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Abstract: Transcription is a pivotal step in gene expression yet a complex biochemical process. It
occurs often in a bursty manner, leading to cell-to-cell variability important for the cells surviving
in complex environments. Quantitative experiments of such stochastic transcription call for model
analysis in a systematic rather than case-by-case fashion. Here we analyze two general yet biologically-
reasonable classes of stochastic transcription models: the first class called promoter models considers
that promoter structure is general, and the second class called queuing models considers that waiting-
time distributions are general. For the former, we show that there are conjugate relationships between
models with different transcription exits. This property well reveals the mechanic principle of
stochastic transcription in complex cases of transcription factor regulation. For the latter, we establish
an integral equation for the mRNA moment-generating function, through which stationary mRNA
moments of any orders can be analytically derived. Finally, we analyze parametric regions for robust
unimodality and bimodality. The overall analysis not only lays a foundation for quantitative analysis
of stochastic transcription but also reveals how the upstream promoter kinetics impact the downstream
expression dynamics.

Keywords: stochastic transcription; chemical master equation; unimodal distribution; bimodal
distribution; cellular phenotype

1. Introduction

Transcription is not only a central process in life but also a pivotal step in gene expression since it
determines when and how the genetic information stored in DNA is transcribed into messenger RNA
(mRNA) molecules that are further translated into proteins that virtually participate in all cell
functions. Transcription occurs often in a bursting fashion [1–5], leading to substantial variations in
mRNA and further protein abundances. Single molecule measurement technologies have provided
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evidence for transcriptional bursting, i.e., production of mRNAs in bursts [6–9]. This noise has been
identified as an important source of cell-to-cell variability [3, 10–16]. Owing to its importance,
stochastic transcription has received extensive attention in recent years. However, quantitative
experiments of stochastic transcription call for a modeling effect that addresses transcriptional
mechanisms in a systematic rather than case-by-case fashion.

Transcription is the most complex step in gene expression, involving ordered assembly of
pre-initiation complexes, recruitment of various polymerases, chromatin remodeling, binding and
unbinding of transcription factors (TFs) to DNA regulatory sites, etc. [17–19]. These factors or
processes either result in non-exponential distributions of ON and OFF times (i.e., the times that the
gene dwells at active and inactive states) [11, 16, 20], or create complex promoter
structures [18, 21–25]. The former case occurs mainly because, e.g., some of the chromatin states are
transcriptionally permissive, and together make up the ON-phase of the gene and allow for (repeated)
multistep assembly of the preinitiation complex and promoter escape. This will motivate us to
introduce a so-called queuing model of stochastic transcription, where the distributions of the ON and
OFF times may be arbitrary. The latter case may occur in prokaryotic and eukaryotic cells. For
example, the PRM promoter of phage lambda in E. coli is regulated by two different TFs binding to
two sets of three operators that can be brought together by looping out the intervening DNA and as a
result, the number of regulatory states of the PRM promoter may be up to 128 [26]. In contrast,
eukaryotic promoters may be more complex since they would involve, e.g., nucleosomes competing
with or being removed by TFs [27], and epigenetic regulations via histone modifications [19, 28, 29].
In a word, complex promoters with more than two activity states are not the exception but the rule as
combinatorial control of gene regulation by multiple TFs is widespread [9, 25, 30, 31]. This will
motivate us to introduce another model of stochastic transcription (called the promoter model), where
the promoter may contain many active and inactive states and there are random transitions among
them. For both generalized models, an unsolved issue is how the upstream promoter dynamics affects
the downstream expression dynamics, and in particular, how mRNA distribution is derived.

On the other hand, a different mRNA distribution describes a different pattern of cell-to-cell
variability at the transcription level, or represents a different cellular phenotype. As a matter of fact,
bimodality of gene expression, as a mechanism driving to phenotypic diversity, can enhance the
survival of cells in a fluctuating environment [32]. Unimodality also has similar biological function,
e.g., the unimodal expression of Tat (a vital gene in HIV-1 viral) can drive phenotypic diversity of
clonal populations through inducing phenotypic bifurcation [33, 34]. In simplified cases or under
strong assumptions, previous studies showed that distributions of gene product (mRNA or protein)
may follow simple distributions such as Poisson distribution [4, 35], Gamma distribution [36, 37] and
Beta distribution [9, 38, 39]. These simple distributions provide explicit and intuitive relationships
between cellular phenotypes and expression patterns. In general, however, the mRNA numbers
follows more complex distributions expressed by confluent hypergeometric functions, as shown in
previous studies [24, 39]. This raises another question: How are unimodal or bimodal mRNA
expressions robustly shaped? From the viewpoint of synthetic biology, studying this question is
significant since it can help biologists design robust experiments and interpret their experimental
results. We point out: (1) with the emergence of single cell measurement techniques, there have been
increasingly rich data on distributions of gene systems [40, 41]. These distributions, which are in
general stationary, are still biologically reasonable if a set of reactions proceeds much faster than
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environmental changes; (2) the stationary distribution and the corresponding statistics are important
quantities characterizing the steady-state behavior of many biochemical systems. Therefore, we will
focus on the steady-state distribution and moments of mRNA.

This article is organized as follows. In section 2, we analyze a promoter model with arbitrarily
complex promoter structure at the stochastic transcription level. By analysis, we find that there are
conjugate relationships between mRNA distributions, which well reveal the essential principle of
stochastic transcription in complex cases of TF regulation. In section 3, we analyze a queuing model
of stochastic transcription, where waiting-time distributions are general (e.g., non-exponential). For
this model, we derive an analytical formula for calculating raw moments, and give a strategy for
reconstructing the mRNA distribution from raw moments. In section 4, by mathematical analysis
combined with numerical simulation, we give robust regions for unimodal and bimodal expressions in
two specific models of stochastic transcription. Finally, we conclude this paper and give some
discussions.

2. Analysis of a gene model with arbitrary promoter structure

2.1. Model description and stationary mRNA distribution

As pointed out in the introduction, a gene promoter (i.e., a regulatory sequence) may contain many
activity states (referring to Figure 1, which shows a biologically feasible example [21]), and there are
random transitions between these states. We assume that the promoter has N activity states in total. For
analysis simplicity, we further assume that there is transcription only at ON state whereas there is no
transcription at OFF state, and there are transitions among these states with constant transition rates.
To incorporate effects of TF regulation, we assume that the TFs act directly on transition rates [21], so
that these rates may change in some finite ranges. In addition, we assume that all the produced mRNAs
degrade in a linear manner. Here we do not consider protein levels since mRNA levels can well explain
stationary protein levels in many situations [42].

Denote by m the number of mRNA molecules, and let P(m; t) represent the distribution that mRNA
has m molecules at the kth state of promoter and denote by P = (P1, · · · , PN)T the column vector
consisting of these factorial distributions. Denote by λ j j the transition rate from state-i to state- j (λ j j =

0 means that no transition occurs). Let the N × N matrix W = (λ j j) describe transitions between
promoter states (called transition matrix), the diagonal matrix Λ = diag(µ1, · · · , µN) describe exits of
transcription (called transcription matrix) with µi representing the transcription rate of mRNA in state-i
(µi = 0 means that no transcription takes place), and the diagonal matrix δ = diag(δ1, · · · , δN) describe
the degradation of mRNA. The chemical master equation describing mRNA dynamics takes the form

∂

∂t
P(m; t) = WP(m; t) + Λ(E−1 − I)[P(m; t)] + δ(E − I)[mP(m; t)], (2.1)

where E and E−1 are step operators and I is the identity operator. Clearly, the first term in Eq (2.1)
describes promoter dynamics with transition matrix W being actually an M-matrix (i.e., the sum of
every column or row elements is equal to zero), the second term describes the exits of transcription
with transcription matrix Λ, and the third term describes the degradation dynamics of mRNA with
degradation matrix δ (throughout this paper, we will assume that all the degradation rates are the same.
Without loss of generality, we further assume that the common degradation rate is 1. This is equivalent
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Figure 1. A biological example for gene model with multiple activity states [21], where the
five promoter states indicated by C, R, N, B, and A correspond to binding of TetR, TBP,
and RNA Pol II to promoter DNA in the following combinations: both TBP and TetR bound
(”Combined” state C), only TetR bound (”Repressed” state R), only TBP bound (”Bound”
state B), neither TBP nor TetR bound (”Neutral” state N), and TBP and RNAPol II bound
(”Active” state A). States C, R, and N (TBP not bound) represent inactive promoter states,
while states B and A (TBP bound) represent active promoter states. The transition rate from
B to N (and C to R) depends on TBP-DNA stability, while the transition rate from state N to
R depends on the inducer concentration.

to the normalization of all other parameters by this common rate). We point out that model (2.1)
includes many previously-studied gene models as its particular case.

In order to solve (2.1), we simply introduce the convergent moment (CM) approach that we
developed previously [43]. CMs of a distribution in the one-dimension bk =

∑
n≥k

(
n
k

)
P(n), k =

0, 1, 2, · · · , all cases are defined as

bk =
∑
n≥k

(
n
k

)
P(n), k = 0, 1, 2, · · · , (2.2)

with b0 = 1 that corresponds to the conservative condition of probability. It is easy to verify that the
CMs defined in such a way are actually coefficients in the Taylor series of the probability-generating
function, denoted by g(z) , corresponding to the probability p(n) , that is, bk = (1�k!)∂kg(z)�∂zk |z=1.
Importantly, if all the CMs are finite and given, we can have the following formula for reconstructing
the distribution

P(n) =
∑
k≥n

(−1)k−n

(
n
k

)
bk, n = 0, 1, 2, · · · , (2.3)

where symbol
(

n
k

)
represents the common binomial coefficients.

Now, we return to (2.1). Denote by bk the kth order CM of the total distribution P =
∑N

i=1 Pi and by
b(i)

k the kth order CM of the factorial distribution Pi . Next, we can derive the following CM equation
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from (2.1)
dbk

dt
= Wbk + Λbk−1 − kbk, k = 1, 2, · · · , (2.4)

where W and Λ have been rescaled by δ, and bk = (b(1)
k , · · · , b(N)

k )T is a column vector consisting of
factorial CMs. See Appendix A for the derivation of (2.4). Finding steady-state mRNA distribution is
common interest. According to (2.3), the key is to find stationary CMs bk . For this, we have

Proposition 1 Steady-state CMs bk are given by

bk =
1

k!
∏k

i=1
∏N−1

j=1 (i + α j)
uN

1∏
i=k

[(iI −W)∗Λ]b0, k = 1, 2, · · · , (2.5)

where uN = (1, 1, · · · , 1) is an N-dimensional row vector, 0,−α1,−α2, · · · ,−αN−1 are nonzero
characteristic values of M-matrix W; (iI − W)∗ is the adjacency matrix of matrix (iI − W); and
b0 = (b(1)

0 , · · · , b(N)
0 )T is given by

b( j)
0 =

N−1∏
i=1

β
( j)
i

αi
, 1 ≤ j ≤ N, (2.6)

in which −β( j)
1 ,−β

( j)
2 , · · · ,−β

( j)
N−1 are the characteristic values of W j , the minor matrix of W after

crossing out the jth row and jth column of the entry λ j j of W.

Proof Here, we only provide main steps of the proof. See Appendix B for more details.
First, note that at steady state, (2.4) becomes the following iterative form

(kI −W)bk = Λbk−1, k = 1, 2, · · · . (2.7)

Using the fact that W is an M-matrix, i.e., the sum of every row elements is equal to zero, it is not
difficult to verify (2.5).

Second, note that the Laplace’s formula for M-matrix W gives

W (det(W1), · · · , det(WN))T = det(W)I = 0, (2.8)

the null space of W is one-dimensional, and (2.7) holds for k = 0 (implying Wb0 = 0). Therefore, we
can set the formal expression of b0 as b0 = c(det(W1), · · · , det(WN))T , where c is a constant, given by

c =

 N∑
k=1

det(Wk)

−1

= (−1)N−1 +

 N∑
k=1

N−1∏
i=1

βk
i

−1

. (2.9)

Third, if we denote by

fW(x) = det(xIN −W) = x(x + α1) · · · (x + αN−1), (2.10)

the characteristic polynomial of matrix W , it is not difficult to show

d fW(x)
dx

|x=0 = tr((−W)∗) = (−1)N−1
N∑

k=1

det(Wk) =

N∑
k=1

N−1∏
i=1

βk
i =

N−1∏
i=1

αi (2.11)
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where ”tr” represents the matrix trace.
Finally, using (2.10) and considering the components of vector b, we have

b(k)
0 = c· det(Wk) = (−1)N−1

N−1∏
i=1

αi

−1

(−1)N−1
N−1∏
i=1

βk
i =

N−1∏
i=1

βk
i

αi
, 1 ≤ k ≤ N, (2.12)

thus proving Proposition 1.
After having obtained all the stationary CMs, we can reconstruct the stationary mRNA distribution

using (2.3). From (2.7) and using the fact that W is an M-matrix, we can show

bk = uNbk =
1
k

N∑
i=1

µib
(i)
k−1 =

1
k

uNΛbk−1, k = 0, 1, 2, · · · . (2.13)

Thus, it is particularly interesting that if all the states of the promoter are ON with the same
transcription rate µ , i.e., if Λ = µIN, the mRNA number obeys to the following Poisson distribution

P(m) = e−µ
µm

m!
,m = 0, 1, 2, · · · . (2.14)

This indicates that the mRNA distribution is completely determined by a single parameter
(transcription rate), independent of promoter structure. This property has the following implication: if
transcription rates are not exactly the same, the corresponding mRNA distribution is definitely not a
simple Poissonian one. In this case, deriving its analytical expression is challenging.

2.2. Conjugation

In order to address the above challenge, here we introduce the conception of conjugation. By
conjugation we mean that for two gene models with the same transition pattern between promoter
states (i.e., both have the same transition rate matrix W), denoted by Model A and Model B, if their
transcription matrices take the specific forms: ΛA = diag((µ + ε)Ik, µIN−K) for Model A and ΛB =

diag(µIK(µ+ε)IN−k) for Model B, where ε is a real number and may be equal to −µ , and K is a positive
integer of less than N , next we call Model A conjugate to Model B or vice versa. Such conjugation
is existent in natural or synthetic biological systems, e.g., for the example illustrated in Figure 1(A)
(denoted by Model A), if states C, R, and N are active while states B and A are inactive, the resulting
model becomes a conjugate model of Model A. The conjugation is useful in revealing relationships
between complex mRNA distributions. In the following, for a system of gene expression with promoter
states, let P(m; t) = (P1(m; t), · · · , PN(m; t))T and G(z; t) = (G1(z; t), · · · ,GN(z; t))T be the column
vectors consisting of factorial probabilities Pi(m; t) with 1 ≤ i ≤ N and the corresponding factorial
probability-generating functions Gi(z; t) with Gi(z; t) =

∑
m≥0 Pi(m; t)zm and 1 ≤ i ≤ N, respectively; let

P(m; t) =
∑N

i=1 Pi(m; t) and G(z; t) =
∑N

i=1 Gi(z; t) represent the total probability and the corresponding
total probability-generating function, respectively.

2.3. Distribution properties

The above CM approach can in principle give the exact mRNA distributions in gene models with
arbitrary promoter structure, which however may be complex in form [25]. For example, for the
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common ON-OFF model of stochastic transcription, we know that the mRNA distribution is expressed
by a complex confluent hypergeometric function [24]. To see that these reconstructed distributions
belong to which types, we check the corresponding Fano factors defined as the ratio of variance over
mean. This is because if the Fano factor is less than 1, the distribution is sub-Poissonian, if it is equal
to 1, the distribution is Poissonian, and if it is greater than 1, the distribution is sup-Poissonian [45].
For clarity, we consider a specific case, that is, the promoter has one ON state and N − 1 OFF states,
which altogether form a loop (i.e., the so-called DNA loop [46]). In this case, we can show

Fano − Factor = 1 + 〈m〉

N−1∏
i=1

αi

β(N)
i

 N−1∏
i=1

β(N)
i + 1
αi + 1

 − 1

 , (2.15)

where 〈m〉 represents the mean number of mRNA molecules and can be expressed as
〈m〉 = µ〈τon〉/(〈τon〉 + 〈τo f f 〉) with µ being the transcription rate, and 〈τon〉 and 〈τo f f 〉 representing the
mean times dwelling at ON and OFF states, respectively. We can prove that β(N)

i ≤ αi for any
i = 1, 2, · · · ,N − 1. Therefore, the term in the big bracket of (2.15) is larger than or equal to zero,
implying that for stochastic gene transcription, the mRNA distribution is either sup-Poissonian or
Poissonian, independent of promoter topology. Regarding conjugation between two systems of gene
expression with the same number of promoter states, we have the following theorem.

Theorem 1 For two conjugate stochastic transcription Models A and B, if we let two pairs PA(m; µ),
GA(z), and PB(m; µ), GB(z) represent the distributions and probability-generating functions

GA(s) = eεsGB(−s), PA(m; µ) = eεs
m∑

k=0

em−k

(m − k)!
PB(m;−µ), (2.16)

where s = z − 1.

Proof Consider the following two models of stochastic transcription
Model A:

∂

∂t
P(m; t) = WP(m; t) + ΛA(E−1 − I)[P(m; t)] + δ(E − I)[mP(m; t)].

Model B:
∂

∂t
Q(m; t) = WQ(m; t) + ΛB(E−1 − I)[Q(m; t)] + δ(E − I)[mQ(m; t)].

Introduce probability-generating functions: GA(z; t) =
∑

m≥0 P(m; t)zm, GB(z; t) =
∑

m≥0 Q(m; t)zm.
Then

∂

∂t
GA(z; t) =

∑
m≥0

zm ∂

∂t
P(m; t)

=
∑
m≥0

zm
(
WP(m; t) + ΛA(E−1 − I)P(m; t) + δ(E − I)(mP(m; t))

)
= WGA(z; t) + ΛA

∑
m≥0

zmP(m − 1; t) −
∑
m≥0

zmP(m; t)

 + δ

∑
m≥0

(m + 1)zmP(m + 1; t) −
∑
m≥0

mzmP(m; t)


= WGA(z; t) + (z − 1)ΛAGA(z; t) − (z − 1)δ

∂

∂z
GA(z; t).
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Assume δ = δI with δ being a positive constant, and set s = z − 1. Next, we have

∂

∂τ
GA = W̃GA + sΛ̃AGA − s

∂

∂s
GA, (2.17)

where τ = δt, W̃ and Λ̃A have been scaled by δ. Similarly, we can obtain
∂

∂τ
GB = W̃GB + sΛ̃BGB − s

∂

∂s
GB, (2.18)

where Λ̃B has been scaled by δ. Multiplying e−εs on both sides of (2.17) and noting that s is unrelated
to τ yield

∂

∂τ

(
e−εsGA

)
= W̃

(
e−εsGA

)
+ sΛ̃A

(
e−εsGA

)
− se−εs ∂

∂s
GA

= W̃
(
e−εsGA

)
+ sΛ̃A

(
e−εsGA

)
− s

∂

∂s
(
e−εsGA

)
− sε

(
e−εsGA

)
.

In other words, under the transformation GA = eεsFA , (2.17) is transformed into
∂

∂τ
FA = W̃FA + s

(
Λ̃A − εI

)
FA − s

∂

∂s
FA, (2.19)

which is similar to (2.18) in form, where Λ̃A − εI = −Λ̃B is a constant matrix. Thus, according to the
transformation GA = eµsFA and noting that −s∂/∂s = −(−s)∂/∂(−s) , we know that the first equality in
(2.16) holds. Furthermore, through the relationship P(m; t) = (1/m!)(∂mG/∂zm)|z=0, where P =

∑N
i=1 Pi

and G =
∑N

i=1 Gi are respectively the total probability distribution and the total probability-generating
function, it is not difficult to verify that the second equality in (2.16) also holds. To that end, the proof
of Theorem 1 is completed.

From (2.16), we see that PA(m; µ) is actually a binomial convolution of PB(m; µ) and a Poisson
distribution. We point out that by making use of the conjugation idea, one can find analytical
distributions in complex gene models, e.g., the gene model with one OFF state and two ON states is
difficult to solve but the gene model with two OFF state and one ON states is easy to solve. Using the
conjugation idea, we can transform the question of solving the former into that of solving the later. To
show this point clearly, here we consider a more general case. Assume that for some multi-state
model of stochastic transcription, the steady-state equations for probability-generating functions are

N∑
k=1,,i

λkiGk −

N∑
k=1,,i

λikGi − s
∂Gi

∂s
+ µsGi = 0, i = 1, 2, · · · ,N − 1,

N−1∑
k=1

λkNGk −

N−1∑
k=1

λNkGN − s
∂GN

∂s
+ (µ + ε)sGN = 0,

(2.20)

where s = z − 1, and parameter ε may take any value in the interval [−µ, µ] . This equation group
seems difficult to solve since the corresponding gene model contains multiple nontrivial transcription
exits. However, the following equation group

N∑
k=1,,i

λkiFk −

N∑
k=1,,i

λikFi − s
∂Fi

∂s
= 0, i = 1, 2, · · · ,N − 1,

N−1∑
k=1

λkN Fk −

N−1∑
k=1

λNkFN − s
∂FN

∂s
+ εsFN = 0

(2.21)
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which corresponds to the gene model with one ON state and N − 1 OFF states and hence is easy to
solve [24]. Moreover, using the above CM approach, we can obtain the solution for the total generating
function Fs =

∑N
i=1 Fi(s)

F(s) = N−1FN−1

(
β(N)

1 , · · · , β(N)
N−1

α1, · · · , αN−1

∣∣∣∣∣; εs
)
, (2.22)

where nFn

(
a1,··· ,an
b1,··· ,bn

∣∣∣;σ)
is a confluent hypergeometric function [44]. Note that (2.20) and (2.21) are

conjugate under the transformation Gi = eµsFi . Thus, we obtain the analytical expression for the total
generating function Gs =

∑N
i=1 Gi(s)

G(s) = eµsF(s)N−1FN−1

(
β(N)

1 , · · · , β(N)
N−1

α1, · · · , αN−1

∣∣∣∣∣;−εs
)
. (2.23)

Furthermore, using the relationship P(m) = Gm(0)/m!, we obtain analytical steady-state mRNA
distribution in the underlying model of stochastic transcription, which is given by

P(m) =
e−µ

m!

m∑
k=0

(
m
k

)
εm−kµk

N−1∏
i=1

(β(N)
i )k

(αi)k
N−1FN−1

k + β(N)
1 , · · · , k + β(N)

N−1

k + α1, · · · , k + αN−1

∣∣∣∣∣;−ε . (2.24)

Before concluding this section, we discuss the relationship between this hypergeometric type
distribution and Poissonian distribution. In fact, if there is only one ON state without OFF state, the
distribution is Poissonian. Also, if there is only one OFF state without ON state, the distribution is
degenerative. Consider a promoter structure with K ON states and L OFF states. For slow promoter
switch rates, one observes the characteristic distribution that results from the mixture of K Poissonian
distributions and L degenerate distributions approximately. For fast promoter switch rates, the
characteristic distribution is a Poissonian distributions with mean synthetic rate approximately. For
moderate promoter switch rates, the characteristic distribution is very complicated hypergeometric
type.

3. Analysis of a gene model with any waiting-time distributions

3.1. Calculation of raw moments

The extensively used two-state model of gene expression [37, 47–50] assumes that gene promoter
has two states: one active (ON) state and one inactive (OFF) state and two transition rates between
these states are constants (implying that times that the gene dwells at ON and OFF states, i.e., ON
and OFF times, follow exponential distributions). However, transcription depends on the chromatin
template that accumulates over time until the promoter becomes active [24]. This implies that OFF
times do not follow a simple exponential distribution but may be general [51]. Similarly, ON times
may also follow a non-exponential distribution [20]. Some recent experimental papers [52, 53] also
showed non-exponential promoter switching times. In addition, the mRNA degradation may undergo
a multistep process, implying that the distribution of mRNA’s half lifetimes may be non-exponential.
For such a gene model that one can find its prototypes in the real biological systems [16], there are
few studies. Here, we apply standard results from the queuing theory [50,51,54,55] to analyze a state-
waiting model of stochastic transcription with general waiting-time distributions fon(t), fo f f (t), and h(t),
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referring to Figure 2. A similar model was previously studied in [56]. Importantly, we derive explicit
formulae for calculating the moment-generating function corresponding to the mRNA distribution,
which can in turn be used for quantitative analysis of mRNA noise and even for reconstruction of the
mRNA distribution. We point out that the gene model considered here can be viewed as an extension
of the gene model considered above. In fact, for the later, we can show [25]

fon(t) = uKW10exp(W11t)W01uT
K ,

fo f f (t) = uLW01exp(W00t)W10uT
L ,

(3.1)

where W =
(

W00,W10
W01,W11

)
is a block matrix, uK = (1, 1, · · · , 1) and uL = (1, 1, · · · , 1) are two row vectors.

Here, W11 and W00 describe transitions among the ON states and among the OFF states respectively,
whereas W10 and W01 describes how the ON states transition to the OFF states and vice versa
respectively. Note that two functions fon(t) and fo f f (t) are in general the sums of exponential
functions of t, implying that ON- or OFF-times follows a non-exponential distribution.

mRNA

OFF ON

bursting

f toff( )

f ton( )

exponential distribution
waiting time

Figure 2. The schematic for a queuing model of stochastic transcription, where the times
that the gene dwells at ON and OFF states are assumed to follow general distributions, and
mRNA is synthesized in a bursty manner and degrades in a multistep manner.

Assume that the synthesis rate of mRNA, µ, is a constant. Denote by P(m; t) the mRNA
distribution at time t and by W(z; t) the corresponding moment-generating function with the initial
condition denoted by Winit(z) = W(z; 0). Unlike the case of common gene models where waiting-time
distributions are exponential, we in general cannot establish the master equation for P(m; t) in the case
of general waiting-time distributions fon(t), fo f f (t), and h(t), since the corresponding processes are
non-Markovian. Therefore, we will turn to consider moments of P(m; t), and apply queuing theory to
establish integral equations for moment-generating functions.

First, we establish the following proposition.

Proposition 2 Let h(t) be the survival probability density function and H(t) =
∫ ∞

t
h(τ)dτ be the survival

function of mRNA. We have

W(z; t) = Winit(log(1 + H(t)(ez − 1))). (3.2)

Proof In order to prove (3.2), we need to make assumptions: (I) there are N mRNAs produced at time
t = 0 . In general, N itself is a random variable, and every mRNA Xi ( 1 ≤ i ≤ N) at time t is also
a stochastic variable, taking the value of either 1 (representing survival) or 0 (representing death); (II)
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every Xi is independent of random variable N (this assumption seems reasonable from the viewpoint
of biology); (III) all the stochastic variables Xi ( 1 ≤ i ≤ N) are independent of one another, each
following a Bernoulli distribution with the moment-generating function given by M(z) = 1+H(t)(ez−1)
[20, 50, 54].

Note that the total molecule number of mRNA at time t, given by S = X1 + · · · + XN , is a random
variable. By the definition of moment-generating function, we know W(z; t) = 〈ezS 〉S . Also note that
the mean 〈ezS 〉S can be expressed as 〈ezS 〉S = 〈〈ez(X1+···+XN )|N〉X〉N . The above assumption (III) implies
〈〈ez(X1+···+XN )|N〉X〉N = 〈〈ezX1 |N〉X · · · 〈ezXN |N〉X〉N . Again by the definition of moment-generating
function, we have 〈ezXi |N〉Xi = M(z) with 1 ≤ i ≤ N and the above assumption (II) yields
〈ezXi |N〉Xi = 〈(M(z))N〉N = 〈eNlog(M(z))〉N . According to the meaning of Winit(z), we know
Winit(log(M(z)) = 〈eNlog(M(z))〉N . Substituting the known expression M(z) = 1 + S (t)(ez − 1) into
Winit(log(M(z)), we immediately obtain (3.2) and Proposition 2 is thus proved.

Next, we follow the standard derivation of the moment-generating function in queuing theory to
derive an integral equation for Winit(z) [20, 54], which is a key for calculating raw moments. For this,
we give the following proposition.

Proposition 3 The initial moment function Winit(z) satisfies the following integral equation

Winit(z) =

∫ ∞

s=0

∫ ∞

t=0
Winit(log(1 + H(s + t)(ez − 1)))eρt(ez−1) fon(t) fo f f (s)dtds, (3.3)

where ρt = µ
∫ t

0
H(τ)dτ.

Proof Let time t = 0 be the beginning of an OFF-state and W(z; t) be the moment-generating function
of mRNA molecules at time t (0 ≤ t ≤ ton + to f f ) as motioned above. The completion of one cycle
(OFF- and ON state) define the boundary condition:

W(z; 0) = M(z; ton + to f f ) =

∫ ∞

s=0

∫ ∞

t=s
W(z; t) fon(t − s) fo f f (s)dtds. (3.4)

This equation in principle determines Winit(z) due to Winit(z) = W(z; 0) if W(z; t) is known. However,
the expression of W(z; t) seems difficult to derive. Here, we introduce another strategy to calculate
Winit(z), which is based on specification of moment-generating functions during an OFF duration and
an ON duration.

Given the distribution of mRNA life times, h(t), the probability that one mRNA molecule is still
present after time ∆t is a Bernoulli random variable with the moment-generating function given by
1 + H(∆t)(ez − 1) [50, 51, 54]. Starting with the moment-generating function W(z; 0) = Winit(z) and
considering only degradation of mRNAs, the compound moment-generating function at time ∆t is
given by

W(z; ∆t) = Winit(log(1 + H(∆t)(ez − 1))). (3.5)

Therefore, at the end of an OFF-state (denoted by to f f the corresponding time), the
moment-generating function W(z; to f f ) should be equal to the integral of the initial
moment-generating function Winit(log(1 + H(s + t)(ez − 1))) multiplied by the OFF-time distribution
fo f f (t) over the infinite interval (0,∞), that is,

W(z; to f f ) =

∫ ∞

t=0
Winit(log(1 + H(t)(ez − 1))) fo f f (t)dt. (3.6)
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To that end, we have given the expression for the moment-generating function during an OFF duration.
Next, we derive the moment-generating function during an ON duration. During this period,

degradation of the mRNA molecules that are present at the beginning of bursts continues as described
through the function 1 + H(t)(ez − 1) with the moment-generating function given by,
W(z; to f f + µ) = Winit(log(1 + H(µ + to f f )(ez − 1))), where µ represents a moment of the ON duration.
Besides, mRNAs are also created and degraded according to a birth-death process with an exponential
waiting time. This process can be described by a Poissonian distribution with the average
ρµ = µ

∫ µ

0
H(τ)dτ (remark: if the mRNA synthesis rate is a constant µ and the survival probability

density function of mRNA is h(t), this mRNA distribution is Poissonian [67]). Correspondingly,
according to the definition, we know that the moment-generating function is given by
We f f ect(z; to f f + µ) = eρµ(ez−1). The combination of the above two aspects produces an effective burst
size. Note that during an ON duration, the probability distribution of the mRNA number should be the
convolution of the distribution of the number of those molecules that are still present from previous
bursts and the effective burst-size distribution, that is,

W(z; to f f + µ) =

∫ ∞

s=0
Winit

(
log(1 + H(s + µ)(ez − 1))

)
eρµ(ez−1) fo f f (t)dt (3.7)

Then, W(z; to f f + ton) is given by integrating W(z; to f f + µ) over the infinite interval of µ ∈ (0,∞) , i.e.,

W(z; to f f + ton) = W(z; 0) = Winit(z)

=

∫ ∞

µ=0

(∫ ∞

s=0
Winit(log(1 + H(s + µ)(ez − 1)))eρµ(ez−1) fo f f (s)ds

)
fon(µ)dµ

(3.8)

which is just (3.3). Note that (3.8) can be rewritten as

W(z; 0) =

∫ ∞

s=0

∫ ∞

t=s
Winit

(
log(1 + H(t)(ez − 1))

)
eρµ(ez−1) fon(t − s) fo f f (s)dtds (3.9)

which is actually (3.4). To that end, we have actually proven Proposition 3.
In general, solving the integral equation (3.3) is difficult since two functions fon(t) and fo f f (t) are

arbitrary. However, we can use (3.3) to calculate moments of the mRNA distribution at time t = 0. For
example, by differentiating both sides of (3.3) at z = 0, it is not difficult for us to derive the expression
of the first-order initial raw moment

〈m〉init = W ′
init(0) =

∫ ∞
t=0
ρt fon(t)dt

1 −
∫ ∞

t=0

∫ ∞
s=0

H(t + s) fon(t) fo f f (s)dtds
. (3.10)

According to the definition of moment-generating function, we know that Winit(0) = 1 . Similarly,
we can derive the expression of the second-order initial raw moment

〈m2〉init = M′′
init(0)

=

∫ ∞
t=0

∫ ∞
s=0

[ρt(1 + ρt) + 〈m〉initH(s + t)(1 − H(s + t) + 2ρt)] fon(t) fo f f (s)dtds

1 −
∫ ∞

t=0

∫ ∞
s=0

H2(s + t) fon(t) fo f f (s)dtds
.

(3.11)

Other higher-order initial raw moments can also be derived similarly. Detailed expressions are omitted
due to complexity.
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Now, we give explicit formulae for calculating raw moments of any order. Let F(s) and G(s) be the
cumulative functions of the duration distributions at OFF and ON states, respectively. Next, we have
Fo f f (t) =

∫ t

0
fo f f (s)ds and Fon(t) =

∫ t

0
fon(s)ds. According to definitions, the mean OFF and ON times

are calculated according to

〈τo f f 〉 =

∫ ∞

s=0
s fo f f (s)ds, 〈τon〉 =

∫ ∞

s=0
s fon(s)ds, (3.12)

respectively. Note that the derivatives of W(z; to f f + µ) at z = 0 give the raw moments of the mRNA
distribution at time t = to f f + µ during an ON duration, denoted by 〈mk〉µ , whereas the derivatives of
W(z; to f f ) at z = 0 give the raw moments of the mRNA distribution at the end time t = to f f of an OFF
duration, denoted by 〈mk〉s. Then, the total moments of the mRNA copy number distribution should be
the sum of the two parts obtained by averaging over all times according to their probabilities, that is,

〈mk〉=
1

〈τon〉+〈τo f f 〉

(∫ ∞

t=0
〈mk〉s(1−Fo f f (s))ds +

∫ ∞

t=0
〈mk〉µ(1−Fon(µ))dµ

)
, (3.13)

where k = 1, 2, · · · ,. In (3.13), we emphasize that 〈mk〉s is obtained by calculating the k-order derivative
of function Winit(log(1 + H(s)(ez − 1))) at z = 0 whereas 〈mk〉µ by calculating the k-order derivative of
function

∫ ∞
s=0

Winit
(
log(1 + H(s + µ)(ez − 1))

)
eρµ(ez−1) fo f f (s)ds at z = 0. We point out that although we

have derived general formula for calculating raw moments, e.g., (3.13), the actual calculation would
be complex even if waiting times follow exponential distributions, referring to Appendix C.

3.2. Reconstructing the mRNA distribution from its raw moments

As shown above, we can calculate raw moments of any orders. In spite of this, the common
interest is in finding the corresponding distribution. Here, we consider the question of how the mRNA
distribution is reconstructed from the raw moments obtained above. For the above model with general
waiting-time distributions, it is easy to show that CMs of the steady-state mRNA distribution bk

defined by (2.2) are linear combinations of raw moments that however have been given using the
above method, e.g.,

b1 = 〈m〉, b2 =
1
2

(〈m2〉 − 〈m〉), b3 =
1
6

(〈m3〉 − 3〈m2〉 + 2〈m〉). (3.14)

More generally, we can give explicit relationships between convergent moments and common
moments. For example, central moments (denoted by µk) can be expressed as

µk = (−b1)k +

k−1∑
i=0

k−i∑
j=1

R(k, i, j)( j!)(b1)ib j, (3.15)

where R(k, i, j) = (−1)i
(

k
i

)
S (k − i, j) and S (n, k) is the Stirling number of the second kind [65].

According to (3.15), we can in turn use central moments to express CMs (details are omitted here). In
a word, all the CMs can be given if all the raw moments are given using the above method (but the
related calculations would be complex. See the following content). Thus, according to (2.3), we can
in principle reconstruct the mRNA distribution although waiting-time distributions may be general.
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3.3. Compared with some known results: effect of non-Markovianity

As applications of the above general expressions, here we first give explicit formulae for the mRNA
mean and the mRNA noise, which actually establish a relationship between the above two models
through initial two moments. Here ,we assume h(t) = δe−δt and δ represents the mean degradation rate
of mRNA. Firstly, consider the mRNA mean. Calculations (see Appendix C) yield

〈m〉 =
µ

δ

〈τon〉

〈τon〉 + 〈τo f f 〉
. (3.16)

This formula is well known for the common ON-OFF model [24]; [57] but here derived in a more
general case (i.e., ON and OFF waiting times follow general distributions. In other words, the formula
for the mRNA mean in the case of non-exponential waiting-time distributions is the same as in the case
of exponential waiting-time distributions). Secondly, consider the mRNA noise. If the mRNA noise
is defined as the ratio of the variance over the square of the mean, by complex calculations (see an
example in Appendix C), we can derive

η2
m =

1
〈m〉︸︷︷︸

internal noise

+
〈τo f f 〉

〈τon〉
−
〈τon〉 + 〈τo f f 〉

δ〈τon〉
2

(1 − Lon(δ))(1 − Lo f f (δ))
1 − Lon(δ)Lo f f (δ)︸                                                          ︷︷                                                          ︸

promoter noise

, (3.17)

where Lo f f (s) and Lon(s) are the Laplace transforms of functions fo f f (t) and fon(t), respectively. In
(3.18), the first term represents the factorial noise due to the birth and death of mRNA whereas the
second term represents the factorial noise due to switching between two promoter states. In particular,
if two transition rates between ON and OFF states are constants, implying that ON and OFF waiting-
time distributions are exponential, (3.17) is reduced to the following known form [24, 58]

η2
m =

1
〈m〉︸︷︷︸

internal noise

+
〈τo f f 〉

2

〈τon〉 + 〈τo f f 〉 + 〈τon〉〈τo f f 〉︸                             ︷︷                             ︸
promoter noise

. (3.18)

Therefore, (3.16) and (3.17) are the extensions of the mRNA mean and the mRNA noise in the
common two-state model of stochastic transcription. In addition, if we consider a model of stochastic
transcription where the promoter is assumed to have one ON state and multiple OFF states, which
altogether form a loop, (3.16) and (3.18) still hold although the OFF times follow an non-exponential
distribution (implying non-Markovianity) [24].

Next, we show that in the limit of fast switching, the mRNA distribution can become Poissonian
irrespective of the distribution of mRNA life times, . In fact, in the limit of fast switching, the second
term on the right-hand-side of (3.17), which describes the promoter noise, approximates zero. Thus,
the resulting mRNA noise can be approximated as η2

m ≈
1
〈m〉 , implying that the mRNA number

approximately follows a Poissonian distribution independent of the distribution of mRNA life times.
Interestingly, the author [55] recently gave intuitive interpretations for Poisson steady-state
distribution of the mRNA number.

In order to show effects of non-Markovianity on the mRNA mean and the mRNA noise, we consider
that ON- and OFF-times follow Erland distributions:

fon(t; kon, θon) =
tkon−1e−t/θon

θkon
on (kon − 1)!

, fo f f (t; ko f f , θo f f ) =
tko f f−1e−t/θo f f

θ
ko f f

o f f (ko f f − 1)!
, δ = 1, (3.19)
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where kon and ko f f describe the shapes of the distributions and take integers; θon and θo f f are two
parameters and take positive real numbers. Note that if kon = 1 (or ko f f = 1), the only one ON
(or OFF) state is considered, corresponding to the case of exponential distribution (Markovian). By
simple calculations, we can show

Lon(s) = (1 + sθon)−kon , Lo f f (s) = (1 + sθo f f )−ko f f , 〈τon〉 = konθon, 〈τo f f 〉 = ko f f θo f f ,

〈m〉 = µ
〈τon〉

〈τon〉 + 〈τo f f 〉
= µ

konθon

konθon + ko f f θo f f
,

η2
m =

konθon + ko f f θo f f

µkonθon
+

ko f f θo f f

konθon
−

konθon + ko f f θo f f

(konθon)2

(
1 − (1 + θon)−kon

) (
1 − (1 + θo f f )−ko f f

)
1 − (1 + θon)−kon(1 + θo f f )−ko f f

.

(3.20)
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Figure 3. Effect of non-Markovianity on the mRNA noise. (A, B) phase diagrams for
logarithms of means and noise intensities in the phase plane of mean OFF and ON times,
〈τo f f 〉 and 〈τon〉; (C, D, E) represents the mRNA mean whereas (F, G, H) represents the
corresponding mRNA noise. Parameter values: (A, B) µ = 10, ko f f ∈ {1, 2, · · · , 20},
θo f f = 5, θon = 1, kon ∈ {1, 2, · · · , 20}; (C, F) µ = 10, ko f f ∈ {1, 2, · · · , 20}, θo f f = 1,
kon ∈ {1, 2, · · · , 20}, θon = 0.1; (D, G) µ = 10, ko f f = 1, θo f f = [0.05, 1], kon = 1, θon = 0.1;
(E, H) µ = 10, ko f f ∈ {1, 2, · · · , 20}, θo f f = 1/ko f f ,kon = 1, θon = 0.1. In (C-H), empty circles
are obtained by numerical realizations (Appendix D), whereas the solid lines are given by
(3.16) and (3.17).
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The numerical results are shown in Figure 3, which shows effects of non-Markovianity on the
mRNA mean and the mRNA noise. Specifically, for the same mean ON and OFF times, a larger mRNA
mean corresponds to a smaller mRNA noise (Figure 3(A, B)); the mRNA mean is a monotonically
decreasing function of ko f f = 1 (in a nonlinear manner. See Figure3(C, D)) whereas the mRNA
noise intensity is a monotonically increasing function of ko f f = 1 (in an approximately linear manner.
See Figure 3(F, G)). Figure 3(E, H) shows that if the mean mRNA is fixed, the mRNA noise is a
monotonically decreasing function of ko f f = 1, implying that non-Markovianity can reduce the mRNA
noise.

Finally, we point out that at first glance, there is a big difference between the two models, but there
is a close relationship between them. First, if the only first two moments are considered, the model
analyzed in section 3 above (i.e., the queuing model) can be viewed as an extension of the model
analyzed in section 2 above (i.e., the promoter model). In fact, (3.1) implies that the distributions of
ON- and OFF-times in the promoter model are the algebraic sum of exponential functions but those
of ON- and OFF-times in the queuing model may be more general distributions. Second, the mRNA
mean is given by the same formula (3.16) for both models, and the formula for the mRNA noise in the
queuing model, given by (3.17), is an extension of that for the mRNA noise in the promoter model,
given by (3.18). Third, for both models, we can reconstruct the mRNA distribution from the respective
CMs that are given by (2.5) for the promoter model or by the method given in the above subsection
3.2 for the queuing model. In addition, we can show that in the limit of fast switching, the mRNA
distribution becomes Poissonian for both models. In fact, for the promoter model, this point is easily
verified as for the common ON-OFF model. For the queuing model, the second term on the right-
hand-side of (3.14) will disappear in the limit of fast switching. Some related discussions were done
in [55].

4. Parametric regions for robust unimodality and bimodality

As a mechanism contributing to phenotypic diversity, bimodality of gene expression can enhance
the survival of cells in a fluctuating environment. However, an unsolved question is how unimodality
or bimodality appears or disappears. Here we address this question.

Although we have given analytical expressions of mRNA distributions in the previous sections,
they are in general complex in form. On the other hand, a proper cellular phenotype characterized by
the shape of some distribution is important for the cell to enhance the survival of cells in a fluctuating
environment [33]. Thus, we naturally consider a question of how unimodal and bimodal expressions
are robustly formed or how reaction rate parameters impact unimodal and bimodal regions. This
nontrivial issue seems to have not been studied previously. Here we will address the issue by
theoretical analysis combined with numerical simulation. The aim of this section is twofold: the one
is to better help the reader understand the given-above complex distributions, and the other is to lay a
theoretical foundation for finding parametric regions for unimodality and bimodality. We point out
that biologically, if a unimodal distribution is wide enough, it can work as well as bimodal distribution
in driving phenotypic heterogeneity [59].

For clarity, we will consider two cases separately. The following analysis is tedious, and the
theoretical results are established based on properties of complex confluent hypergeometric functions.
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4.1. Case of two-state gene model

Here, we consider and analyze a representative model of stochastic transcription. Assume that the
gene promoter has one ON state and one OFF state (implying N = 2 in the above general model). For
convenience, denote by λ the transition rate from ON to OFF state whereas by γ the transition rate
from OFF to ON state and by µ the transcription rate of mRNA, and set the mRNA degradation rate as
δ = 1 (this is equivalent to the normalization of three parameters µ, λ and γ by δ). According to the
above analysis, the corresponding mRNA distribution can be expressed as

P(m) =
Γ(λ + m)µm

m!Γ(λ + γ + m)
Γ(λ + γ)

Γ(λ) 1F1(λ + m, λ + γ + m;−µ). (4.1)

Note that µ > 1 always holds since µ represents the transcription rate normalized by the degradation
rate. We distinguish two cases to give theoretical results on unimodal and bimodal mRNA distributions:
(A) P(1) > P(0) ; (B) P(1) < P(0).

Theorem 2 P(1) > P(0). For any µ > 1, λ > 0 and γ > 0, there is an integer m0 > 0 such that
P(m + 1) − P(m) > 0 for 0 ≤ m ≤ m0 whereas P(m + 1) − P(m) ≤ 0 for m > m0. In this case, P(m) is
unimodal.
Proof Using the integral expression of hypergeometric function

1F1(α, β; z) =
Γ(β)

Γ(α)Γ(β − α)

∫ 1

0
ezttα−1(1 − t)β−α−1dt, (4.2)

we can rewrite Eq (4.1) as

P(m) =
µm

m!
Γ(λ + γ)
Γ(λ)Γ(γ)

∫ 1

0
e−µttλ+m−1(1 − t)γ−1dt. (4.3)

Thus,

P(m + 1) − P(m) =
µm

m!
Γ(λ + γ)
Γ(λ)Γ(γ)

∫ 1

0
e−µttλ+m−1(1 − t)γ−1

(
µt

m + 1
− 1

)
dt (4.4)

implying that P(m + 1) − P(m) < 0 for any m > m̃ = µ − 1 > 0. On the other hand, we have
P(1) − P(0) > 0. Therefore, if we set m0 = min{m|P(m + 1) − P(m) < 0,m > m̃}, then we know that
P(m + 1)− P(m) ≥ 0 for 0 ≤ m ≤ m0 whereas P(m + 1)− P(m) < 0 for m > m0. This finished the proof
of theorem 2.

The reader can refer to the numerical result in Figure 4, where a representative mode of mRNA
distribution is shown. This figure verifies that our theoretical prediction is in accordance with the
numerical result.

Theorem 3 For the case of P(1) < P(0), we have: (1) If λ ≥ 1 and µλ ≤ λ + γ, or if λ < 1 and
µ ≤ min(γ + 1 − λ + 2

√
(1 − λ)γ, 1 + γ/λ), P(m) is unimodal; (2) If µ ≥ λ + γ + 2 and

2(γ + 1 − 2λ)µ ≤ (λ + γ − 1)2 − 1, P(m) is bimodal.

The proof of this theorem is put on Appendix E. Here we show numerical results, referring to
Figure 5.
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Figure 4. A representative mode of mRNA distribution in case of P(1) > P(0). Empty circles
are obtained by numerical realizations with Gillespie simulation algorithm [60]. Numerical
simulation verifies that the mRNA distribution is only unimodal for any parameter values in
this case.
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Figure 5. Three representative modes of mRNA distribution in the case of P(1) < P(0),
where (A) and (B) correspond to unimodal distribution whereas (C) corresponds to bimodal
distribution. Empty circles are obtained by numerical realizations with Gillespie simulation
algorithm [60].

4.2. Case of multiple-state gene model

Here, we only analyze a simple case: the promoter has one active state and two inactive states.
Denote by λ2 and λ′2 the transition rates between two OFF states, by λ1 and γ1 the transition rates
from one OFF state to ON state and from ON state to the OFF state respectively, and by λ2 and γ2 the
transition rates from the other OFF state to ON state and from ON state to the OFF state, respectively.
According to the previous analysis, we know that the mRNA number follows a hypergeometric
following distribution given by

P(m) =
µm

m!
(β1)m(β2)m

(α1)m(α2)m
2F2(m + β1,m + β2; m + α1,m + α2;−µ),m = 0, 1, 2, · · · , (4.5)
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where

α1,2 =
1
2

(
γ1 + γ2 + λ1 + λ2 + λ′2 + λ3±

√
(γ1+γ2+λ1−λ2−λ

′
2−λ3)2+4(λ1−λ3)(λ2−γ2)

)
,

β1,2 =
1
2

(
λ1+λ2+λ′2+λ3±

√
(λ1+λ2−λ

′
2−λ3)2+4λ2λ

′
2

)
.

Note that all the parameters have been normalized by the degradation rate δ, and αi and βi, i = 1, 2,
may be complex. In the following, we only consider they are real.

In order to find parametric regions for unimodality and bimodality, we introduce the following
lemma.

Lemma 1 If b ≥ a and c ≥ d, then we have the Kummer-type transform of the form

2F2(a, b; d, c; x) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0
extta−1(1 − t)b−a−1

1F1(c − d, c;−xt)dt. (4.6)

Note that for any m, we have

P(m + 1)
P(m)

=
µ

m + 1
(β1 + m)(β2 + m)
(α1 + m)(α2 + m)

2F2(m + 1 + β1,m + 1 + β2; m + 1 + α1,m + 1 + α2;−µ)

2F2(m + β1,m + β2; m + α1,m + α2;−µ)
, (4.7)

where two confluent functions are given according to Eq (4.6). Using Lemma 2, it is not difficult to
prove the following two lemmas.

Lemma 2 For any nonnegative integer m, then we have the inequality

P(m + 1) <
µ

m + 1
(β1 + m)(β2 + m)
(α1 + m)(α2 + m)

P(m) (4.8)

Lemma 3 For any m, we have the following estimation

P(m + 1) > ξ2
µ

m + 1
(β1 + m)(β2 + m)
(α1 + m)(α2 + m)

P(m) (4.9)

where ξ2 =
(
1 − µ

4(m+α2)

) (
1 − µ

4(m+β2)

)
.

Similar to the case of the common two-state model, we may distinguish two cases to find parametric
regions for unimodality and bimodality in a gene model with one active state and two inactive states.
That is, we consider two cases separately: P(1) > P(0) and P(1) < P(0) . The key equation to be
solved is that under what conditions of reaction rates, the difference P(m + 1) − P(m) is positive or
negative. When one wants to estimate the sign of this difference, the above three lemmas are useful.

By analysis, one is able to know that P(m) is unimodal under some conditions of reaction rates
whereas it is bimodal under other conditions of reaction rates. For example, we can rigorously prove
the following result: For P(1) < P(0), if µβ1β2 < α1α2 and µ f2(x̃) ≤ 1 are simultaneously satisfied,
where f2(x) = [(β1 + x)(β2 + x)]/[(x + 1)(α1 + x)(α2 + x)] and x̃ is the extreme point of f2(x), P(m) is
unimodal. In fact, first note that µβ1β2 < α1α2 can guarantee P(1) < P(0) due to Eq (4.8). Second, for
function f2(x), we know by calculation that there is a x̃ such that f2(x) reaches its maximum at x = x̃,
referring to the inset of Figure 6(A). Apparently, if µ f2(x̃) ≤ 1, P(m + 1) < P(m) for all m, indicating
that P(m) monotonically decreases with regard to m. Therefore, P(m) is unimodal. The numerical
simulation has verified the correctness of our analysis, referring to Figure 6(A).
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Figure 6. Representative modes of mRNA distribution in a model of stochastic transcription
with the promoter having one ON state and two OFF states: (A) and (B) P(1) < P(0); (C) and
(D) P(1) > P(0). Parameter values are set as: (A) γ1 = 10, γ2 = 0, λ2 = λ3 = 1, λ1 = λ′2 =

0, µ = 10; (B) γ1 = 0.4, γ2 = 0, λ2 = λ3 = 1, λ1 = λ′2 = 0, µ = 20; (C) γ1 = 4, γ2 = 0, λ2 =

λ3 = 10, λ1 = λ′2 = 0, µ = 20; (D) γ1 = 0.6, γ2 = 0, λ2 = λ3 = 1.5, λ1 = λ′2 = 0, µ = 40.
In all the cases, δ = 1. Empty circles are obtained by numerical realizations with Gillespie
simulation algorithm [60].

5. Conclusion and discussion

Transcription is a core process in life, but how upstream promoter kinetics affects downstream
transcription dynamics remains to be not fully understood. Here, we have analyzed two representative
yet general models of stochastic transcription. For the queuing model of transcription with general
waiting-time distributions, we have derived a general formula for calculating raw moments of any
order. In turn we have proposed an efficient method–the CM method, to reconstruct the mRNA
distribution, where CMs are actually linear combinations of raw moments but the former has better
properties than the latter, e.g., CMs converge to zero as their orders tend to infinity. For the multistate
model of transcription with arbitrarily complex promoter structure, we have derived exact steady-state
mRNA distributions, which are expressed by generalized confluent hypergeometric functions.
Moreover, we have found that there are conjugate relationships among these complex distributions.
For both models, we have shown that the mRNA distribution is in general sup-Poissonian. In
addition, we have analyzed robust regions for unimodality and bimodality for two specific yet
representative models. By combining numerical simulation, we have found parametric regions for
how unimodal and bimodal expressions are robustly shaped. Importantly, our analysis methods and
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results can save time for investigate gene expression behavior than numerical simulations. Our
analysis lays a foundation for quantitative analysis of stochastic gene transcription whereas our results
would be helpful for designing biologically robust gene regulatory circuits.

Although our analyzed models of stochastic transcription are general, i.e., they include many
previously-studied models as their particular cases, we still neglect some other processes underlying
transcription, such as alternative splicing [35], DNA methylation [18], RNA nuclear retention [61],
cell division [62], negative feedback [19, 32] and spatial heterogeneity [63, 64]. These processes or
factors can also impact the transcription level or transcription efficiency, but how this impact is
mathematically analyzed and how exact analytical results are derived would need to develop new
mathematical models and new analytical methods. In particular, when extracellular dynamic and
stochastic regulatory signals are considered, the theoretical or numerical analysis would be
challenging since the corresponding chemical master equation will become a non-Markovian system
in this case. In addition, we have given conservative parametric regions for robust unimodal and
bimodal expressions by analyzing complex mRNA distributions in two simple models of stochastic
transcription, but a gene model with multiple active states may exhibit various modes of distribution,
including unimodality, bimodality and multimodality [25]. Theoretically proving this point or giving
exact parametric regions for multimodality seems difficult.

We point out that our first model of stochastic transcription belongs to the so-called GIX/G/∞
system in queueing theory [50, 54]. Using this theory, one can also derive formulae for calculating
raw moments in a gene model of stochastic transcription where the mRNA lifetime follows a general
distribution rather than an exponential distribution considered here, besides that ON and OFF times
follow general distributions. In addition, we point out that it looks like a big difference between the
two gene models studied above, but we can establish the relationship between them by calculating
the mRNA noise. This is because that (3.16) always holds for both models. These models are all
convergent, referring to some discussions in [66], and the corresponding mRNA distributions exhibit
discontinuities [68], which can easily be verified from the expressions of the distributions reconstructed
from our CMs.

Until now, the study of stochastic transcription focuses on the following two classes of models:
(1) The first class is the so-called promoter models where the promoter has arbitrary activity states
(either ON or OFF) and there are random transitions among these states, e.g., the model studied in
this paper or referring to Figure 7(A); (2) The second class is the so-called queuing models, where
the waiting times, e.g., from OFF to ON states, from ON to OFF states, from DNA to mRNA, or for
a multistep process of mRNA degradation, follow a distribution. Note that this class of models can
further be classified as more specified models by considering combinations of the mentioned cases,
e.g., the state-waiting model in Figure 7(B) and the transcription-waiting model in Figure 7(C). These
two classes of models were partially studied [25, 56, 66, 68]) and some interesting results were also
obtained [25, 52, 53, 56, 66, 68]. In principle, our queuing model studied in this paper includes the
queuing models in the existing literature as its special cases, and our results obtained in the paper can
partially reproduce some previous results, at least those for the first two moments obtained under the
same assumed conditions. Although we have established partial connections between the two classes
of models, deeper connections are worth further study.

Finally, it is worth mentioning that the CM method that we simply introduced here would have broad
applications in modeling, analysis and simulation of biochemical reaction networks including complex
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Figure 7. Schematic diagrams for three representative classes of gene models: (A) promoter
model, where the promoter contains many (ON and OFF) states and there are transitions
among these states, and the mRNA degradation rate is constant; (B) state-waiting model,
where the promoter contains one ON state and one OFF state but the times that the gene
dwell at these two states follow non-exponential distributions, the mRNAs degrade in a
multistep manner (i.e., the corresponding times follow a non-exponential distribution), and
the transcription rate is constant; (C) transcription-waiting model, where the waiting times
from DNA to mRNA follow a general distribution, the mRNAs are produced in a bursty
manner, and the mRNAs degrade in a multistep manner.

gene regulatory networks. In fact, apart from two remarkable advantages mentioned in this paper, i.e.,
CMs tend to zero as their orders go to infinity; CMs can be used to reconstruct the corresponding
distribution, there are other advantages, e.g., according to the definition of CMs, we can derive the
time evolution equations for CMs based on the chemical master equation, which are a linear equation
group with constant coefficients. Thus, one can use CM equations to study how upstream promoter
dynamics affect downstream expression dynamics, and may reveal dynamical mechanisms behind it,
which would be difficult by directly analyzing the chemical master equation.
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Appendix

A. Derivation of (2.4) in the main text

Let b(i)
k be the convergent moments corresponding to the factorial distribution Pi. According to the

CM definition, we have

b(i)
k (t) =

∑
m≥k

(
m
k

)
Pi(m, t), where 1 ≤ i ≤ N, k = 0, 1, 2, · · · (A1)

Note that (1) in the main text is expressed in the component as

∂

∂t


P1(m; t)
P2(m; t)

...

PN(m; t)

 =


λ11 λ12 · · · λ1N

λ21 λ22 · · · λ2N
...

...
. . .

...

λN1 λN2 · · · λNN




P1(m; t)
P2(m; t)

...

PN(m; t)


+


µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...

0 0 · · · µN





P1(m − 1; t)
P2(m − 1; t)

...

PN(m − 1; t)

 −


P1(m; t)
P2(m; t)

...

PN(m; t)




+


δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δN





P1(m + 1; t)
P2(m + 1; t)

...

PN(m + 1; t)

 −


P1(m; t)
P2(m; t)

...

PN(m; t)


 .
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Also note that for any fixed i : 1 ≤ i ≤ N, we have∑
m≥k

(
m
k

)
[Pi(m − 1; t) − Pi(m; t)] =

∑
m+1≥k

(
m + 1

k

)
Pi(m; t) −

∑
m≥k

(
m
k

)
Pi(m; t)

=

(
k
k

)
Pi(k − 1; t) +

∑
m≥k

[(
m + 1

k

)
−

(
m
k

)]
Pi(m; t)

= Pi(k − 1; t) +
∑
m≥k

(
m

k − 1

)
Pi(m; t)

=
∑
m≥k

(
m
k

)
Pi(m; t) = b(i)

k (t),

∑
m≥k

(
m
k

)
[Pi(m + 1; t) − Pi(m; t)] =

∑
m−1≥k

(
m − 1

k

)
Pi(m; t) −

∑
m≥k

(
m
k

)
Pi(m; t)

=
∑

m≥k+1

[(
m − 1

k

)]
Pi(m; t) −

(
k
k

)
Pi(k; t)

= −
∑

m≥k+1

(
m − 1
k − 1

)
Pi(k; t)

= −k
∑
m≥k

(
m
k

)
Pi(m; t) = −kb(i)

k (t).

Therefore, the summing over all the possible m being greater than or equal to k in (A1) yields

∂

∂t


b(1)

k (t)
b(2)

k (t)
...

b(N)
k (t)

 =


λ11 λ12 · · · λ1N

λ21 λ22 · · · λ2N
...

...
. . .

...

λN1 λN2 · · · λNN




b(1)
k (t)

b(2)
k (t)
...

b(N)
k (t)


+


µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...

0 0 · · · µN




b(1)
k−1(t)

b(2)
k−1(t)
...

b(N)
k−1(t)

 − k


δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δN




b(1)
k (t)

b(2)
k (t)
...

b(N)
k (t).


Assume that all the degradation rates are equal and denote by δ the common degradation rate. Using δ
to normalize all the parameters and setting τ = δt, we can obtain

dbk

dτ
= Wbk + Λbk−1 − kbk, k = 1, 2, · · · , (A2)

where bk =
(
b(1)

k (t), b(2)
k (t), · · · , b(N)

k (t)
)T

is a column vector. (A2) is just (4) in the main text.

B. Details for the proof of proposition 1 in the main text

At steady state, it follows from (4) in the main text or (A2) that

(kI −W)bk = Λbk−1, k = 1, 2, · · · (B1))
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Note that the W matrix describing the promoter structure is an M-matrix (i.e., the sum of elements
in every row is equal to zero, implying that the determinant of W is equal to zero, or det(W) = 0).
Therefore, (kI −W) is a reversible matrix with the inverse given by (kI −W)−1 = 1

det(kI−W) (kI −W)∗

in which (iI −W)∗ and det(iI −W) are the adjacency matrix and the determinant of matrix (iI −W),
respectively. Left multiplying (kI −W)−1 on both sides of (B1) yields

bk =
1

det(kI −W)
(H −W)∗Λbk−1, k = 1, 2, · · · (B2)

from which we have

bk =

[
(kI −W)∗Λ
det(kI −W)

]
bk−1 =

 1∏
i=k

(iI −W)∗Λ
det(iI −W)

 b0, k = 1, 2, · · · . (B3)

If we denote by uN = (1, 1, · · · , 1) a N-dimensional row vector, uNbk =
∑N

i=1 b(i)
k = bk holds. Left

multiplying uN on both sides of (B3) yields

bk = uN

 1∏
i=k

(iI −W)∗Λ
det(iI −W)

 b0, k = 1, 2, · · · , (B4))

where b0 =
(
b(1)

0 , b(2)
0 , · · · , b(N)

0

)T
is a column vector.

Next, we derive the expressions of b(i)
0 (1 ≤ i ≤ N). The results are

b( j)
0 =

N−1∏
i=1

β
( j)
i

αi
, 1 ≤ j ≤ N, (B5)

where −α1,−α2, · · · ,−αN−1 are nonzero characteristic values of matrix W whereas
−β

( j)
1 ,−β

( j)
2 , · · · ,−β

( j)
N−1 are those of W j, the minor matrix of W after crossing out the jth row and jth

column of the entry λi j of W. In fact, det(W) = 0 implies WW∗ = det(W)I = 0. As a direct
consequence of Laplace’s formula for the determinant of matrix W, we have

W


det (W1)

...

det (WN)

 = 0, (B6)

where

det (Wk) = (−1)N−1
N−1∏
i=1

β(k)
i , 1 ≤ k ≤ N (B7)

since −β( j)
1 ,−β

( j)
2 , · · · ,−β

( j)
N−1 are the characteristic values of matrix W j. Note that the null space of W is

one-dimensional due to rank(W) = N−1, and that (B1) still holds for k = 0 (i.e., Wb0 = 0). Therefore,
from the combination of (B6) and Wb0 = 0, we can express b0 as

b0 = c


det (W1)

...

det (WN)

 , (B8)
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where c is a constant. Also note that b(i)
0 (t) =

∑
m≥0 Pi(m; t) according to the CM definition and∑N

i=1
∑

m≥0 Pi(m; t) ≡ 1 for any t ≥ 0 due to the conservative condition of the total probability.
Therefore, we have the constraint condition uNb0 = 1, which in combination with (B8) gives

c =
1∑N

k−1 det (Wk)
. (B9)

If we denote by fw(x) = det (xIN −W) = x (x + α1) · · · (x + αN−1) the characteristic polynomial of
matrix W, it is easy to show that

d fw(x)
dx

∣∣∣∣∣
x=0

=

N−1∏
i=1

αi. (B10)

On the other hand, Jacobi’s formula gives

d fw(x)
dx

∣∣∣∣∣
x=0

=
d det (xIN −W)

dx

∣∣∣∣∣
x=0

= tr
(
(xIN −W)∗

d (xIN −W)
dx

)∣∣∣∣∣∣
x=0

= (−1)N−1
N∑

k=1

det (Wk) =

N∑
k=1

N−1∏
i=1

β(k)
i ,

(B11)

where ”tr” represents the matrix trace. The combination of (B10) and (B11) gives the equality

N∑
k=1

N−1∏
i=1

β(k)
i =

N−1∏
i=1

αi. (B12)

Thus, we have the relationship
N∑

k=1

det (Wk) = (−1)N−1
N−1∏
i=1

αi (B13)

due to (B7).In addition, note that c =
(−1)N−1∏N−1

i=1 αi
due to c = 1∑N

k=1 det(Wk)
, and b(k)

0 = c · det (Wk) due to

b0 = c


det (W1)

...

det (WN)

, as well as det (Wk) = (−1)N−1 ∏N−1
i=1 β(k)

i due to the fact that −β(k)
i (1 ≤ i ≤ N)are

the characteristics of matrix Wk. Therefore, we have

b(k)
0 = c · det (Wk) = (−1)N−1

N−1∏
i=1

αi

−1

(−1)N−1
N−1∏
i=1

β(k)
i =

N−1∏
i=1

β(k)
i

αi
, 1 ≤ k ≤ N. (B14)

To that end, the proof of Proposition 1 in the main text is finished.

C. Derivation of (3.16) and (3.17) in the main text

For clarity, here we consider only the case of constant degradation rate (δ). First, we derive the
analytical expression for the mRNA mean. According to (33), (34) and ρu =

µ

δ

(
1 − e−δu

)
as well as
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definitions in the main text, we can respectively show

〈m〉init = W ′
init(0) =

∫ ∞
t=0
ρt fon(t)dt

1 −
∫ ∞

t=0

∫ ∞
s=0

H(t) fon(t) fo f f (s)dtds
=
µ

δ

∫ ∞
t=0

(
1 − e−δt

)
fon(t)dt

1 −
∫ ∞

t=0

∫ ∞
s=0

e−δ(t+s) fon(t) fo f f (s)dtds

=
µ

δ

1 −
∫ ∞

t=0
e−δt fon(t)dt

1 −
∫ ∞

t=0
e−δt fon(t)dt

∫ ∞
s=0

e−δs fo f f (s)ds
=
µ

δ

1 − Lon(δ)
1 − Lon(δ)Lo f f (δ)

,

(C1)

〈
m2

〉
init

= W ′′
init(0) = 〈m〉init

∫ ∞
t=0

[
H(s + t) (1 − H(s + t) + 2ρt)

]
fon(t) fo f f (s)dtds

1 − Lon(2δ)Lo f f (2δ)

+

∫ ∞
t=0

∫ ∞
s=0
ρt (1 + ρt) fon(t) fo f f (s)dtds

1 − Lon(2δ)Lo f f (2δ)

= 〈m〉init

∫ ∞
t=0

∫ ∞
s=0

[
e−δ(ts)

(
1 − e−δ(ts) + 2ρt

)]
fon(t) fo f f (s)dtds

1 − Lon(2δ)Lo f f (2δ)
+

∫ ∞
t=0
ρt (1 + ρt) fon(t)dt

1 − Lon(2δ)Lo f f (2δ)

= 〈m〉init

(
1 +

2µ
δ

)
Lon(δ)Lo f f (δ) − Lon(2δ)Lo f f (2δ) − 2µ

δ
Lon(2δ)Lo f f (δ)

1 − Lon(2δ)Lo f f (2δ)

+

µ

δ

(
1 +

µ

δ

)
−

µ

δ

(
1 +

2µ
δ

)
Lon(δ) +

µ2

δ2 Lon(2δ)

1 − Lon(2δ)Lo f f (2δ)
,

(C2)

〈m〉s =
d
dz

Winit

(
log

[
1 + e−δs (ez − 1)

])∣∣∣∣
z=0

= W ′
init(0)e−δs

〈
m2

〉
s

=
d2

dz2 Winit

(
log

[
1 + e−δs (ez − 1)

])∣∣∣∣
z=0

= W ′′
init(0)e−2δs + W ′

init(0)
(
e−δs − e−2δs

)
,

(C3)

〈m〉u =
d
dz

∫ ∞

s=0
Winit

(
log

(
1 + e−δ(s+u) (ez − 1)

))
eρu(ez−1) fo f f (s)d s|z=0

= W ′
init(0)Lo f f (δ)e−δu + ρuWinit(0),〈

m2
〉

u
=

d2

dz2

∫ ∞

s=0
Winit

(
log

(
1 + e−δ(s+u) (ez − 1)

))
eρu(ez−1) fo f f (s)d s|z=0

= ρu (1 + ρu) + W ′′
init(0)e−2δuLo f f (2δ)

+ W ′
init(0)

[
e−δuLo f f (δ) + 2ρue−δuLo f f (δ) − e−2δuLo f f (2δ)

]
.

(C4)

Substituting these expressions into (36) in the main text yields(
〈τon〉 +

〈
τo f f

〉)
〈m〉 =

∫ ∞

s=0
〈m〉s(1 − F(s))ds +

∫ ∞

u=0
〈m〉u(1 −G(u))du

=

∫ ∞

s=0
W ′

init(0)e−δs

(∫ ∞

t=s
fo f f (t)ds +

∫ ∞

u=0

[
W ′

init(0)Lo f f (δ)e−δu + ρu

] (∫ ∞

t=u
fon(t)dt

)
du

= W ′
init(0)

∫ ∞

s=0
e−δs

(∫ ∞

t=s
fo f f (t)dt

)
ds

+ W ′
init(0)Lo f f (δ)

∫ ∞

u=0
e−δu

(∫ ∞

t=u
fon(t)dt

)
du +

∫ ∞

u=0
ρu

(∫ ∞

t=u
fon(t)dt

)
du,
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where ∫ ∞

s=0
e−δs

∫ ∞

s
fo f f (t)dtds =

1
δ
−

1
δ

Lo f f (δ),∫ ∞

u=0
e−δu

∫ ∞

u
fon(t)dtds =

1
δ
−

1
δ

Lon(δ),

∫ ∞

u=0
ρu

(∫ ∞

t=u
fon(t)dt

)
du =

µ

δ

∫ ∞

u=0

(
1 − e−δu

) ∫ ∞

u
fon(t)dtdu

=
µ

δ

∫ ∞

u=0

∫ ∞

u
fon(t)dtdu −

µ

δ

∫ ∞

u=0
e−δu

∫ ∞

u
fon(t)dtdu

=
µ

δ
〈τon〉 −

µ

δ2 +
µ

δ2 Lon(δ).

Therefore, we have(
〈τon〉 +

〈
τo f f

〉)
〈m〉

= W ′
init(0)

(
1
δ
−

1
δ

Lo f f (δ)
)

+ W ′
init(0)Lo f f (δ)

(
1
δ
−

1
δ

Lon(δ)
)

+
µ

δ
〈τon〉 −

µ

δ2 +
µ

δ2 Lon(δ)

=
µ

δ
〈τon〉 −

µ

δ2 +
µ

δ2 Lon(δ) +
W ′

init(0)
δ

(
1 − Lo f f (δ)Lon(δ)

)
=
µ

δ
〈τon〉 .

(C5)

This gives the analytical expression for the mean mRNA in the case that the on-state and off-state
lifetimes follow general distributions, i.e., (3.16) in the main text.

Next, we derive the analytical expression for the mRNA noise intensity. The key is to give the
second-order moment

(
m2

)
. Note that

(
〈τon〉 +

〈
τo f f

〉) 〈
m2

〉
=

∫ ∞

s=0

〈
m2

〉
s
(1 − F(s))ds +

∫ ∞

u=0

〈
m2

〉
u

(1 −G(u))du

=

∫ ∞

s=0

([
W ′′

init(0)e−2δs + W ′
init(0)

(
e−δs − e−2δs

)] ∫ ∞

t=s
fo f f (t)dt

)
ds

+

∫ ∞

u=0

 ρu (1 + ρu) + W ′′
init(0)e−2δuLo f f (2δ)

+W ′
init(0)

[
e−δuLo f f (δ) + 2ρue−δuLo f f (δ) − e−2δuLo f f (2δ)

] ∫ ∞

t=u
fon(t)dt

 du

= W ′′
init(0)

{∫ ∞

s=0

(
e−2δs

∫ ∞

t=s
fo f f (t)dt

)
ds + Lo f f (2δ)

∫ ∞

u=0

(
e−2δu

∫ ∞

t=u
fon(t)dt

)
du

}
+ W ′

init(0)


∫ ∞

s=0

((
e−δs − e−2δs

) ∫ ∞
t=s

fo f f (t)dt
)

ds + Lo f f (δ)
∫ ∞

t=0

(
e−δu

∫ ∞
t=u

fon(t)dt
)

du
+2Lo f f (δ)

∫ ∞
u=0

(
ρue−δu

∫ ∞
t=u

fon(t)dt
)

du − Lo f f (2δ)
∫ ∞

u=0

(
e−2δu

∫ ∞
t=u

fon(t)dt
)

du


+

∫ ∞

u=0

(
ρu (1 + ρu)

∫ ∞

t=u
fon(t)dt

)
du

Simple calculation yields

(
〈τon〉 +

〈
τo f f

〉) 〈
m2

〉
= −

µ2

δ3

(1 − Lon(δ))
(
1 − Lo f f (δ)

)
1 − Lon(δ)Lo f f (δ)

+
µ

δ
〈τon〉 +

µ2

δ2 〈τon〉 (C6)
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Using (C1) and according to the noise definition, we can obtain the analytical expression for the mRNA
noise intensity

η2
m =

1
〈m〉

+

〈
τo f f

〉
〈τon〉

−
δ
(〈
τo f f

〉
+ 〈τon〉

)
µ2 〈τon〉

2

∫ ∞
s=0

∫ ∞
u=0

ρsρu fo f f (s) fon(u)dsdu

1 −
∫ ∞

s=0

∫ ∞
u=0

e−δ(s+u) fo f f (s) fon(u)dsdu

=
1
〈m〉

+

〈
τo f f

〉
〈τon〉

−

〈
τo f f

〉
+ 〈τon〉

δ 〈τon〉
2

(1 − Lon(δ))
(
1 − Lo f f (δ)

)
1 − Lon(δ)Lo f f (δ)

(C7)

D. Queuing model simulation algorithm

In the queuing model of stochastic transcription, we assume that the synthesis rate and degradation
rate of mRNA are µ and δ respectively. And the times that the gene dwells at ON and OFF states are
assumed to follow general distributions fon(t) and fo f f (t) respectively. Let g(t) be gene state and m(t)
be the mRNA number in the cell at time t. If the gene dwells at ON state, g(t) = 1, ortherwise g(t) = 0.
We propose the following stochastic simulation algorithm to obtain exact numerical realizations of the
mRNA synthesis and degradation process m(t).

0. Initialize the time t = t0 and the system’s state m(t) = m0.
1. if g(t) = 1

generate a waiting time τon according to probability fon(t)
set τend

on = t + τon

repeat
update the mRNA’s state m(t) and based on Gillespie simulation algorithm [60] for reactions
∅→ mRNA and mRNA→ ∅ whose reaction propensity functions are given by a1(m(t)) = µ

and a2(m(t)) = δm(t) respectively
until t ≥ τ end

on

set g(t) = 0
else

generate a waiting time τ off according to probability fo f f (t)
set τ eff

off
= t + τ off

repeat
update the mRNA’s state m(t) and based on Gillespie simulation algorithm [60] for reaction
mRNA→ ∅ whose reaction propensity function is given by a2(m(t)) = δm(t)
until t ≥ τ end

off

set g(t) = 1
end

2. Record trajectories (t, g(t),m(t)) as desired. Return to Step 1, or else end the simulation.
3. After discarding the early part of the trajectories (the burn-in phase), the remaining realizations

are used to estimate the steady-state probability distribution and the related statistics.
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E. Proof of Theorem 3 in the main text

Note that for any m , we have

P(m + 1) − P(m) =
Γ(λ + m)µme−µ

m!Γ(λ + γ + m)
Γ(λ + γ)

Γ(λ)
×[

µ(λ + m)
(m + 1)(λ + γ + m) 1F1(γ, λ + γ + m + 1; µ) −1 F1(γ, λ + γ + m; µ)

] (E1)

and
F1(γ, λ + γ + m + 1; µ) −1 F1(γ, λ + γ + m; µ) < 0 (E2)

For clarity, we distinguish the following three cases.
First, if µλ ≤ λ + γ, µ(λ + m) ≤ (m + 1)(λ + γ + m) holds for m = 0, implying that P(1) < P(0) is

guaranteed.
Second, note that if λ ≥ 1, the function f1(x) =

µ(λ+x)
(x+1)(λ+γ+x) has no extreme value with regard to ,

implying that it is monotonically decreasing. Therefore, the inequality u(λ + m) ≤ (m + 1)(λ + γ + m)
holds for all in this case. Thus, if λ ≥ 1 and µλ ≤ λ + γ, P(m) is unimodal.

Third, if λ < 1, the function f1(x) reaches its maximum at the unique point x̃ = −λ +
√
γ(1 − λ).

Furthermore, If u(λ + x̃) ≤ (x̃ + 1)(λ + γ + x̃), f1(x̃) ≤ 1, implying that P(m + 1) < P(m) holds for all .
Therefore, P(m) is also unimodal in this case. However, µ(λ + x̃) ≤ (x̃ + 1)(λ + γ + x̃) is equivalent to
(µ+ λ− γ− 1)

√
(1 − λ)γ ≤ 2(1− λ)γ, which is further equivalent to µ ≤ γ+ 1− λ+ 2

√
(1 − λ)γ. Thus,

we know that if two inequalities λ < 1 and µ ≤ min(γ+1−λ+2
√

(1 − λ)γ, 1+γ/λ) are simultaneously
satisfied, P(m) is unimodal, referring to Figure 4(A) and (B) in the main text.

Now, we turn to considering bimodality. It is not difficult to establish the inequality

1F1(γ, λ + γ + m + 1; µ) > ξ11F1(γ, λ + γ + m; µ) (E3)

for any m, where ξ1 = 1 − µ

(
√
λ+m+

√
λ+m+1)2 . According to the expression of

P(m) =
Γ(λ+m)e−µµm

m!Γ(λ+γ+m)
Γ(λ+γ)

Γ(λ) 1
F1(γ, λ + γ + m; µ), we have P(m+1)

P(m) > ξ2
(λ+m)µ

(m+1)(λ+γ+m) , where ξ2 = 1 − µ

4(λ+m) .
Thus, in order to ensure that P(m) is bimodal, we only need to find a m1 > 1 such that(
1 − µ

4(λ+m1)

)
(λ+m1)µ

(m1+1)(λ+γ+m1) > 1. However, this inequality can be rewritten as

4m2
1 − 4(µ − λ − γ − 1)m1 + µ2 − 4λµ + 4(λ + γ) < 0 (E4)

Therefore, if µ ≥ λ + γ + 2 and (µ − λ − γ − 1)2 ≥ µ2 − 4λµ + 4(λ + γ) (the latter is equivalent to
2(γ+ 1− 2λ)µ ≤ (λ+ γ− 1)2)) are simultaneously satisfied, we know that there is at least one such that

1 < m1 <
1
2

(
µ − λ − γ − 1 +

√
(µ − λ − γ − 1)2 − µ2 + 4λµ − 4(λ + γ)

)
(E5)
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