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Abstract: We studied fluctuation-induced switching processes in the gene transcriptional regulatory 

system under cross-correlated sine-Wiener (CCSW) noises. It is numerically demonstrated that the 

increase of the multiplicative noise intensity A and cross-correlation time τ in CCSW noises can 

reduce the concentration of the TF-A monomer and switch to an “off” state. In addition, when the 

cross-correlation time τ is small, the increase of the additive noise intensity B leads to a switch of the 

process from “off”→“on”. Simultaneously, the increase of the cross-correlation intensity λ of CCSW 

noises contributes to maintaining the current state. When the cross-correlation time is large, the high 

concentration state has two peaks and the stationary probability distribution presents a three-peak 

structure. 

Keywords: bistable system; cross-correlated sine-Wiener noises; switch process; three-peak 

structure; stationary probability distribution; mean first passage time 

 

1. Introduction  

Biological systems are permeated with deterministic laws and randomness. Noise are inevitable 

at every level of biology, from the most essential molecular, sub-cellular processes to the kinetics of 

tissues, organs, organisms and populations [1]. According to different origination of noise, noise can 

be divided into two terms: intrinsic and extrinsic noise [2–5]. Intrinsic noise originates from the 

stochasticity of biochemical events, while extrinsic noise is caused by status differences in individual 
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cells, e.g., ribosomes and metabolites, the concentration of RNA polymerases or local environmental 

conditions [6]. Some experimental and theoretical studies have shown that noise may lead to genetic 

diseases, gene damage, etc. [7,8]. However, over the past few decades, it has been revealed that noise 

may also play a positive role in various dynamic systems and dynamic processes [9,10], for example, 

stochastic transitions [11] and switch processes [3,12].  

Experimental studies have exposed that fluctuations occur in various stages of gene expression, 

including transcription, degradation, translation, binding, and so on [6,13,14] and noise affects gene 

expression [15]. Smolen et al. [16] proposed a simple model of gene transcription system dynamics, 

which is a bistable model with a positive feedback loop. They pointed out that the simple model 

manifested multiple stable state and brief perturbations could switch the model between those states. 

Based on this model, Liu et al. showed that the switch process could be successfully induced by the 

fluctuation of the rate of degradation and the synthesis of transcription factors [17]. The state 

transition of a rapid response to environmental changes is a common and important phenomenon in 

biological systems. Noise can also be used to regulate the dynamics of bistable genetic regulatory 

systems [18]. Wang et al. [19] further considered the effect of a time delay on the switch process. The 

related studies have focused on white Gaussian noise and colored noise [3,17,19–24]. However, the 

range of the Gaussian noise is unbounded and large values can be obtained, but the nature of real 

physical quantities is always bounded. The use of Gaussian noise may lead to unreasonable results in 

some cases [25,26]. Therefore, researchers have explored the modelling of bounded noise in dynamic 

systems [27]. Among them, sine-Wiener noise is the most widely used form of bounded noise [28] 

that is generated by a sinusoidal function with a constant amplitude, constant frequency and random 

change of phase with the Wiener process. Sinusoidal functions are bounded, resulting in their noise 

values not exceeding a fixed amplitude. In recent years, the influence of cross-correlated sine-Wiener 

(CCSW) noises on nonlinear dynamic systems has attracted wide attention [29,30]. Furthermore, our 

previous studies [31–34] revealed temporal coherent resonance phenomenon induced by CCSW 

noises in regular and small-world neuronal networks and indicated the occurrence of CCSW 

noise-induced coherent resonance. The increasing degree of correlation of CCSW noises may 

enhance or impair temporal regularity, which is dependent on the cross-correlation time [34]. CCSW 

noises in the gene transcriptional regulatory system has not been reported to date. Therefore, this 

study focuses on the influence of CCSW noises on the switch process in the gene transcriptional 

regulatory system. 

2. Model and algorithm 

Smolen et al. [16] have developed a simple kinetic model to examine the complex dynamic 

activity of genetic regulatory systems. The dynamics of the system are governed by a single ordinary 

differential equation to determine the concentration of the transcription factor activator (TF-A):  

2

2
  



f

d bas

d

k xdx
k x R

dt x K
 ,                             (1) 

where x(t) denotes the concentration of TF-A. kd and Rbas represent the decomposition rate and basic 

synthesis rate of TF-A, respectively. Kd describes the dissociation concentration of the TF-A dimer 

from the responsive elements, TF-Res. Under the following parameters:  
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Figure 1. (a) Bifurcation plot for the steady state of TF-A on the control parameter of the 

transcription rate kf. (b) The bistable potential of Eq (3). kf = 6, Kd = 10, kd = 1, and Rbas = 0.4. 

Figure 1(a) shows that when Kd = 10, kd = 1, Rbas = 0.4, and kf is in the interval [5.45, 6.68], 

each value of kf corresponds to three TF-A, representing two steady states and one unstable state. 

The corresponding bistable potential U0 is shown in Figure 1b. When kf = 6, the stable steady states 

are x- ≈ 0.62685 and x+ ≈ 4.28343 and the unstable steady state is xu ≈ 1.48971, as shown in Figure 1. 

To simulate the stochastic effects of the biochemical reaction rates Rbas and kd, it is assumed that the 

stochasticity is added to the reaction rates as kd→kd + 1(t) and Rbas→Rbas +2(t). Here, 

multiplicative and additive cross-correlated sine-Wiener noises 1(t) and 2(t) are introduced into the 

original deterministic kinetics. Thus, 

   
2
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.                    (4) 

The explicit definitions of CCSW noises are represented as follows: 
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,                             (5) 
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 
   

 
.                            (6)  

The noise strength and self-correlation times of 1(t) and 2(t) are indicated as A, B, 1 and 2. 1 and 

2 are two cross-correlated standard Wiener processes, i.e., 

         1 2 1 2 min ,t t t t t t         .     denotes an ensemble average and  min ,t t  

denotes taking the smaller value between t and t . As previously mentioned, the statistical 

properties of  1 t  and  2 t  are given by: 

    021  tt   ,                                      (7)
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Here,   and  stand for the cross-correlation intensity (0     1) and cross-correlation time 

between 1(t) and 2(t), respectively. The coupling between CCSW noises results in a difficulty of 

directly integrating the dynamic equation (4). However, CCSW noises can be decoupled and 

transformed as below [32,35,36]: 
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.          (12) 

Here,  and  denote two independent standard Wiener processes. Note that the transformations 

do not change the statistical properties of Eqs 7–10. After the above-mentioned decoupling 

operations, the dynamic equation (4) is rewritten as follows: 
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.              (13)  

According to the Euler forward procedure, Eq (13) is discretized in our numerical simulations as 

follows [37]: 
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with  

     ttX 2sin1  ,                              (15) 

     ttX 2sin2  ,                              (16) 

        21 π2cosln2   tttt  ,                    (17) 

      43 π2cosln2   tttt  .                    (18) 

Here, 1 , 2 , 3 and 4 are four independent random numbers uniformly distributed on the unit 

interval. Δt  0.001 is the time step. 

3. Results and discussion 

3.1. Steady state characteristics 

We first investigated the effect of the cross-correlation time τ on the steady-state probability 

distribution (SPD) and switching process. For a given time series of a concentration of TF-A, the 

total number of time points is N. The observed number ni of x within the distance bin from xi to xi 

+△x is counted for a long x (t) sequence that discards transient processing, 0 < x < 10, △x = 0.1. The 

probability ni/N of each distance is calculated, and thus, the steady-state probability distribution 

(SPD) is obtained. As shown in Figure 2, the novel phenomenon is that the high concentration state 

of SPD undergoes a transition from unimodal to bimodal, and therefore, the overall SPD has a 

three-peak structure with a larger noise cross-correlation time τ. With the increase of the noise 

cross-correlation time τ, the peak of the probability distribution in the low steady state increases, 

which corresponds to a decrease of the TF-A monomer concentration and the occurrence of a switch 

process (i.e., “on”→“off”). That is, the cross-correlation time τ not only causes the on-off switching 

process but also leads to the formation of double peaks of a high steady state and a triple peaks 

structure in the overall SPD. Tristability itself may be valuable; for example, a genetic tristate can be 

found or used in various biochemical networks. This triple peaks structure has only ever been 

observed in an experiment in synthetic biology by Rui Ma et al. [38]. They noted that the triple 

steady state phenomenon resulted from the discrete and fluctuating nature of a small system. Stem 

cells and other kinds of multipotent cells might differentiate into two states, and then, one of them 

redifferentiates into three states according to Waddington’s epigenetic landscape [39]. Our work also 

provides a possible mechanism for the formation of the triple peaks structure.   



6592 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6587–6601. 

 

Figure 2. (a) Probability distribution of x(t) for different cross-correlation time τ with 

A = 0.1, B = 0.1 and λ = 0.5. (b). Sample paths of x(t) with τ = 0.5 and τ = 20. The 

other parameter values are the same as those in Figure 1. 

 

 

Figure 3. Probability distribution and sample paths of x(t) for different multiplicative noise 

intensities A. The additive noise intensity B = 0.2, the cross-correlation intensity λ = 0.3, the 

cross-correlation intensity τ = 0.1 and τ = 20. The other parameter values are the same as 

those in Figure 1. 
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Based on the different effects of the noise cross-correlation time τ on the system, the influence 

of the other parameters of noise is considered when different values of the cross-correlation time τ 

are selected. First, we consider the effect of multiplicative noise, which is shown in Figure 3. It can 

be seen that the increase of the multiplicative noise intensity A leads the system to be in a low steady 

state, corresponding to the decrease of the TF-A monomer concentration and the switch to an off 

position when τ is smaller and larger. However, multiplicative noise has a strong influence on the 

bimodal structure of a high steady state. With the increase of the multiplicative noise intensity A, the 

distance between the two peaks increases. Finally, the left peak of the two peaks weakens and 

disappears, and the whole peak structure returns to the double peak structure. The extreme value of 

the peak of the high steady state deviates from the steady-state point to the right. 

 

 

Figure 4. Probability distribution and sample paths of x(t) for different additive noise 

intensities B. (a-b) The multiplicative noise intensity A = 0.6, the cross-correlation 

intensity λ = 0.1, the cross-correlation intensity τ = 0.1. (c-d) the additive noise intensity 

A = 0.1, the cross-correlation intensity λ = 0.3, the cross-correlation intensity τ = 20. The 

other parameter values are the same as those in Figure 1. 

Then, we investigated the effect of additive noise, which is shown in Figure 4. When τ is 

small, the increase of the additive noise intensity B leads to a decrease of the low concentration 

and an increase of the high concentration (Figure 4a). Correspondingly, the time series diagrams 
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of the TF-A monomer concentrations for additive noise intensities B = 0.1 and B = 0.6 are given 

in Figure 4b. It can be seen that the increase of the additive noise intensity B drives the system to 

the high steady state, which corresponds to an increase of the TF-A monomer concentration, and 

the system switches to the “on” position. However, when τ is large, the distance between the two 

peaks decreases, and they become a single peak with the increase of additive noise B, as shown in 

Figure 4c–d. At the same time, switching of the process from “on” to “off” is induced. 

 

 

Figure 5. (a, d) Probability distribution, (b) MFPT and (c, e) sample paths of x(t) for 

different cross-correlation intensities λ. (a) A = 0.6, B = 0.2, τ = 0.1. (d) A = 0.1, B = 0.1 

and τ = 10. The other parameter values are the same as those in Figure 1. 

Figure 5a shows the effect of the cross-correlation intensity on SPD when τ is small. It can be 

found that an increase of the noise cross-correlation intensity λ causes the SPD to shift from a high 

steady state to a low concentration state. However, it is interesting to note that the shift between the 

different concentration states does not mean the process switches from “on” → “off”. As can be seen 

from Figure 5b, the mean first passage time (MFPT), which is the mean time spent in one state 

before switching to another, monotonously increases with the increase of the cross-correlation 

intensity λ. The mean first passage time reflects the switching time between on and off states. That is, 

the smaller MFPT is, the more frequent the jump between the two steady states. On the contrary, the 

longer MFPT is, the longer the system maintains the current state. The corresponding time series of 

the TF-A monomer concentration, as shown in Figure 5c, indicates that a large cross-correlation 

intensity λ can maintain the TF-A monomer in the current concentration state, that is, keep in the “on” 

or “off” state. When τ is large, the increase of the cross-correlation intensity λ makes the 

high-concentration binary states more distinct (Figure 5d–e) and also causes the process to switch 
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from “off” to “on”. Contrary to the case of a smaller τ, for a large cross-correlation intensity λ, the 

system cannot maintain the current state when τ is larger. 

 

 

Figure 6. Probability distribution and sample paths of x(t) for different delay times td. 

A = 0.8, B = 0.1, λ = 0.5 and τ = 0.1. The other parameter values are the same as those 

in Figure 1. 

In addition, there is feedback delay in the real system, so equation (1) becomes: 

   

 
     

2

1 22
 


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 

f d
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d d

k x t tdx t
k t x t R t

dt x t t K
,                （19） 

dt  is the delay time, and the other parameters are the same as in Eq (1). 

Figure 6 shows that the feedback time delay plays an important role in random systems. With 

the increase of the delay time, the peak of the probability distribution at a low steady state decreases, 

while those of the high steady state increase, corresponding to an increase of the TF-A monomer 

concentration, and the system switches from “off” to “on”. 

3.2. Mean first passage time (MFPT) 

When the system is stochastic bistable, the quantity of interest is the time from one state to 

another. This time is a random variable, often referred to as the first passage time. Here, we consider 

the mean first passage time (MFPT) [40]. We record the time of the process x(t) to reach the low 

concentration state x- from the initial condition x (t = 0) = x+ (the high concentration state) for the 

first time and repeat the process 1000 times to obtain the mean first pass time (MFPT). The MFPT 

can quantify the effect of noise on the transition between two steady states. The main results are 

shown in Figures 7–10. 
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Figure 7. The MFPT as a function of the cross-correlation τ (a) for different 

cross-correlation intensities, λ = 0.1, 0.3, 0.5, 0.7, 0.9 with A = 0.6, B = 0.2; (b) for 

different multiplicative noise intensities, A = 0.6, 0.7, 0.8, 0.9 with B = 0.2, λ = 0.5; (c) 

for different additive noise intensities, B = 0.1, 0.3, 0.5, 0.7, 0.9 with A = 0.6, λ = 0.5. 

The MFPT as a function of the cross-correlation time τ for different cross-correlation intensities 

λ, multiplicative noise intensities A and additive noise intensities B is shown in Figure 7. It can be 

seen that the MFPT always decreases monotonously with the increase of the cross-correlation time τ. 

These results indicate that the switch of the process from “on” to “off” becomes easier when the 

cross-correlation time τ is larger. In addition, the MFPT increases with the increase of the 

cross-correlation intensity λ, as illustrated in Figures 7a and 10, while the MFPT decreases with the 

increase of the multiplicative noise intensity A, as shown in Figures 7b and 8. Then, the MFPT varies 

nonmonotonically with the increase of the additive noise intensity B when λ = 0.5, as shown in 

Figures 7c, 9 and 10a. 

 

 

Figure 8. The MFPT as a function of the multiplicative noise intensity A. (a) for different 

cross-correlation intensities, λ = 0.1, 0.3, 0.5, 0.7, 0.9 with B = 0.2 and τ = 0.1; (b) for 

different additive noise intensities, B = 0.1, 0.3, 0.5, 0.7, 0.9 with λ = 0.5 and τ = 0.1. 
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Figure 8 shows the MFPT as a function of multiplicative noise A for different cross-correlation 

intensities λ and additive noise intensities B. The MFPT always decreases monotonously with the 

increase of the multiplicative noise intensity A, which is similar to the effect of the cross-correlation 

time τ. In addition, there are both monotonic and non-monotonic changes with the increase of λ or B 

when A is fixed in the MFPT as shown in Figure 8a,b. Further results are presented in Figures 9 and 

10. 

 

 

Figure 9. The MFPT as a function of the additive noise intensity B; (a) for different 

cross-correlation intensities, λ = 0.1, 0.3, 0.5, 0.7, 0.9 with A = 0.6 and τ = 0.1; (b) for 

different multiplicative noise intensities, A = 0.6, 0.7, 0.8, 0.9 with λ = 0.5 and τ = 0.1. 

Then, the MFPT as a function of the additive noise intensity B for different cross-correlation 

intensities and multiplicative noise intensities is shown in Figure 9. The MFPT slightly decreases 

when the cross-correlation intensity λ is small (λ = 0.1). Moreover, the MFPT first increases and then 

decreases when λ reaches a moderate value (λ = 0.5). Furthermore, the MFPT increases 

monotonously and rapidly with a large λ (λ = 0.9). The MFPT showed different trends with the 

enhancement of B for different values of λ (monotonic decrease, non-monotonic, monotonic 

increase), which is also shown in Figure 10a. The larger λ is, the more TF-A is able to maintain its 

current state and the larger MFPT is (Figure 5b). Therefore, it can be inferred that the monotonous 

decrease of the black dotted line in Figure 9a is due to the role of B when λ is small. This result 

suggests that the increasing additive noise intensity B also makes the switching process easier. When 

the value of λ is large, the rapid increase of the MFPT is caused by the enhancement of the ability of 

λ to maintain the current state. Therefore, when the value of λ is set moderately, the enhancement of 

B reduces the MFPT, while a moderate value of λ allows the MFPT to be increased, which results in 

an increase and then a decrease of the MFPT. Moreover, Figure 9b shows that the above 

nonmonotonicity is destroyed with the increase of A when the value of λ is moderate (λ = 0.5), and 

the MFPT then undergoes a monotonous increase.  
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Figure 10. The MFPT as a function of the cross-correlation intensity λ; (a) for different 

additive noise intensities, B = 0.1, 0.3, 0.5, 0.7, 0.9 with A = 0.6 and τ = 0.1; (b) for 

different multiplicative noise intensities, A = 0.6, 0.7, 0.8, 0.9 with λ = 0.5 and τ = 0.1. 

Figure 10 shows the MFPT as a function of the cross-correlation intensity λ for different additive 

noise intensities B and multiplicative noise intensities A. The MFPT always increases monotonously 

when an increase of the cross-correlation intensity λ occurs. The results imply that the switch of the 

process from “on” to “off” becomes difficult. The MFPT decreases monotonically with the increase of 

B in the region of 0 < λ < 0.1. The MFPT increases monotonically with the increase of B in the region 

of 0.6 < λ < 1 and presents non-monotonicity in the region of 0.1 < λ < 0.6 (Figure 10a). In Figure 10b, 

when A increases, the trend of the MFPT increases slowly with the increase of λ. That is, the role of A 

is opposite to that of λ. 

4. Conclusion 

In this study, we investigated switch processes in a transcriptional regulatory system driven by 

CCSW noises. It was found that the increase of the multiplicative noise intensity A and 

cross-correlation time τ could reduce the concentration of the TF-A monomer and switch to an “off” 

state. In addition, the effect of the cross-correlation time on SPD presents a novel phenomenon. 

When the cross-correlation time τ is small, the enhancement of the cross-correlation intensity λ 

presents a seemingly contradictory result, that is, an increase of the MFPT and an increase of the low 

steady state, which indicates that the role of the cross-correlation intensity λ is to maintain the current 

state. The combined effects of the additive noise intensity B and cross-correlation intensity λ show 

that when λ is small, the effect of maintaining the current state is weak. The enhancement of B leads 

the SPD to shift from a high steady state to a low concentration one, a switch to the “on” state, and a 

monotonous decrease of MFPT. Next, when λ is large, the ability to maintain the current state is 

enhanced and the MFPT increases rapidly. Third, when λ is moderate, the enhancement of B 

decreases the MFPT and the increase of cross-correlation intensity λ increases the MFPT, which 

results in the non-monotonicity of the MFPT (first increases and then decreases). 

When the cross-correlation time τ is large, the single peak of the high steady state splits into two 

peaks and the SPD has a three-peak structure. The effect of the cross-correlation intensity λ is 

different from that of the small cross-correlation time τ. The enhancement of the cross-correlation 
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intensity λ leads to a decrease of the low steady state and an increase of the high steady state, and the 

bimodal structure of the high steady state is sharper. The SPD is shifted from a high steady state to a 

low one when the additive noise intensity is decreased. However, the effect of multiplicative noise 

and additive noise is opposite to that of the double peaks in the high concentration state. The increase 

of the multiplicative noise intensity leads to an increase of the distance between two peaks in the 

high concentration state, while the increase of the intensity of additive noise presents an inverse 

process, that is, the distance between the two peaks decreases until they transition into a single peak. 

The above results show different characteristics from white Gaussian noise, which lays a foundation 

for further research on the influence of CCSW noises on nonlinear systems. 
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