method
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Figure 10. Sobol sensitivity index of all state variables, including infected RBCs(S ) (blue),
drug sensitive parasites(Is) (red) and drug resistant parasites(Ir) (yellow) in the absence of
immune response.

Magnitude of Global Sensitivities: SOBOL Total Effect method
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Figure 11. Sobol’ sensitivity index of all state variables, including infected RBCs(S ) (blue),
drug sensitive parasites(Is) (red) , drug resistant parasites(Ir) (yellow) and immune cells(E)
(purple) in the presence of immune response.

4. Disscussion and conclusion

Within-host competition is a real major hurdle in the evolution of drug resistance when the immune
response is not considered. Results of the dynamical analysis indicate that, if sensitive parasites achieve
a higher ability of competition than resistant ones, such that resistant parasites will be in a competitive
disadvantage, and sensitive parasites could suppress their competitors. Wale et al. [29] showed that
intensifying competitive interactions between sensitive and resistant parasites by limiting a resource
could retard the evolution of drug resistance. Hence, if it is possible to improve the competitive ability
of sensitive parasites, it will be a good way to manage drug resistance.

As the immune response is considered in the dynamical system, the interactions between malaria
parasites and immune cells can be modeled in analogy to ecological interactions, where two prey
species (drug sensitive and resistant parasites) are mediated by a shared predator species (immune
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cells) [32]. Figure 5 presents the influence of different initial values of drug sensitive parasites on
resistant ones in two cases (with and without immunity). Essentially, it is mainly about the different
ratios between the two parasites. Hence, the infection can be divided into different types according to
the ratio Ir

Is
. If the ratio Ir

Is
is large, the type will be regarded as a host infected with resistant parasites

from the very beginning. In contrast, if the ratio Ir
Is

is small, the type will be regarded as resistant
mutants of parasites produced directly within a host. The infection with a small Ir

Is
exhibits a delay of

drug resistance. This may be due to the competitive inhibition of the replication of resistant parasites by
the numerically predominant sensitive parasites. Another interesting fact is detected when the immune
effect is involved in this process, which resistant parasites can either be suppressed for a much longer
time than before or reach equilibrium rapidly. The inferences are as follows: when the initial value of
Ir is fixed and Is is large enough ( Ir

Is
is small), immune cells are insufficient to completely clear parasites

as fast as possible, hence the remaining sensitive parasites still can competitive suppress resistant ones,
thereby delaying the spread of drug resistance. On the other hand, when Is is much smaller( Ir

Is
is large),

immune cells have the ability to eliminate most parasites rapidly to reach equilibrium accordingly.
Simulations with drug treatment show that high dose antimalarial chemotherapy will actually con-

tribute to the spread of drug resistance in both situations. Motivated by studies of [30, 33], we explore
the influence of immune response in the treatment process. The results show that the reality of the
dynamics of within-host infection is non-linear, even the oscillation occurs in some cases. This mainly
results from the role of the immune response, acting in conjunction to produce diverse outcomes, which
coincide with the analysis in [12]. From both Figure 8 and 6(c), an interesting fact is observed that the
malaria infection exhibits a periodic phenomenon as the drug treatment remains at a lower level and
competition stays at a high level. This may illustrate that light drug treatment is ineffective because
of the fierce competition between the two parasites. But we also find that resistant parasites still can
benefit from the aggressive therapy with a similar tendency of the immunodeficient dynamical system,
which is consistent with experimental results of [4, 30]. Hence, it is very necessary to control the drug
dose at an appropriate level that not only alleviate the symptoms but also manage the spread of drug
resistance effectively [3].

Our models involve a variety of parameters, especially when the immune effect is involved in the
system. In order to identify the importance of these parameters, sensitivity analysis is conducted in two
models. In particular, we mainly focus on the sensitivity of parameters related to competition, immu-
nity and drug treatment. Results imply that competition remains a critical factor in both cases(with and
without immune response) for resistant parasites (Ir), and the immune effect also plays an important
role in the immune system. In addition, the significance of drug treatment to drug sensitive parasites
(Is) and drug resistant parasites (Ir) is lower in both cases (with or without immune response), where
the sensitivity index of Is is much higher than Ir, which is obvious and reasonable, because antimalar-
ial drugs have a direct effect on drug sensitive parasites, but pose indirect impact on drug resistant
parasites, such as competition.

The within-host dynamical model of malaria infection is extended to consider competition and host
immunity. Our goal is mainly to explore the evolution of drug resistance, which is obviously complex
due to involving interacting processes, such as immunity, within-host competition and the patterns of
drug use. Our model also appropriately embodies the effects of these interacting processes on the
spread of resistance to some extent. However, we have to emphasize that this model cannot rule out
the possibility, that intraspecific competition, immune-mediated competition and the fitness costs of
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resistance may have an influence on the evolution of drug resistance. Hence, it is worth continuously
studying these aspects of resistance management.
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Appendix

Coefficients to polynomial Equation (2.24)

r1 =d1 + d2 + d3 + d4 + µ + Ir2β2 + Is2β1 + Ir2γ1 + Ir2γ2 − S 2αβ1 −
Ir2c2

Ir2δ + 1
−

Is2c1

Is2θ + 1
+ S 2αβ2(p − 1),

r2 =
(
d3 + Ir2γ2 + S 2αβ2(p − 1)

)
(d2 + µ + Ir2γ1 − S 2αβ1) −

(d1 + Ir2β2 + Is2β1)Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

+
(
d3 + Ir2γ2 + S 2αβ2(p − 1)

)
(d1 + Ir2β2 + Is2β1)−

(
d3 + Ir2γ2 + S 2αβ2(p − 1)

)
Ir2c2

Ir2δ + 1
−d4+

Is2c1

Is2θ + 1

+ (d1 + Ir2β2 + Is2β1)(d2 + µ + Ir2γ1−S 2αβ1)−
Ir2c2

Ir2δ + 1
−d4 +

Is2c1

(Is2θ + 1)(d2 + µ + Ir2γ1 − S 2αβ1)

− Ir2γ2(Is2γ1 − S 2αβ2 p) + S 2β1

(
Is2αβ1 + Ir2αβ2 p

)
− S 2β2

(
Ir2γ2 + Ir2αβ2(p − 1)

)
,

r3 =
(
d3 + Ir2γ2 + S 2αβ2(p − 1)

)
(d1 + Ir2β2 + Is2β1)(d2 + µ + Ir2γ1 − S 2αβ1)

−
(
d3 + Ir2γ2 + S 2αβ2(p − 1)

) ( Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)
(d2+µ+Ir2γ1−S 2αβ1+d1+Ir2β2+Is2β1)

− (d1 + Ir2β2 + Is2β1)
(

Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)
(d2 + µ + Ir2γ1 − S 2αβ1)

+ S 2β1(Is2γ1 − S 2αβ2 p)
(
Ir2γ2 + Ir2αβ2(p − 1)

)
− Ir2γ2(Is2γ1 − S 2αβ2 p)(d1 + Ir2β2 + Is2β1)

+
(
Ir2γ2(Is2γ1 − S 2αβ2 p) − S 2β1(Is2αβ1 + Ir2αβ2 p)

) ( Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)
+ S 2β2

(
Ir2γ2 + Ir2αβ2(p − 1)

) ( Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1
− d2 − µ − Ir2γ1 + S 2αβ1

)
+ S 2β1(Is2αβ1 + Ir2αβ2 p)

(
d3 + Ir2γ2 + S 2αβ2(p − 1)

)
− Ir2S 2β2γ2(Is2αβ1 + Ir2αβ2 p),

r4 = Ir2γ2(Is2γ1 − S 2αβ2 p)(d1 + Ir2β2 + Is2β1)
(

Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)
−

(
d3+Ir2γ2+S 2αβ2(p − 1)

)
(d1+Ir2β2+Is2β1)

(
Ir2c2

Ir2δ + 1
−d4+

Is2c1

Is2θ + 1

)
(d2+µ+Ir2γ1−S 2αβ1)

+ S 2β2

(
Ir2γ2 + Ir2αβ2(p − 1)

) ( Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)
(d2 + µ + Ir2γ1 − S 2αβ1)

− S 2β1(Is2αβ1 + Ir2αβ2 p)
(
d3 + Ir2γ2 + S 2αβ2(p − 1)

) ( Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)

− S 2β1(Is2γ1 − S 2αβ2 p)
(
Ir2γ2 + Ir2αβ2(p − 1)

) ( Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)
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+ Ir2S 2β2γ2(Is2αβ1 + Ir2αβ2 p)
(

Ir2c2

Ir2δ + 1
− d4 +

Is2c1

Is2θ + 1

)
.

Coefficients to polynomial Equation (2.26)

s1 =d1 + d2 + d3 + d4 + µ + E3b2 + Is3β1 + Is3γ2 − S 3αβ1 +
E3b1

(Is3θ + 1)2 −
Is3c1

Is3θ + 1
+ S 3αβ2(p − 1),

s2 =
(
d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)

) (
d2 + µ − S 3αβ1 +

E3b1

(Is3θ + 1)2

)
+ Is3S 3αβ

2
1 +

E3Is3b1c1

(Is3θ + 1)3

+

(
d4 −

Is3c1

Is3θ + 1

) (
d3+E3b2 + Is3γ2+S 3αβ2(p − 1)+d2+µ − S 3αβ1+

E3b1

(Is3θ + 1)2 + d1+Is3β1

)
+ (d1 + Is3β1)

(
d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1) + d2 + µ − S 3αβ1 +

E3b1

(Is3θ + 1)2

)
s3 =

(
d4 −

Is3c1

Is3θ + 1

)
(d1 + Is3β1)

(
d2 + µ − S 3αβ1 +

E3b1

(Is3θ + 1)2 + d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)
)

+

(
d4 −

Is3c1

(Is3θ + 1)

) (
d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)

) (
d2 + µ − S 3αβ1 +

E3b1

(Is3θ + 1)2

)
+ (d1 + Is3β1)

(
d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)

) (
d2 + µ − S 3αβ1 +

E3b1

(Is3θ + 1)2

)
+ Is3S 3αβ

2
1

(
d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)

)
+ Is3S 3αβ

2
1

(
d4 −

Is3c1

Is3θ + 1

)
+

E3Is3b1c1

(Is3θ + 1)3

(
d1 + Is3β1 + d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)

)
,

s4 =

(
d4 −

Is3c1

Is3θ + 1

)
(d1 + Is3β1)

(
d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)

) (
d2 + µ − S 3αβ1 +

E3b1

(Is3θ + 1)2

)
+

(
Is3S 3αβ

2
1

(
d4 −

Is3c1

Is3θ + 1

)
+

E3Is3b1c1(d1 + Is3β1)
(Is3θ + 1)3

) (
d3 + E3b2 + Is3γ2 + S 3αβ2(p − 1)

)
.

Coefficients to polynomial Equation (2.28)

t1 =d1 + d2 + d3 + d4 + µ + Is4β1 + Ir4γ1 + Ir4γ2 − S 4αβ1 +
E4b2

(Ir4δ + 1)2 −
Ir4c2

Ir4δ + 1
+

E4b1

(Is4θ + 1)2

−
Is4c1

Is4θ + 1
+ S 4αβ2(p − 1),

t2 =(d1 + Is4β1)
(
d3 + Ir4γ2 +

E4b2

(Ir4δ + 1)2 + S 4αβ2(p − 1) −
Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

)
−

(
Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

) (
d3 + Ir4γ2 +

E4b2

(Ir4δ + 1)2 + S 4αβ2(p − 1)
)
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+

(
d1 + Is4β1 + d3 + Ir4γ2 +

E4b2

(Ir4δ + 1)2 + S 4αβ2(p − 1)
) (

d2 + µ + Ir4γ1 − S 4αβ1 +
E4b1

(Is4θ + 1)2

)
−

(
Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

) (
d2 + µ + Ir4γ1 − S 4αβ1 +

E4b1

(Is4θ + 1)2

)
+

E4Ir4b2c2

(Ir4δ + 1)3 +
E4Is4b1c1

(Is4θ + 1)3

− Ir4γ2(Is4γ1 − S 4αβ2 p) + S 4β1(Is4αβ1 + Ir4αβ2 p) − S 4β2

(
Ir4γ2 + Ir4αβ2(p − 1)

)
,

t3 =(d1 + Is4β1)
(
d3 + Ir4γ2 +

E4b2

(Ir4δ + 1)2 + S 4αβ2(p − 1) −
Ir4c2

Ir4δ + 1
+ d4 −

Is4c1

Is4θ + 1

) (
d2 + µ + Ir4γ1

− S 4αβ1 +
E4b1

(Is4θ + 1)2

)
−

(
Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

) (
d3 + Ir4γ2 +

(E4b2)
(Ir4δ + 1)2 + S 4αβ2(p−1)

) (
d2

+ µ + Ir4γ1−S 4αβ1+
E4b1

(Is4θ + 1)2

)
−(d1 + Is4β1)

(
Ir4c2

Ir4δ + 1
−d4 +

Is4c1

Is4θ + 1

)(
d3 + Ir4γ2 +

E4b2

(Ir4δ + 1)2

+ S 4αβ2(p − 1)
)
+S 4β1(Is4γ1 − S 4αβ2 p)

(
Ir4γ2+Ir4αβ2(p − 1)

)
−Ir4γ2(Is4γ1−S 4αβ2 p)(d1+Is4β1)

+ Ir4γ2(Is4γ1 − S 4αβ2 p)
(

Ir4c2

(Ir4δ + 1)
− d4 +

Is4c1

Is4θ + 1

)
− Ir4S 4β2γ2(Is4αβ1 + Ir4αβ2 p)

− S 4β2

(
Ir4γ2 + Ir4αβ2(p − 1)

)(
d2 + µ + Ir4γ1 − S 4αβ1 +

E4b1

(Is4θ + 1)2 +
Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

)
+ S 4β1(Is4αβ1 + Ir4αβ2 p)

(
d3 + Ir4γ2 +

(E4b2)
(Ir4δ + 1)2 + S 4αβ2(p − 1) −

Ir4c2

Ir4δ + 1
+ d4 −

Is4c1

Is4θ + 1

)
+

E4Ir4b2c2

(Ir4δ + 1)3

(
d2 + µ + Ir4γ1 − S 4αβ1 +

E4b1

(Is4θ + 1)2 + d1 + Is4β1

)
+

E4Is4b1c1

(Is4θ + 1)3

(
d1 + Is4β1 + d3

+ Ir4γ2 +
(E4b2)

(Ir4δ + 1)2 + S 4αβ2(p − 1)
)
−

E4Ir4b2c1(Is4γ1 − S 4αβ2 p)
(Ir4δ + 1)(Is4θ + 1)2 −

E4Ir4 Is4b1c2γ2

(Ir4δ + 1)2(Is4θ + 1)
,

t4 = Ir4γ2(Is4γ1−S 4αβ2 p)(d1+Is4β1)
(

Ir4c2

Ir4δ + 1
−d4+

Is4c1

Is4θ + 1

)
−(d1+Is4β1)

(
Ir4c2

Ir4δ + 1
− d4+

Is4c1

Is4θ + 1

)(
d3

+ Ir4γ2 +
E4b2

(Ir4δ + 1)2 + S 4αβ2(p − 1)
)(

d2 + µ + Ir4γ1 − S 4αβ1 +
E4b1

(Is4θ + 1)2

)
+ S 4β2

(
Ir4γ2 + Ir4αβ2(p − 1)

)( Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

)(
d2 + µ + Ir4γ1 − S 4αβ1 +

E4b1

(Is4θ + 1)2

)
− S 4β1(Is4αβ1 + Ir4αβ2 p)

(
Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

)(
d3 + Ir4γ2 +

E4b2

(Ir4δ + 1)2 + S 4αβ2(p − 1)
)

− S 4β1(Is4γ1 − S 4αβ2 p)
(
Ir4γ2 + Ir4αβ2(p − 1)

)( Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

)
+ Ir4S 4β2γ2(Is4αβ1

+ Ir4αβ2 p)
(

Ir4c2

Ir4δ + 1
− d4 +

Is4c1

Is4θ + 1

)
+

E4Is4b1c1

(Is4θ + 1)3 (d1 + Is4β1)
(
d3 + Ir4γ2 +

(E4b2)
(Ir4δ + 1)2 + S 4αβ2(p − 1)

)
+

E4Ir4b2c2(d1 + Is4β1)
(Ir4δ + 1)3

(
d2 + µ + Ir4γ1 − S 4αβ1 +

E4b1

(Is4θ + 1)2

)
−

E4Ir4b2c1(Is4γ1 − S 4αβ2 p)(d1 + Is4β1)
(Ir4δ + 1)(Is4θ + 1)2
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+
E4Ir4S 4b2β1c2(Is4αβ1 + Ir4αβ2 p)

(Ir4δ + 1)3 −
E4Is4S 4b1β2c1

(
Ir4γ2 + Ir4αβ2(p−1)

)
(Is4θ + 1)3 −

E4Ir4 Is4b1c2γ2(d1+Is4β1)
(Ir4δ + 1)2(Is4θ + 1)

−
E4Ir4S 4b2β2c1(Is4αβ1 + Ir4αβ2 p)

(Ir4δ + 1)(Is4θ + 1)2 +
E4Is4S 4b1β1c2

(
Ir4γ2 + Ir4αβ2(p − 1)

)
(Ir4δ + 1)2(Is4θ + 1)

.
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