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Abstract: Biological system’s dynamics are increasingly studied with nonlinear ordinary differential
equations, whose parameters are estimated from input/output experimental data. Structural
identifiability analysis addresses the theoretical question whether the inverse problem of recovering
the unknown parameters from noise-free data is uniquely solvable (global), or if there is a finite
(local), or an infinite number (non identifiable) of parameter values that generate identical input/output
trajectories. In contrast, practical identifiability analysis aims to assess whether the experimental data
provide information on the parameter estimates in terms of precision and accuracy. A main difference
between the two identifiability approaches is that the former is mostly carried out analytically and
provides exact results at a cost of increased computational complexity, while the latter is usually
numerically tested by calculating statistical confidence regions and relies on decision thresholds. Here
we focus on local identifiability, a critical issue in biological modeling. This is the case when a
model has multiple parameter solutions which equivalently describe the input/output data, but predict
different behaviours of the unmeasured variables, often those of major interest. We present theoretical
background and applications to locally identifiable ODE models described by rational functions. We
show how structural identifiability analysis completes the practical identifiability results. In particular
we propose an algorithmic approach, implemented with our software DAISY, to calculate all numerical
parameter solutions and to predict the corresponding behaviour of the unmeasured variables, which
otherwise would remain hidden. A case study of a locally identifiable HIV model shows that one should
be aware of the presence of multiple parameter solutions to comprehensively describe the biological
system and avoid biological misinterpretation of the results.
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1. Introduction

Nonlinear differential equation models are extensively used in mathematical systems biology, as
well as in many biomedical research areas, for describing and predicting dynamic biological
phenomena. An indispensable step for model development is parameter estimation, obtained by
adjusting model parameters to best fit input-output (I/O) data. By optimising some cost function of
the prediction error, accurate data fitting does not guarantee, however, uniqueness of the obtained
parameter estimates [1–3]. The question whether equal model predictions can be provided by different
parameter values is adressed by the identifiability analysis. Two identifiability approaches have been
proposed which are normally regarded as disjoint because structural identifiability (S-ID) analysis is
applicable a priori and is based on analytic calculations [4–10], while practical identifiability (P-ID)
analysis is based on sensitivity analysis and numerical simulations of system’s equations [11–13], see
also [14–18] for some interesting specific models in different application areas. In this study, we
propose a unified viewpoint of two different identifiability analysis approaches and motivate their
joint use for studying local identifiability, in particular to calculate all the numerical solutions of a
local identifiable model.

More specifically, S-ID addresses the theoretical question whether the inverse problem of
recovering the unknown parameters from ideal, noise-free experimental data is: (i) uniquely solvable,
or if there are (ii) a finite, or (iii) an infinite number of parameter vectors that generate identical output
trajectories. These three identifiability properties are traditionally referred to as global; local; and non
S-ID, respectively.

In contrast, P-ID aims to assess whether given experimental data provide information on the
parameter estimates in terms of precision and accuracy. Typically, statistical confidence regions are
calculated in terms of probability levels of the Likelihood function [19, 20].

In this paper we recall the theoretical background of S-ID analysis and apply a differential algebra
method to a model for the study of the HIV virus dynamics. We will discuss how conclusions drawn
by considering only one of the possible multiple parameter solutions can be misleading. To avoid
such potential pitfalls we propose an algorithmic approach to determine all possible solutions of ODE
models described by rational functions, by illustrating how S-ID analysis integrates with and completes
the P-ID results. In particular we will:

1. numerically calculate all the solutions of a locally identifiable model;
2. show all the possible different behaviours of the internal, unmeasured variables corresponding to

each of the previous solutions;
3. show how to possibly reject some of them based on existing constraints on parameters.

2. Problem Statement

2.1. The nonlinear ODE model

This Section provides the reader with the definitions that are necessary to set the notations used in
the paper. Consider a nonlinear dynamic system described in state space form as

ẋ(t) = f(x(t),u(t), θ) (2.1)
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y(t) = g(x(t),u(t), θ) (2.2)

where state x(t) ∈ Rn; input u(t) ∈ Rq ranging on some vector space,U, of piecewise smooth (infinitely
differentiable) functions; output y(t) ∈ Rm; functions f and g are vectors of rational functions of variable
x; and constant unknown parameter vector θ belonging to some admissible subset Θ ⊆ Rp.

It is assumed that there is no feedback and at least one admissible parameter θ∗ exists.
Whenever the initial state is specified, the equation x(0) = x0 is added to the system of equations

(2.1, 2.2). In presence of equality constraints on the parameters of the form

h(θ) = 0 (2.3)

where h is a rational polynomial, Eq (2.3) is added to system of equations as well.
With these notations, the I/O map of system (2.1, 2.2) with initial state x0 will be denoted with

y = ψx0(θ,u) (2.4)

This equation has at least one solution if evaluated in θ∗. The goal of the structural identifiability
analysis is to count the number of solutions of Eq (2.4).

2.2. Structural Identifiability via Differential Algebra

The I/O map of system (2.1, 2.2) represents the object of study of structural identifiability analysis.
In the following we focus on local identifiability (the reader is referred to [6] for the definitions of
global identifiability and non identifiability).

Definition 1. The system (2.1, 2.2) is locally identifiable at θ∗ ∈ Θ from I/O data, if there exists (at
least) one input function u and an open neighborhood Uθ∗ of θ∗, such that equation

ψx0(θ,u) ≡ ψx0(θ
∗,u) (2.5)

has a unique solution θ ∈ Uθ∗ for all initial states x0 ∈ X ⊆ Rn.

Note that this definition deals with the case of Eq (2.5) having a finite number (but more than one)
of solutions in Cp, provided that alternative solutions be isolated points. These solutions can be viewed
as belonging to an equivalence class in the sense they equivalently describe the I/O map of the model.
More formally:

Definition 2. Let R be the equivalence relation on Θ defined by Eq (2.5) and let θ∗ ∈ Θ, then the
equivalence class of θ∗ under R is the set

[θ∗]R = {θ ∈ Θ : θ R θ∗} (2.6)

then each θ ∈ [θ∗]R is called a R-relative of θ∗. That is, the equivalence class of θ∗ under R is the set
of all R-relatives of θ∗.

In case of locally identifiable models the goal should be to determine the whole above equivalence
class. It is important to stress that multiple solutions are not rare, even in unsophisticated models,
and are typically, but not exclusively, associated with symmetries in the system dynamics that allow
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permutation of subsystems without affecting I/O relations. Non-trivial multiple solutions for Eq (2.5)
can be encountered also with simple, seemingly tractable models as we will show in the following with
our example and with the case study in Section 4.

In order to this, we will apply a structural identifiability method implemented in the software DAISY
(Differential Algebra Identifiability of SYstems) [21]. The method is summarized below, while the
reader is referred to [22] for a formal treatment of differential algebra, and to [6, 23, 24] for a detailed
explanation of the theory behind the software tool.

The basic idea of the above differential algebra method is to look at the n+m differential polynomials
defining the dynamic system (2.1, 2.2) as the generators of a differential ideal I in the differential
ring R(θ)[u, y, x], i.e., containing polynomials in the inputs, outputs, states and their derivatives with
respect to time as variables, with multiplicative coefficients being polynomials in the unknown model
parameters. First of all the method finds a basis of this differential ideal.

By applying the pseudodivision algorithm among polynomials suggested by Ritt [22], the
characteristic set of the ideal I is calculated. This is a basis of the above ideal. It is formed by a finite
set of n + m nonlinear differential polynomials A1, ..., Am+n satisfying certain minimal condition,
which describes exactly the same solution set of the original system. In particular, the characteristic
set of a dynamic system described in state space form (2.1, 2.2), after a suitable normalization, is
unique and has the following triangular form:

A1(u, y, θ) . . . Am(u, y, θ)
Am+1(u, y, x1, θ)
Am+2(u, y, x1, x2, θ)
...

Am+n(u, y, x1, . . . , xn, θ)

(2.7)

In the first m polynomials the state variable x(t) has been eliminated from the system, hence they are
free of x(t). These are polynomials only in the variables (u(t), y(t)) that, in the working hypothesis of
structural identifiability, are perfectly known from the experiment. Thus they represent exactly the I/O
map of the original dynamic model. These polynomials are linear in their coefficients. In particular
each of their coefficients is formed by a rational algebraic function c(θ) of the unknown parameter
θ. Formally, the set of these algebraic functions represents the so-called exhaustive summary of the
model. If parameter equality constraints (2.3) are present in the model, these have to be added to the
above exhaustive summary.

Identifiability is tested by checking injectivity of the exhaustive summary with respect to parameter
θ. In order to do this, the I/O map is evaluated at enough time points to calculate its linear coefficients,
which will be denoted by c∗. Nonlinear algebraic equations are obtained by equating the polynomials
forming the exhaustive summary to this set of symbolic (known) points:

c(θ) = c∗ (2.8)

This algebraic nonlinear system in the unknown θ is solved by applying the Buchberger’s computer
algebra algorithm, which represents a common generalization for nonlinear equations and for more
variables of the Gaussian and the Euclidean algorithm, respectively. Buchberger’s algorithm calculates
a Gröbner basis of the system which is in general represented as:

G(θ, θ∗) = {G1(θ, θ∗)} , . . . ,
{
GnG (θ, θ∗)

}
(2.9)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6438–6453.



6442

where nG is a finite number and Gi(θ, θ∗), i = 1, ..., nG are vectors of algebraic polynomials. The
Gröbner basis, Eq (2.9) allows to count the number nθ of solutions of system (2.1, 2.2) in the complex
space. In particular whenever Eq (2.5) has one and only one solution, say θ1, the Gröbner basis,
Eq (2.9) simply becomes G(θ, θ∗) = {θ − θ1}, where nθ = 1, showing that the model (2.1, 2.2) is
(structurally) globally identifiable.

If Eq (2.5) has nθ finitely multiple solutions the Gröbner basis equation (2.9), in general, has the
following form:

G(θ, θ∗) =
{
θ − θ1, . . . , θ − θnθ

}
(2.10)

Note that if the k-th components of θi are equal for all i = 1, ..., nθ, the k-th parameter component is
globally identifiable (see, for example, parameter k21 of the locally identifiable model (3.1)).

If specific initial conditions x0 are present, after having checked the accessibility of the system from
the given initial condition [6], the initial conditions have to be included as well, in a suitable way, in
the exhaustive summary.

Thus in case of local identifiability, the above method provides the following relevant information:
– the cardinality nθ of the equivalence class of the parameter solutions, definition (2), i.e. the finite

number of solutions equivalently describing the experimental I/O data,
– a means for analytically calculating all other solutions, that would otherwise remain “hidden”, as

illustrated in the next Section.

3. The joint identifiability method to calculate all the solutions of a locally identifiable model

In this Section it is shown how, in case of local identifiability, practical identifiability tests based on
model output sensitivities, can be combined with the information provided by structural identifiability
analysis based on differential algebra. In particular, we want to show how the specific value simulated
or estimated with the practical approach, together with the exhaustive summary of the model, allows
to calculate all the other candidate solutions and, possibly, by checking the known physical constraints
on these solutions, to accept or reject some of them.

The problem of multiple solutions in parameter estimation is traditionally associated with the idea
that local search optimisation algorithms can get trapped, referring to minimisation problems, by local
minima with unsatisfactory model predictions of experimental data. Cost functions in presence of
multiple (isolated) local minima can be represented as basins of attraction whose nadirs are the optimal
candidate solutions, e.g. local minima of the opposite Likelihood function. Common practice for
estimating model parameters with multiple local optimal points is to use global optimisers, or multi-
start methods combined with local optimiser, e.g. [25]. Local solutions found by such algorithms can
be independent from each other, in which case selection of the global optimum by direct comparison of
multiple candidate solutions is justified. By using global search and multi-start algorithms, the search
for best-fit model parameters is extended to the whole admissible parameter space by increasing the
probability to hit the true global minimum.

In case of local identifiable models (checked by structural identifiability analysis) approaches as
the multi-start searches can certainly find additional multiple solutions but without guaranteeing to
find all of them. By combining the S-ID with the P-ID results we arrive to calculate them all. In
particular, the Gröbner basis (2.10) provides their exact number together with the analytic relations
among them [26]. This relations define the equivalence class containing all the solutions with respect to
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their ability to describe the experimental data. Parameters belonging to the same equivalence class will
produce equivalent I/O predictions thus the corresponding value of the cost function will be identical.
Now we applied a P-ID algorithm to provide the numerical value of an accepted global minimum.
This represents the element θ∗ defining the equivalence class, definition (2), by using the relation R,
definition (1), we calculate all the R-relatives of θ∗, that is the numerical values of all the multiple
solutions of the model. These, by definition, equivalently describe the I/O map of the model but, they
in general predict different trajectories of the unmeasured variables whose knowledge is often the goal
of the modeling.

For this purpose, we propose to adopt the following methodological steps:

1. calculate the exact number of the parameter solutions and the I/O map of the model;
2. generate or estimate the numerical value of a global minimum of a cost function;
3. go back to the input-output map and substitute the just estimated value in order to provide the

known coefficients of Eq (2.7);
4. by solving the corresponding equations, calculate all the remaining solutions;
5. check the known physical constraints on these solutions, i.e. reality and positivity, in order to

reject some of them, possibly arriving at a unique solution.

To show the practical consequences of the joint use of structural and practical identifiability for local
identifiable models, a simple example is illustrated in the following.

3.1. A simple model with three parameter solutions

We consider as a benchmark example the three compartment model depicted in Figure 1. It is
described by the following ODE’s:

ẋ1 = −(k01 + k21 + k31) x1 + k12 x2 + u
ẋ2 = k21 x1 − (k12 + k32) x2 + k23 x3

ẋ3 = k31 x1 + k32 x2 − (k23 + k03) x3

y1 = x2

y2 = x3

(3.1)

where θ = [k03, k01, k12, k32, k31, k23, k21] is the unknown constant parameter vector, x = [x1, x2, x3] the
states vector, u the input, y1 and y2 the measured outputs of the model. The initial condition x1(0) is
supposed to be known while the others are known from the outputs y1 and y2.

The first question to be addressed is whether the unknown parameter vector θ is structurally
identifiable from an experiment in which the output function y(t) is measured exactly.

According to the differential algebra method described in Section 2.2, the pseudodivision algorithm
is applied to calculate the characteristic set of the dynamic model (3.1):

A1 = −k31ẏ1 + k21ẏ2 − y1(k12k31 + k21k32 + k31k32) + y2(k03k21 + k21k23 + k23k31)
A2 = k21ÿ1 + ẏ1(k01k21 + k12k21 + k2

21 + k31k21 + k21k32 − k31k23) − uk2
21+

y1(k01k12k21 + k01k21k32 + k12k21k31 − k12k23k31 + k2
21k32 − k21k23k32 + k21k31k32 − k23k31k32)+

y2k23(−k21k01 + k21k03 − k2
21 + k21k23 − k21k31 + k23k31)

A3 = ẏ1 − x1k21 + y1(k12 + k32) − y2k23

A4 = −x2 + y1

A5 = −x3 + y2

(3.2)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6438–6453.



6444

Figure 1. A locally identifiable model [27].

Polynomials A1 and A2 are free of x and exactly describe the interdependence between model inputs,
outputs and their derivatives. By following the method previously described we should equate these
coefficients, known functions of θ∗, to a set of points c∗. It is worth noting that in the structural
identifiability context, the parameter vector θ∗, Eq (2.9), can in principle assume any admissible value,
thus it can be described by a (known) symbolic value. The exhaustive summary is then:

−k31/k21 = c∗1
−(k12k31 + k21k32 + k31k32)/k21 = c∗2
(k03k21 + k21k23 + k23k31)/k21 = c∗3
k01 + k12 + k21 + k31 + k32 − k31k23/k21 = c∗4
−k21 = c∗5
k01k12 + k01k32 + k12k31 + k21k32 − k23k32 + k31k32 − k23k31(k12 + k32)/k21 = c∗6
k23(−k01 + k03 − k21 + k23 − k31 + k23k31/k21) = c∗7

(3.3)

This system of algebraic nonlinear equations in the unknown model parameters defines the
equivalence class to which the solutions belong, and will be used in the practical identifiability test, to
find all the numerical solutions, starting from the value estimated from the simulated or measured I/O
data. For this simple example one can analytically (symbolically) solve the above system (3.3) and
count its solutions in the complex space. However, in general, to speed up calculations, it is
convenient to skip the symbolic calculations simply by assigning to the parameters randomly chosen
numerical values, see details in [6]. In this case, for example, by substituting the random numerical
value θ∗ = [27, 14, 20, 7, 36, 12, 1] and calculating the corresponding numerical value of the known
coefficients c∗, we obtain an algebraic nonlinear system with real coefficients in the unknowns ki j. We
solve this system with the Buchberger algorithm which provides the following Gröbner basis
(corresponding to Eq (2.10) of Section 2.2):

{k03 − 1227/29, k01 + 1, k12 − 691/29, k32 − 95/29, k31 − 36, k23 − 336/29, k21 − 1},
{k03 − 951/101, k01 − 30, k12 − 6164/101, k32 + 3325/101, k31 − 36, k23 − 1260/101, k21 − 1},
{k03 − 27, k01 − 14, k12 − 20, k32 − 7, k31 − 36, k23 − 12, k21 − 1}

(3.4)
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which shows that the original model is locally identifiable, in particular it has three solutions (the
only globally identifiable parameters are k21 and k31) all being equivalently able to describe the output
function of the model. More important the fact that in correspondence of each of these three solutions,
the behaviour of all unmeasured variables is different.

This will be the starting point to provide a method able to numerically calculate all the model
solutions describing the I/O experimental data. Typically, local optimisation algorithms for estimating
the model parameters calculate one local solution, and need more runs from different initial points to
capture additional solutions. The relevant finding of this work is to show how analytically calculate all
the multiple solutions of a locally identifiable model.

We move now to the practical context and consider the I/O relationship by assuming a nominal
value θ∗ for discussing different possible scenarios. In particular, by imposing θ∗ = [k03 = 0.458, k01 =

0.022, k12 = 0.22, k32 = 0.32, k31 = 0.06, k23 = 0.16, k21 = 0.23] in the exhaustive summary equations
(3.3) to calculate c∗, we are able to analytically calculate the other two equivalent numerical solutions,
reported in Table 1. For sake of clarity, in the following we will denote θ∗ as θ1 and the two remaining
solutions as θ2 and θ3, respectively.

Table 1. Equivalent solutions for the first randomized parameter vector.

θ1 θ2 θ3

k03 0.458 0.2818 0.8831
k01 0.022 0.1841 0.6839
k12 0.22 0.06155 −0.7254
k32 0.32 0.3528 0.5156
ka

31 0.06 0.06 0.06
k23 0.16 0.2998 −0.1771
ka

21 0.23 0.23 0.23
a globally identifiable parameter.

This shows that the numerical solution θ∗ estimated by using an optimisation algorithm (the
plausible solution) has nothing more or special with respect to those that remain hidden. The relevant
fact is that the two solutions θ2 and θ3 predict the output function of the model exactly as the selected
θ∗ does (see Figure 2). In this particular case, by assuming as admissible parameter space Θ the real
and positive space, besides the first imposed solution θ1, only θ2 is admissible (non-negative),
whereas θ3 shows two negative components.

We would like to emphasize that an optimisation algorithm would normally be able to find arbitrarily
only one of these three solutions, if unconstrained optimisation is applied, or one of the two positive
alternatives with positive constrained optimisation.

In addition one can see from Figure 2 that, while the evolution of the measured variables x2 and x3

is invariant, the trajectory of the unmeasured variable x1 markedly changes for each solution. More
specifically, the decay of x1(t) is the slowest with θ1; decays more rapidly, yet remaining positive, with
θ2; and decays fastest with θ3 with negative undershoot. Irrespective of the latter, a practical misleading
impact of these findings could be, for instance, the model-based inference of a bioavailability metric,
e.g. the area under the curve (AUC), for the unaccessible target compartment x1, obtained by estimating
the model parameter from measurements of the other two compartments.
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Figure 2. State trajectories of the three compartment model of Figure 1 determined for the
three locally identifiable parameterization of Table 1. (A) the different time-courses of the
unobserved variable x1(t). (B) the identical model output trajectories y1(t) = x2(t), y2(t) =

x3(t) for all parameterizations of Table 1.

Thus, the measured curves can be equivalently described by the three different parameter sets, but
not all of them may be possible candidates to be the true one. In conclusion, the correct way to proceed
would be to consider and discuss all of the calculated solutions.
Since in biological and biomedical studies, the goal of model identification is usually to estimate
variables that are not directly measurable but whose distinct values can discriminate a pathological
from a normal state, neglecting the hidden solutions could lead to completely erroneous conclusions.
Note that, in this case, the only way to reject some solutions, possibly arriving at only one acceptable
solution, is to check if the behaviours of the unobservable variables are physically acceptable. If not,
the corresponding parameter value can be rejected.

By observing Table 1 and imposing positivity, we can see that two out of three solutions belong to
the admissible parameter space Θ and allow to conclude that two out of three parameterisations are
equally plausible. However, in general, the qualitative results just described lead to different
conclusions depending on the values of the nominal parameter vector θ∗. Nonetheless, only at this
practical stage of rejecting the non admissible parameters, is one allowed to consider the numerical
results as global solutions. For the example considered this can be ascertained very easily, i.e. very
often the model turns out to be uniquely identifiable under positivity constraints of the parameters.
This is a favourable situation in which additional solutions can be rejected demonstrating, in practice,
global identifiability of the model. The new method is based on the analytic calculation of all
numerical solutions of a locally identifiable model in the whole parameter space. We can also have
the chance of discarding some of them and show that the model has only one solution in the
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admissible parameter space, which is of interest in applications. This opens up new perspectives in
theoretical and practical identifiability analysis with important practical implications as shown by
applying this joint methodology to a benchmark biological model.

4. Case study. A locally identifiable HIV model with two solutions

In order to show the relevance of the above methodology in biological applications, we shall analyze
a nonlinear model proposed for the study of HIV virus dynamics [28] and schematically depicted in
Figure 3. It represents the theoretical formulation on which many of the recently developed HIV
models are based. In particular the model examines the interaction of HIV with CD4+ T cells and is
described by the following polynomial nonlinear ODEs:

Ṫc = s − µT Tc + rTc(1 − (Tc + T1 + T2)/Tmax) − k1VTc

Ṫ1 = k1VTc − µT T1 − k2T1

Ṫ2 = k2T1 − µbT2

V̇ = NµbT2 − k1VTc − µvV
y1 = Tc

y2 = V

(4.1)

where Tc is the population size of uninfected CD4+ cells; T1 is the population size of latently infected
cells; T2 is the population size of productively (or actively) infected cells; and V is the population size
of free HIV virus particles. θ = [s, r,Tmax, µT , µb, µv, k1, k2,N] is the unknown parameter vector, and
y1 and y2 are measured outputs in blood. One of the relevant goals of the model is that of predicting,
from the experimental data, the time-course of the unmeasured, hidden, state variables, that are the
population sizes of latently (T1) and of productively infected cells (T2). On the basis of these results,
in fact, the optimal therapeutic decision could be taken.

Figure 3. A model of the HIV virus dynamics.

We apply the differential algebra method and check the local identifiability of the model. Note that
this is an uncontrolled model, thus in the characteristic set of equations (3.2) the variable u

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6438–6453.



6448

disappears. In particular we show that parameters k1, µT , µv, r, s and Tmax are globally identifiable,
while the remaining ones have two different solutions. Now we are aware that there are two distinct
parameter vectors equivalently describing the experimental data, up to the measurement error.

By joining the two structural and practical identifiability approaches we are able to analytically
calculate the second parameter solution, θ2, corresponding to the parameter estimate provided in [28]:
θ∗ = [10, 0.03, 1500, 0.02, 0.24, 2.4, 0.000024, 0.003, 1400]. In fact, as illustrated in the previous
example, we can calculate the known coefficients of the exhaustive summary as functions of the
estimated θ∗ and solve the provided algebraic nonlinear system in the unknowns k1, µT , µv, r, s and
Tmax. The calculated Gröbner basis is the following

{s − 10, r − 0.03,Tmax − 1500, µT − 0.02, µb − 0.24,
µv − 2.4, k1 − 0.000024, k2 − 0.003,N − 1400},
{s − 10, r − 0.03,Tmax − 1500, µT − 0.02, µb − 0.023, µv − 2.4,
k1 − 0.000024, k2 − 0.22,N − 199.21}

(4.2)

The two solutions θ∗ and θ2 are reported in Table 2. Note that only µb, k2 and N have two solutions
while the remaining parameters are globally identifiable. The relevant fact is that these two solutions
are equivalent in the sense that they equivalently describe the data (with the model starting from the
same given initial conditions Tc(0) = 1000,T1(0) = 0,T2(0) = 0,V0(0) = 0.001 [28]). However these
equivalent solutions are different even by an order of magnitude and, not surprisingly, they lead to
two different predictions of the unmeasured state variables T1 and T2. In particular we refer to the
parameters µb, k2 and N which have a central role in the possible interpretations of the model and of its
results. In fact, by considering θ∗, one can see that the model predicts a very high viral cell production
N and a very low conversion rate k2 of latent T1 cells to infected T2 cells, and a high rate constant µb.
Conversely, θ2 provides a much smaller value for N together with a k2 two order of magnitude larger
than before, and µb one order of magnitude smaller than before. This means that the same time-course
of V and Tc are due to both a high value of k2 and a small value of µb and of N, or viceversa. Maybe
it could be of interest for a physician to know which is the situation in order to correctly address
the therapy choice. Furthermore, by looking at Figure 4, one can easily realize that not only these
predictions are quite different, but the difference appears only after two years.

It is interesting to observe that the product of all rate constants which is representative of the closed
loop gain, i.e. k2 · µb · N, must be invariant for both the solutions θ∗ and θ2. In this case the above
product is equal to 1.008 corresponding to a fractional daily growth rate of 0.8% (day−1).

The model prediction provided by the estimated parameter vector θ∗ are widely discussed in [28]
where the following features are stressed:

1. after an initial phase of infection in which the number of T1 and T2 increases over time, a quasi-
steady state is reached

2. the curves of T1 and T2 over the time are essentially identical, up to a scale factor.

The authors stated that many findings were expected and consistent with a number of quantitative
observations. However some features did not match these observations. In order to correct this
deficiency, the authors proposed further modifications of the model that include more realistic
assumptions about the biology of HIV. Very interesting is the observation of Perelson et al. (1993)
regarding the number of latently infected cells: ”the number of latently infected cells grows to
unrealistically high levels, ...”.
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Table 2. The two solutions of the HIV model.

Parameter Units θ∗ θ2

sa (day−1mm−3) 10 10
ra (day−1) 0.03 0.03

T a
max (mm−3) 1500 1500
µa

T (day−1) 0.02 0.02
µb (day−1) 0.24 0.023
µa

v (day−1) 2.4 2.4
ka

1 (mm3 day−1) 2.4·10−5 2.4·10−5

k2 (day−1) 0.003 0.22
N 1400 199.21

a globally identifiable parameter.
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Figure 4. Predicted trajectories of the unobservable variables representing cell
concentrations of latent T1 (upper panel) and infected T2 (bottom panel) cells.

These interpretations have been obtained without the knowledge of the second solution θ2, which
possibly could be the more realistic one. From the joint identifiability method, presented here, we know
exactly the numerical value of both the ”candidates” θ∗ and θ2. This knowledge completes the results
obtained in [28] and would allow a correct discussion on them. In principle, in fact, the two solutions
are equivalent with respect to the description of the experimental data, thus the model predictions
provided by θ2 should be discussed on the same terms as done for those provided by θ∗. Maybe θ2

should be rejected in favour of θ∗, maybe it could better match the model independent known clinical
data, providing the correct solution and avoiding the introduction of assumptions made only to correct
the model predictions.
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In this case study, it is interesting to observe that the ”hidden” solution θ2 predicts:

1. a number of latently infected cells, appearing only after two years, very different from that
predicted by using θ∗, and

2. a number of free virus produced by lysing a CD4+ T cell about seven times smaller than that
predicted by using θ∗, which could be a more plausible result.

By ignoring this possible solution can lead the physician to possibly erroneous decisions given that
depletion values are used in a clinical setting as indicators of the disease stage.

We can conclude that the knowledge of each of the finite number of parameter vectors of a locally
identifiable model is essential to provide a complete picture for a correct interpretation of results.

5. Discussion

In this Section some specific aspects related to the proposed methodology will be discussed further.
Global structural identifiability is a prerequisite for the related optimisation problem to be

well-posed. In particular, for well-posedness according to Hadamard it is assumed that a solution of
the optimisation problem: (i) exists; (ii) is unique; and (iii) continuously depends upon the data [29].
Our method calculates one optimal solution of a locally identifiable model and then all its R-relatives
that represent an equivalence class, definition (2), defined in the complex space. Thus, in this
perspective, by relaxing the uniqueness requirement, also the identification of locally structurally
identifiable models can be viewed as a well-posed problem in the generalised sense of Tykhonov [29].

To check the uniqueness of parameter solution, structural identifiability analysis solves a system of
nonlinear algebraic equations with real coefficients. Thus the answer holds in the whole complex space
Cp, i.e. the solutions can be either real positive; real negative; or complex conjugate [17]. In particular,
when the model is globally identifiable, the unique solution corresponds to the real one, but when the
model is locally identifiable, we know the number of solutions inCp but not in the admissible parameter
space Θ ⊂ Rp, as we would be practically interested. Typically, for biological and biomedical models,
reality and positivity are required. By applying the joint method proposed in this paper, all the model
parameter solutions are numerically calculated and it can happen that some of these solutions are not
admissible. At this stage, we can select the solutions belonging to the admissible parameter space Θ.
The numerical solutions which are not admissible can be discarded possibly arriving at an a posteriori
uniquely identifiable system.

We successfully apply our method to many biological and biomedical models recently published in
the literature. Being based on analytic calculations, the method may be limited by its computational
complexity and it can not tackle with overly complex model structures. On the other hand multi-start
local optimization methods allow to explore the parameter space by starting from multiple points thus
they can be easily parallelised and less computationally demanding. However, when applicable, only
by preceding these last methods by a structural identifiability test the investigator becomes aware of
the presence of all multiple solutions and can directly proceed to their calculations.

Some existing numerical optimisation algorithms, such as multi-start methods combined with local
search, are able to determine multiple optimal solutions. However, to the best of our knowledge, no
algorithms have been developed to explicitly find the equivalence classes of parameters introduced
in this study. Bayesian inference algorithms, implementing Markov-Chain Monte Carlo (MCMC)
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simulation, may be able to detect multiple solutions that characterize local identifiability. However,
since equivalent parameterisations generate identical model outputs, no difference in Likelihood are
expected between different equivalent parameters. Thus it is difficult to predict the behaviour of an
MCMC simulation run.

It is important to outline that structural identifiability analysis can be viewed as a tool for checking
the adequacy of the designed experiment, possibly before collecting experimental data. This is crucial
in biomedical studies where severe experimental limitations are imposed for ethical and practical
reasons.

Finally, it is worth noting that if a model is structurally identifiable, it may nevertheless turn out to be
practically non-identifiable. In this case the inability to unequivocally estimate model parameters may
be caused by a number of distinct reasons, among which: (1) excessive noise in the measurements,
(2) poor or very sparse sampling schedules, (3) poorly designed experiments, where measurement
locations or inputs are missing or insufficiently informative. However, if the model turns out to be
practically non identifiable, only by first checking structural identifiability it is possible to know if
the problem lays on a too complex model-experiment structure or on the above reasons related to
experimental data. Our proposed method allows for this distinction, thus providing the investigator a
useful suggestion on how to proceed to make the model identifiable.

6. Conclusion

We motivate here a joint use of two different identifiability techniques which guarantees to find all
the numerical parameter solutions of a dynamic model described by rational ODE’s. As demonstrated
in a simple three compartment model, by neglecting possible parameter solutions one can erroneously
predict the behaviour of some unmeasured variables leading to ambiguous interpretations of model
results.

The two methodologies, namely structural identifiability and practical identifiability, are
traditionally regarded as disjoint because they are based, in turn, on differential algebraic
manipulations and on numerical simulation of systems equations. In this study we propose to apply
first the structural identifiability test to count the parameter solutions and also to provide their analytic
relations. In fact, the method gives the polynomials defining the class of equivalence of the parameter
solutions with respect to their ability to describe the I/O experimental data. Second, to apply the
practical identifiability to simulating/estimating one numerical parameter value and to go back to the
structural results, in order to analytically calculate all the equivalent parameter solutions of the
dynamic model. This is a relevant result in biological/biomedical modeling where often the goal is
that of predicting the behaviour of the variables not directly accessible to the measure. By neglecting
some possible parameter solutions describing the same I/O data, one cannot predict the corresponding
internal variables behaviours which remain hidden. Finally, to assess all the admissible parameter
estimates by rejecting the non admissible ones, possibly arriving at a globally identifiable model.

We claim that by implementing this joint method which guarantees to find all the model parameter
solutions makes the identification process from real data more rigorous and reliable. In order to show
the relevance of these ideas in the biological areas, we applied them to a model of HIV virus dynamics
by showing that, without calculating all the equivalent parameter solutions, there is a risk of large bias
in the biological interpretation of the results.
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