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Abstract: In this paper, we investigate an SIRS epidemic model with chronological age structure
in a demographic steady state. Although the age-structured SIRS model is a simple extension of
the well-known age-structured SIR epidemic model, we have to develop new technique to deal with
problems due to the reversion of susceptibility for recovered individuals. First we give a standard proof
for the well-posedness of the normalized age-structured SIRS model. Next we examine existence of
endemic steady states by fixed point arguments and bifurcation method, where we introduce the next
generation operator and the basic reproduction number R0 to formulate endemic threshold results.
Thirdly we investigate stability of steady states by the bifurcation calculation and the comparison
method, and we show existence of a compact attractor and discuss the global behavior based on the
population persistence theory. Finally we give some numerical examples and discuss the effect of
mass-vaccination on R0 and the critical coverage of immunization based on the reinfection threshold.

Keywords: SIRS epidemic; basic reproduction number; age structure; forward bifurcation;
persistence; compact attractor

1. Introduction

In a seminal series of papers published during the 1920s and the 1930s, Kermack and McKendrick
proposed infection–age structured epidemic models that take into account demography of the host
population, the waning immunity and reinfection of recovered individuals ([1, 2]). In their models, the
total population is decomposed into three compartments, the susceptibles, the infectious and the recov-
ered populations (SIR model), and it is assumed that reinfection occurs for the recovered population
depending on the time since recovery (recovery-age). Recently the concept of reinfection is recognized
as more and more important in understanding emerging and reemerging infectious diseases, since it
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makes the control of infectious diseases difficult, and a waning immunity is widely observed among
many infectious diseases. In fact, the recovered individuals or vaccinated individuals could be rein-
fected as time passes owing to the natural decay of host immunity, or a genetic change in the circulating
virus. The Kermack–McKendrick infection-age dependent reinfection model has been reinvestigated
by several authors ([3, 4, 5, 6, 7]), and it was shown that a backward bifurcation of endemic steady
states is possible to occur.

On the other hand, we can formulate another type of reinfection model such that recovered individ-
uals can return to the full susceptible class due to the loss of immunity, which model is simply called a
SIRS model. So far SIRS epidemic models have been studied by several authors. Hethcote [8] first ex-
amined an ODE model for SIRS epidemic and shown that there exists a unique globally stable endemic
steady state if and only if R0 > 1, where R0 denotes the basic reproduction number (although Hethcote
did not use this notation at 1976). Aron ([9, 10, 11]) developed an SIRS model with recovery-age for
malaria epidemic by which we can take into account the boosting of immunity. If we consider the
recovery-age independent case, Aron’s SIRS model has a globally stable endemic steady state [12].
Although in many cases, the host population is assumed to be in a demographic steady state, Busen-
berg and Hadeler [13] and Busenberg and van den Driessche [14] considered a homogeneous SIRS
epidemic model in a changing host population. Recently Nakata et al. [15] developed an infection-age
structured SIRS epidemic model and studied global stability of the endemic equilibrium by using the
Lyapunov method. It is noted that the infection-age structured SIRS model can be formulated by a
scalar nonlinear renewal integral equation ([16, 6]).

Different from the above-mentioned existing SIRS models, we here investigate a SIRS epidemic
model with chronological age structure, which kind of model was proposed by Tudor [17] in 1985. As
the age-structured SIRS model is an extension of the well-known age-structured SIR epidemic model
[18], we can make use of many ideas developed for the SIR model, but we have to develop new tech-
nique to deal with problems arising from the reversion of susceptibility for recovered individuals. For
application purpose, it is important to clear the implication of reinfection on R0 and the critical cov-
erage of immunization, because the reinfection phenomena would make disease control more difficult
and complex. In fact, quantitative threshold results of the SIRS epidemic are similar to those of the SIR
epidemic, but its controllability is very much different from the SIR epidemic. An important effect of
vaccination policy is reduction of the effective size of the susceptible population, however in the rein-
fection model, there is a possibility that a disease can invade a fully vaccinated population, and we are
naturally led to the idea of the reinfection threshold ([6, 7]). In other words, for the SIRS reinfection
model, mass-vaccination policy is not necessarily almighty.

For simplicity, in this paper we only treat the case that the host population is assumed to be in a
demographic steady state, so the force of infection is given by the pseudo mass-action type [19]. The
reader may refer to [20] and [21] for more complex model formulation to take into account subclinical
infection. Moreover, it is noted that our explicit bifurcation and persistence calculations are based
on the separable mixing assumption for the transmission coefficient (Assumption 3.8). The separable
mixing assumption implies that there is no correlation between the age of the infecteds and the age of
susceptibles when their contacts occur. Further, we neglect vertical transmission because our analysis
is sufficiently complex even without vertical transmission and also its essential features of reversion
phenomena could be well understood by considering horizontal transmission.

In the following, we first give a standard proof for the well-posedness of the normalized age-
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structured SIRS model. Next we examine existence of endemic steady states by fixed point arguments
and bifurcation method, where we introduce the next generation operator and the basic reproduction
number R0 to formulate endemic threshold results. Thirdly we investigate stability of steady states by
bifurcation calculation and comparative method, and we show existence of a compact attractor and
discuss the global behavior based on the population persistence theory [22]. Finally we give some
numerical examples and discuss the effect of mass-vaccination.

2. Model formulation

2.1. The basic model

We here consider an infectious disease in a closed age-structured host population and assume that
the disease confers temporary immunity on the recovered individuals. For simplicity, we neglect the
disease-induced death rate, the effect of infection on fertility, the latent period and the infection-age
dependency of the parameters. Let S (t, a) be the age density of susceptible individuals at time t,
I(t, a) be the age density of infected individuals at time t and R(t, a) be the age density of recovered
individuals at time t. The basic age-structured SIRS model is then formulated by the following system
of McKendrick equations:(

∂

∂t
+
∂

∂a

)
S (t, a) = −µ(a)S (t, a) − λ(t, a)S (t, a) + δ(a)R(t, a),(

∂

∂t
+
∂

∂a

)
I(t, a) = λ(t, a)S (t, a) − (µ(a) + γ(a))I(t, a),(

∂

∂t
+
∂

∂a

)
R(t, a) = γ(a)I(t, a) − (µ(a) + δ(a))R(t, a),

S (t, 0) =

∫ ω

0
m(a)N(t, a)da, I(t, 0) = R(t, 0) = 0,

(2.1)

where 0 < ω < ∞ is the maximum attainable chronological age of the host population, m(a) and µ(a)
are the age-specific birth rate and death rate respectively, γ(a) and δ(a) are the age-dependent recovery
rate and the loss-of-immunity rate respectively. Let β(a, σ) be the transmission coefficient between
susceptibles with age a and infecteds with age σ. The age-density function of the host population is
N(t, a) = S (t, a) + I(t, a) + R(t, a) and the force of infection is given by

λ(t, a) =

∫ ω

0
β(a, σ)I(t, σ)dσ. (2.2)

Then the host population satisfies the stable population model [7]:

∂N(t, a)
∂t

+
∂N(t, a)
∂a

= −µ(a)N(t, a),

N(t, 0) =

∫ ω

0
m(a)N(t, a)da.

(2.3)

Define the survival function by

`(a) := exp
(
−

∫ a

0
µ(σ)dσ

)
. (2.4)
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We assume that the net reproduction rate (demographic basic reproduction number) of the host popu-
lation is unity: ∫ ω

0
m(a)`(a)da = 1. (2.5)

Without loss of generality, we can assume that the host population has already reached the demographic
steady state:

S (t, a) + I(t, a) + R(t, a) = N(a) := B`(a), (2.6)

where N(a) is the demographic stationary host population and B > 0 denotes its number of birth per
unit time.

From technical reasons, we assume that m, γ, δ ∈ L∞+ (0, ω), β ∈ L∞+ ((0, ω) × (0, ω)) and µ ∈

L1
loc,+(0, ω) with

∫ ω

0
µ(σ)dσ = ∞, which implies `(ω) = 0. Let β∞, γ∞ and δ∞ be the essential supre-

mum of β, γ and δ respectively.

2.2. The normalized system and its semiflow

Let
s(t, a) =

S (t, a)
N(a)

, i(t, a) =
I(t, a)
N(a)

, r(t, a) =
R(t, a)
N(a)

.

Then the basic system (2.1) can be written as the normalized system:(
∂

∂t
+
∂

∂a

)
s(t, a) = −λ[a|i(t, ·)]s(t, a) + δ(a)r(t, a),(

∂

∂t
+
∂

∂a

)
i(t, a) = λ[a|i(t, ·)]s(t, a) − γ(a)i(t, a),(

∂

∂t
+
∂

∂a

)
r(t, a) = γ(a)i(t, a) − δ(a)r(t, a),

s(t, 0) = 1, i(t, 0) = r(t, 0) = 0,

(2.7)

where λ[a | ψ], ψ ∈ L1(0, ω) is the mapping on E := L1(0, ω) defined by

λ[a | ψ] =

∫ ω

0
β(a, σ)N(σ)ψ(σ)dσ, (2.8)

and
s(t, a) + i(t, a) + r(t, a) = 1, ∀(t, a) ∈ R+ × [0, ω].

In what follows, we mainly investigate the normalized SIRS epidemic model (2.7).
Since s = 1− i− r, the state space for (i, r)-system is a convex closed set in E2 := L1(0, ω)×L1(0, ω)

given as
C = {(i, r) ∈ L1

+(0, ω) × L1
+(0, ω) | 0 ≤ i + r ≤ 1}. (2.9)

Let φ = (φ1(a), φ2(a))T ∈ E2 and let us introduce operatorsA and F on E2 as

(Aφ)(a) =

(
− d

da 0
0 − d

da

) (
φ1(a)
φ2(a)

)
, (2.10)
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D(A) = {φ ∈ E2 | φ ∈ AC[0, ω], φ(0) = 0}, (2.11)

F (φ)(a) =

(
λ[a | φ1](1 − φ1(a) − φ2(a)) − γ(a)φ1(a)

γ(a)φ1(a) − δ(a)φ2(a)

)
, (2.12)

where AC[0, ω] is the set of real-valued absolutely continuous functions on [0, ω]. Then (i, r)-system
can be formulated as a semilinear Cauchy problem on E2:

d
dt

u(t) = Au(t) + F (u(t)), u(0) = u0. (2.13)

The linear operator A, which is called population operator, generates the C0-semigroup {T (t)}t≥0

on E = L2(0, ω):

(T (t)φ)(a) =


φ1(a − t)
φ2(a − t)

 for a > t

0 for a < t

, φ =

(
φ1

φ2

)
∈ D(A). (2.14)

Then the state space C is positively invariant with respect to the semiflow defined by {etA}t≥0, that is,

etA(C) ⊂ C for all t ≥ 0. (2.15)

Lemma 2.1. The operator F is Lipschitz continuous. Moreover, there exists a constant α ∈ (0, 1) such
that

(I + αF )(C) ⊂ C. (2.16)

Proof. Lipschitz continuity is obvious. Observe that

u(a) + αF (u)(a) =

(
u1(a) + αλ[a | u1](1 − u1(a) − u2(a)) − αγ(a)u1(a)

(1 − αδ(a))u2(a) + αγ(a)u1(a)

)
.

Thus it is easy to see that u + αF (u) ≥ 0 if u ∈ C, 1 − αδ∞ > 0 and 1 − αγ∞ > 0. Furthermore, it
follows that if u ∈ C, then

(u1(a) + αλ[a | u1](1 − u1(a) − u2(a)) − αγ(a)u1(a)) + ((1 − αδ(a))u2(a) + αγ(a)u1(a))

≤ (u1(a) + u2(a))(1 − αλ[a | u1]) + αλ[a | u1] ≤ 1.

Hence we have proved that (I + αF )(C) ⊂ C. �

By using the method in [23], we obtain the following proposition.

Proposition 2.2. Let u0 ∈ C. Then the Cauchy problem (2.13) has a unique mild solution in C. The
mild solution u(t) is given by the following variation of constants formula:

u(t) = e−
1
α tetAu0 +

1
α

∫ t

0
e−

1
α (t−s)e(t−s)A[u(s) + αF (u(s))]ds. (2.17)

Proof. First we choose α such that (2.16) holds. Define the series {un}n≥1 iteratively as

u0(t) = u0, un+1(t) = e−
1
α tetAu0 +

1
α

∫ t

0
e−

1
α (t−s)e(t−s)A[un(s) + αF (un(s))]ds.

Since (2.15) and (2.16) hold, if un ∈ C, then un+1 ∈ C. In fact, un+1 is a convex linear combination of
etAu0 and [un(s) + αF (u(s))] with e−

1
α t + 1

α

∫ t

0
e−

1
α (t−s)ds=1. Because of the Lipschitz continuity of F ,

un(t) converges to the mild solution u(t) ∈ C uniformly as n→ ∞. �
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3. Existence of steady states

We now consider the existence of endemic steady states. First note that the endemic steady state
(s∗(a), i∗(a), r∗(a))T satisfies the following ODE system:

d
da

s∗(a) = −λ∗(a)s∗(a) + δ(a)r∗(a),

d
da

i∗(a) = λ∗(a)s∗(a) − γ(a)i∗(a),

d
da

r∗(a) = γ(a)i∗(a) − δ(a)r∗(a),

s∗(0) = 1, i∗(0) = r∗(0) = 0,

(3.1)

where

λ∗(a) :=
∫ ω

0
β(a, σ)N(σ)i∗(σ)dσ, (3.2)

∆(a) := exp
(
−

∫ a

0
δ(σ)dσ

)
, Γ(a) := exp

(
−

∫ a

0
γ(σ)dσ

)
.

Formally solving the above ODEs, we have the following expressions:

s∗(a) = e−
∫ a

0 λ∗(σ)dσ +

∫ a

0
e−

∫ a
σ
λ∗(σ)dσδ(σ)r∗(σ)dσ, (3.3)

i∗(a) =

∫ a

0

Γ(a)
Γ(σ)

λ∗(σ)s∗(σ)dσ, (3.4)

r∗(a) =

∫ a

0

∆(a)
∆(σ)

γ∗(σ)i∗(σ)dσ. (3.5)

Inserting the above expression into (3.3), we obtain

s∗(a) = e−
∫ a

0 λ∗(σ)dσ +

∫ a

0
e−

∫ a
σ
λ∗(ξ)dξδ(σ)

∫ σ

0

∆(σ)
∆(η)

γ(η)
∫ η

0

Γ(η)
Γ(ζ)

λ∗(ζ)s∗(ζ)dζdηdσ. (3.6)

Let b∗(a) := λ∗(a)s∗(a) be the density of newly infecteds at steady state and define a nonlinear
operator f given by

f [φ](a, σ) := φ(a)e−
∫ a
σ
φ(ξ)dξ, φ ∈ E. (3.7)

Moreover we define

Π(σ, ζ) :=
∫ σ

ζ

f [δ](σ, η) f [γ](η, ζ)dη, (3.8)

which denotes the transition probability that individuals recovered at age ζ become susceptible again
at age σ. Then for all ζ ∈ [0, ω] it holds that∫ ω

ζ

Π(σ, ζ)dσ ≤ (1 − e−‖δ‖E )(1 − e−‖γ‖E ) < 1. (3.9)
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In fact, we can observe that∫ ω

ζ

Π(σ, ζ)dσ =

∫ ω

ζ

dη
∫ ω

η

f [δ](σ, η)dσ f [γ](η, ζ)

=

∫ ω

ζ

dη
(
1 − e−

∫ ω
η
δ(ξ)dξ

)
f [γ](η, ζ) ≤ (1 − e−‖δ‖E )

∫ ω

ζ

f [γ](η, ζ)dη,

which shows (3.9).
From (3.6), we have

b∗(a) = f [λ∗](a, 0) + (T [λ∗]b∗)(a), (3.10)

where T [λ∗] is a linear operator in E = L1(0, ω) defined as:

(T [λ∗]φ)(a) :=
∫ a

0

∫ a

ζ

f [λ∗](a, σ)Π(σ, ζ)dσφ(ζ)dζ. (3.11)

Lemma 3.1. There exists a number k ∈ (0, 1) such that ‖T [λ∗]‖ ≤ k uniformly for λ∗ ∈ E+.

Proof. For a given λ∗ ∈ E+, it follows from (3.9) that∫ ω

0
(T [λ∗]φ)(a)da =

∫ ω

0
da

∫ a

0

∫ a

ζ

λ∗(a)e−
∫ a
σ
λ∗(x)dxΠ(σ, ζ)dσφ(ζ)dζ

=

∫ ω

0
dσ

∫ ω

σ

λ∗(a)e−
∫ a
σ
λ∗(x)dxda

∫ σ

0
Π(σ, ζ)φ(ζ)dζ

≤ (1 − e−‖λ
∗‖E )

∫ ω

0
dσ

∫ σ

0
Π(σ, ζ)φ(ζ)dζ

≤ (1 − e−‖λ
∗‖E )(1 − e−‖δ‖E )(1 − e−‖γ‖E )‖φ‖E,

which shows that ‖T [λ∗]‖ ≤ k < 1 with k := (1 − e−‖δ‖E )(1 − e−‖γ‖E ). Thus we have our conclusion. �

If λ∗ ∈ E+ = L1
+(0, ω) is given, (3.10) is a Volterra integral equation with respect to b∗. As the

Volterra operator has the spectral radius zero, (3.10) is solved as following:

b∗ = (I − T [λ∗])−1 f [λ∗](·, 0). (3.12)

Therefore, we obtain a fixed point equation for the force of infection λ∗:

λ∗(a) = (Ψλ∗)(a) :=
∫ ω

0
β(a, σ)N(σ)i∗(σ)dσ

=

∫ ω

0
β(a, σ)N(σ)

∫ σ

0

Γ(σ)
Γ(η)

b∗(η)dηdσ

=

∫ ω

0

∫ ω

η

β(a, σ)N(σ)
Γ(σ)
Γ(η)

dσ((I − T [λ∗])−1 f [λ∗](·, 0))(η)dη,

(3.13)

where Ψ is a nonlinear operator from E+ into itself defined by the right hand side of (3.13).
Then the Fréchet derivative of Ψ at zero is given by

(Ψ′[0]φ)(a) =

∫ ω

0

∫ ω

η

β(a, σ)N(σ)
Γ(σ)
Γ(η)

dσφ(η)dη. (3.14)
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For simplicity, we call K = Ψ′[0] the next generation operator (NGO) and its spectral radiusR0 := r(K)
the basic reproduction number for the normalized system, although K is a similar operator of the next
generation operator for the original system (2.1) (Chapter 9, [7]). If K and R0 are defined for the
original system (2.1), for given age distribution φ of primary cases, Kφ represents the age distribution
of secondary cases, and the number R0 means the expected number of secondary cases produced by
an infected individual during its entire period of infectiousness in a completely susceptible population.
The reader may refer to [24, 25, 26, 7] for the original implications of R0. See also [27] for a practical
approach to the computation of R0.

In order to solve the fixed point problem λ∗ = Ψλ∗ in E := L1(0, ω), we use a corollary of the
well-known theorem by Krasnoselskii ([28, 7]):

Theorem 3.2. Suppose that E is a real Banach space and E+ is a positive cone of E. Let Ψ is a positive
operator on E+ which has a strong Fréchet derivative at the origin K = Ψ′[0], satisfies Ψ(0) = 0 and
Ψ(E+) is bounded. Moreover, K has a positive eigenvector v0 ∈ E+ associated with eigenvalue λ0 > 1,
but has no eigenvector in E+ with unity. Then, Ψ has at least one nonzero fixed point in Ψ(E+).

According to [18], we adopt the following technical assumptions for the transmission coefficient
β(a, σ), which is a natural assumption to make the next generation operator becomes nonsupporting
and compact.

Assumption 3.3. 1. There exist numbers δ0 ∈ (0, ω) and β > 0 such that

β(a, η) ≥ β for almost all (a, η) ∈ (0, ω) × (ω − δ0, ω). (3.15)

2. β ∈ L∞+ ((0, ω) × (0, ω)) is extended into L∞+ (R2) by β(a, σ) = 0 for (a, σ) < (0, ω) × (0, ω) and
satisfies

lim
h→0

∫ ω

0
|β(a + h, η) − β(a, η)|da = 0 uniformly for η ∈ R. (3.16)

Here we summarize basic definitions from positive operator theory [7]. Let E be a real or complex
Banach space and let E∗ be its dual space. Then, E∗ is a space of all linear functionals on E. In the
following, we write the value of f ∈ E∗ at ψ ∈ E as 〈 f , ψ〉. A closed subset C ⊂ E is called the
cone (or positive cone) if the following conditions hold: (1) C + C ⊂ C, (2) λ ≥ 0 ⇒ λC ⊂ C, (3)
C ∩ (−C) = {0} and (4) C , {0}. With respect to the cone C, we write x ≤ y if y − x ∈ C and x < y if
y − x ∈ C \ {0}. If the set {ψ − φ | ψ, φ ∈ C} is dense in E, the cone C is said to be total. If E = C − C,
C is called a reproducing cone. Let B(E) be a set of bounded linear operators from E into itself. Let
r(T ) be the spectral radius of T ∈ B(E) and let Pσ(T ) be the point spectrum of T . The dual cone C∗ is
a subset of E∗ composed of all positive linear functionals. f ∈ C∗ is called a positive linear functional
if 〈 f , ψ〉 ≥ 0 for all ψ ∈ C. ψ ∈ C is called a quasi-interior point or nonsupporting point if 〈 f , ψ〉 > 0
for all f ∈ C∗ \ {0}. A positive linear functional f ∈ C∗ is called strictly positive if 〈 f , ψ〉 > 0 for all
ψ ∈ C+. A nonzero operator T ∈ B(E) is called positive if T (C) ⊂ C. If (T−S )(C) ⊂ C for T, S ∈ B(E),
we write S ≤ T . A positive operator T ∈ B(E) is called semi-nonsupporting if, for any ψ ∈ C+ and
f ∈ C∗ \ {0}, there exists an integer p = p(ψ, f ) such that 〈 f ,T pψ〉 > 0. A positive operator T ∈ B(E)
is called nonsupporting if, for any ψ ∈ C+ and f ∈ C∗ \ {0}, there exists an integer p = p(ψ, f ) such
that 〈 f ,T nψ〉 > 0 for all n ≥ p. A positive operator T ∈ B(E) is called strictly nonsupporting if, for
any ψ ∈ C+, there exists a positive integer p = p(ψ) such that T nψ is a quasi-interior point of C for all
n ≥ p.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 6071–6102.
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Lemma 3.4. The next generation operator K is nonsupporting and compact.

Proof. Define the positive linear functional f0 ∈ E∗+ by

〈 f0, ψ〉 :=
∫ ω

0

∫ ω

η

β0(σ)N(σ)
Γ(σ)
Γ(η)

dσψ(η)dη,

where

β0(σ) =

β for σ ∈ (ω − δ0, ω)

0 otherwise
. (3.17)

Then Kψ ≥ 〈 f0, ψ〉e for all ψ ∈ E+, where e = 1 ∈ E+, which implies

Kn+1ψ ≥ 〈 f0, ψ〉〈 f0, e〉ne, ∀n ∈ N.

Thus for arbitrary F ∈ E∗+ \ {0}, ψ ∈ E+ \ {0} and n ≥ 1,

〈F,Knψ〉 ≥ 〈 f0, ψ〉〈 f0, e〉n−1〈F, e〉 > 0.

This shows K is nonsupporting. Next we show the compactness of K. Let C be an arbitrary bounded
subset in L1

+(0, ω), and take M > 0 such that supφ∈C ‖φ‖E ≤ M. For all φ ∈ C, using Assumption 3.3.1,

lim
h→0

∫
R

|Kφ(a + h) − Kφ(a)|da

≤ lim
h→0

∫
R

∫ ω

0

∫ ω

η

|β(a + h, σ) − β(a, σ)|N(σ)
Γ(σ)
Γ(η)

dσφ(η)dηda

≤ lim
h→0

∫
R

∫ ω

0
φ(η)dη

∫ ω

0
|β(a + h, σ) − β(a, σ)|Bdσda

≤ BM lim
h→0

∫
R

∫ ω

0
|β(a + h, σ) − β(a, σ)|dσda = 0.

By the Fréchet-Kolmogorov criterion for the compactness of sets in Lp(R) ([29, 22]), Ψ(C) is relatively
compact. This shows that K is compact. �

Lemma 3.5. Let E+ = L1
+(0, ω) and ΩM := {φ ∈ E+ : ‖φ‖E ≤ M}. There exists a number M > 0 such

that Ψ(E+) ⊂ ΩM.

Proof. Define the nonlinear operator G : λ∗ → b∗ in E+ by Gφ = (I − T [φ])−1 f [φ](·, 0). From Lemma
3.1, it follows that

‖φ‖E ≤ ‖(I − T [φ])−1‖‖ f [φ](·, 0)‖E ≤
1

1 − k
.

Let
M :=

1
1 − k

∫ ω

0
da

∫ ω

0
β(a, σ)N(σ)dσ.

Then it is easy to see that ‖Ψλ∗‖E ≤ M, from which we have Ψ(E+) ⊂ ΩM. �

From the well-known Krein-Rutman’s Theorem, we know that r(K) is a positive eigenvalue if
r(K) > 0, and it is a pole of the resolvent because K is compact. Then we can apply Sawashima’s
results for nonsupporting operator to obtain the following properties (see [30, 31]):
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Proposition 3.6. Suppose that the cone E+ is total, K is compact, nonsupporting with respect to E+

and r(K) > 0. Then the following holds:

1. r(K) ∈ Pσ(K) \ {0} and r(K) is a simple pole of the resolvent (λI − K)−1.
2. The eigenspace corresponding to r(K) is one-dimensional and its eigenvector v0 ∈ E+ is a quasi-

interior point. Any eigenvector in E+ is proportional to v0.
3. The adjoint eigenspace corresponding to r(K) is one-dimensional and its eigenfunctional f ∈

E∗ \ {0} is strictly positive.

As is seen above, the idea of being nonsupporting for positive operator is an infinite-dimensional
extension of the primitivity of nonnegative matrices in the finite-dimensional case.

Using the above facts, we can show the main theorem in this section:

Theorem 3.7. If R0 > 1, there exists at least one endemic steady state, while there is no endemic steady
state if R0 ≤ 1.

Proof. If R0 > 1, thanks to the Lemma 3.4 and above Proposition 3.6, there is no eigenvector of K
which is corresponding to unity in E+. Then by Lemma 3.5 and Theorem 3.2, we can show the first
half of statement. Next suppose that R0 ≤ 1 and there exists an endemic steady state and the force of
infection at the endemic steady state is given by λ∗ > 0. From (3.10), it follows that

(I − T [λ∗])−1 f [λ∗](·, 0) = b∗ ≤ λ∗s∗ < λ∗. (3.18)

Then we know that λ∗ = Ψλ∗ < Ψ′[0]λ∗, which implies that R0 = r(Ψ′[0]) > 1. This contradicts our
assumption. Then there is no endemic steady state if R0 ≤ 1. �

Next we show that an endemic steady state bifurcates forwardly at R0 = 1. For this purpose,
we adopt the following assumption called separable mixing assumption which means that there is no
correlation between the age of the infected individuals and that of the susceptible individuals.

Assumption 3.8. There exist β1, β2 ∈ L∞+ (0, ω) such that β(a, σ) = β1(a)β2(σ).

Then the next generation operator K is represented as follows:

(Kφ)(a) = β1(a)
∫ ω

0

∫ ω

η

β2(σ)N(σ)
Γ(σ)
Γ(η)

dσφ(η)dη. (3.19)

So the range of K is one-dimensional and β1 becomes a positive eigenvector as

(Kβ1)(a) = β1(a)
∫ ω

0

∫ ω

η

β2(σ)N(σ)
Γ(σ)
Γ(η)

dσβ1(η)dη, (3.20)

which shows that the basic reproduction number is given by

R0 = r(K) =

∫ ω

0

∫ ω

η

β2(σ)N(σ)
Γ(σ)
Γ(η)

dσβ1(η)dη. (3.21)

Let us introduce a bifurcation parameter ε > 0 and suppose that β1 = εβ10, where the standard
susceptibility β10 is chosen such as R0 = 1 if ε = 1. Then the basic reproduction number is equal to ε
and it holds that ∫ ω

0

∫ ω

η

β2(σ)N(σ)
Γ(σ)
Γ(η)

dσβ10(η)dη = 1. (3.22)
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Then the infection force at the endemic steady state is λ∗(a) = cεβ10(a) for some c > 0. Hence the
fixed point problem (3.13) is rewritten as

Θ(c, ε) := ε

∫ ω

0

∫ ω

η

β2(σ)N(σ)
Γ(σ)
Γ(η)

((I − T [εcβ10])−1κ[c; ε])(η)dσdη − 1 = 0, (3.23)

where
κ[c, ε](η) = β10(η)e−εc

∫ η
0 β10(z)dz. (3.24)

Then it follows from (3.22) that Θ(0, 1) = 0. Observe that

(I − T [εcβ10])−1κ[c; ε] =

∞∑
n=0

T n[εcβ10]κ[c; ε], (3.25)

where
(T [εcβ10]κ[c; ε])(η) =

∫ η

0

∫ η

ζ

f [εcβ10](η, σ)Π(σ, ζ)dσκ[c; ε](ζ)dζ. (3.26)

Then it follows that

∂

∂c

∞∑
n=0

(T n[εcβ10]κ[c; ε]) (η)

∣∣∣∣∣∣∣
(c,ε)=(0,1)

= −β10(η)
∫ η

0
β10(ζ)dζ +

∫ η

0

∫ η

ζ

β10(η)Π(σ, ζ)dσβ10(ζ)dζ

= β10(η)
∫ η

0
β10(ζ)

[
−1 +

∫ η

ζ

Π(σ, ζ)dσ
]

dζ < 0,

(3.27)

from which we can conclude that
∂Θ

∂c
(0, 1) < 0. (3.28)

From the Implicit Function Theorem, Θ(c, ε) = 0 can be solved as c = c(ε) with c(1) = 0 at the
neighborhood of (c, ε) = (0, 1). Corresponding to a positive root c > 0 of Θ(c, ε) = 0, there exists an
endemic steady state. Moreover it follows from (3.22) that

∂Θ

∂ε
(0, 1) = 1, (3.29)

and so

c′(1) = −

(
∂Θ

∂c
(0, 1)

)−1
∂Θ

∂ε
(0, 1) = −

(
∂Θ

∂c
(0, 1)

)−1

> 0, (3.30)

which implies that c(ε) > 0 if ε > 0 and |ε − 1| is small enough. Then a positive steady state forwardly
bifurcates at ε = R0 = 1. Then we have the following bifurcation result:

Proposition 3.9. For the separable mixing case, an endemic steady state forwardly bifurcates from the
disease-free steady state when R0 crosses unity.

4. Stability of steady states

Next we consider the stability of steady states of the system (2.7).
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4.1. Disease-free steady state

The system (2.7) has a unique disease-free steady state: (s0(a), i0(a), r0(a))T = (1, 0, 0)T. In order to
consider the dynamics around the disease-free steady state, we introduce the small perturbation terms:

x(t, a) = s(t, a) − s0(a), y(t, a) = i(t, a) − i0(a), z(t, a) = r(t, a) − r0(a),

where x(t, 0) = y(t, 0) = z(t, 0) = 0. Then the second equation in (2.7) is rewritten as(
∂

∂t
+
∂

∂a

)
y(t, a) = λ[a | y(t, ·)](x(t, a) + 1) − γ(a)y(t, a). (4.1)

Neglecting the second order term of small perturbation, we obtain the linearized equation of (4.1):(
∂

∂t
+
∂

∂a

)
y(t, a) = λ[a|y(t, ·)] − γ(a)y(t, a), y(t, 0) = 0. (4.2)

This equation describes the dynamics of the initial invasion phase of the infected population. Define
two linear operators A0 and F0 on E as the following:

A0 = −
d

da
− γ(a), D(A0) = {x ∈ E | y ∈ AC[0, ω], y(0) = 0},

F0y(a) = λ[a | y] =

∫ ω

0
β(a, σ)N(σ)y(σ)dσ, y ∈ E.

Then the equation (4.2) is transformed into the following linear Cauchy problem

d
dt

u(t) = (A0 + F0)u(t). (4.3)

Note that from Assumption 3.3, F0 ∈ B(E) is a compact operator. Define the linear operator S ζ for
given ζ ∈ ρ(A0) as follows:

S ζv(a) := F0R(ζ, A0)v(a) =

∫ ω

0

∫ ω

η

β(a, σ)N(σ)e−ζ(σ−η) Γ(σ)
Γ(η)

dσv(η)dη, v ∈ E, (4.4)

where R(ζ, A0) = (ζ − A0)−1. Equation (4.3) has been well studied and the following statement can be
proved as Lemma 4.7 of this paper ([18], [32]):

Lemma 4.1. A0 + F0 has a compact resolvent and it holds that

σ(A0 + F0) = Pσ(A0 + F0) = Σ := {ζ ∈ C | 1 ∈ Pσ(S ζ)}. (4.5)

So we are going to investigate the properties of the operator S ζ instead of A0 +F0, which determines
the location of eigenvalues of the linearized generator A0 + F0.

Lemma 4.2. The operator S ζ is compact and nonsupporting for all ζ ∈ R.
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Proof. The operator S ζ is the composition of the compact operator F0 and the bounded operator
R(ζ; A0) on E, so S ζ is compact.

Define the strictly positive linear functional fζ ∈ E∗+ by

〈 fζ , ψ〉 :=
∫ ω

0

∫ ω

η

β0(σ)N(σ)e−(σ−η)ζ Γ(σ)
Γ(η)

dσψ(η)dη,

then S ζψ ≥ 〈 fζ , ψ〉e for all ψ ∈ E+ and ζ ∈ R. Therefore, we obtain

S n+1
ζ ψ ≥ 〈 fζ , ψ〉〈 fζ , e〉ne ∀n ∈ N.

Thus for arbitrary F ∈ E∗+ \ {0}, ψ ∈ E+ \ {0} and n ≥ 1,

〈F, S n
ζψ〉 ≥ 〈 fζ , ψ〉〈 fζ , e〉

n−1〈F, e〉 > 0,

which implies S ζ is nonsupporting. �

Lemma 4.3. There is a unique ζ0 ∈ R such that r(S ζ0) = 1 and the sign relation holds:

sign(ζ0) = sign(R0 − 1) (4.6)

Moreover, ζ0 is the dominant characteristic root, that is,<ζ < ζ0 for any ζ ∈ Σ \ {ζ0}.

To prove Lemma 4.3 we need the following theorem on the monotone property of spectral radius.

Theorem 4.4 ([31]). Let E be a Banach lattice. Suppose that S ,T ∈ B(E) are positive operators. Then,
the following holds:

1. If S ≤ T, then r(S ) ≤ r(T ).
2. If S ,T are semi-nonsupporting and compact, S ≤ T, S , T and r(T ) , 0, then r(S ) < r(T ).

Proof of Lemma 4.3. To prove the first half we will show that

lim
ζ→−∞

r(S ζ) = ∞, lim
ζ→+∞

r(S ζ) = 0, (4.7)

and that the mapping R 3 ζ → r(S ζ) is strictly decreasing and continuous. Applying Proposition 3.6,
r(S ζ) is an eigenvalue of S ∗ζ and its corresponding eigenfunctional Fζ ∈ E∗+ is strictly positive. Then
we have

r(S ζ)〈Fζ , e〉 = 〈r(S ζ)Fζ , e〉 = 〈S ∗ζFζ , e〉 = 〈Fζ , S ζe〉 ≥ 〈 fζ , e〉〈Fζ , e〉.

Because of the strict positivity of Fζ , we can divide the both sides of the above inequality by 〈Fζ , e〉 > 0
to obtain r(S ζ) ≥ 〈 fζ , e〉. Since

〈 fζ , e〉 =

∫ ω

0

∫ ω

η

β0(σ)N(σ)e−(σ−η)ζ Γ(σ)
Γ(η)

dσdη ≥
∫ ω

ω−δ0

N(σ)
∫ σ

0
βe−(σ−η)ζ Γ(σ)

Γ(η)
dηdσ

=

∫ ω

ω−δ0

N(σ)
∫ σ

0
βe−(σ−η)ζ Γ(σ)

Γ(η)
dηdσ ≥

∫ ω

ω−δ0

N(σ)
∫ σ

0
βe−(σ−η)(ζ+γ∞)dηdσ

= β

∫ ω

ω−δ0

N(σ)
1 − e−σ(ζ+γ∞)

ζ + γ∞
dσ
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holds, it follows that lim infζ→−∞ r(S ζ) = ∞ by the Fatou’s lemma. Furthermore, we define a strictly
positive functional gζ ∈ E∗+ by

〈gζ , ψ〉 := β

∫ ω

0

∫ ω

η

N(σ)e−(σ−η)ζ Γ(σ)
Γ(η)

dσψ(η)dη.

Using the same argument as above, we obtain

r(S ζ) ≤ 〈gζ , e〉 ≤ β∞
∫ ω

0
N(σ)

1 − e−σζ

ζ
dσ.

By the reverse Fatou’s lemma, lim supζ→+∞ r(S ζ) = 0. Consequently, (4.7) holds. Note that if ζ > µ,
then we have S ζ ≤ S µ and S ζ , S µ, so it follows from Theorem 4.4 that r(S ζ) > r(S µ). As S ζ is a
compact operator for any ζ ∈ R and r(S ζ) > 0, it follows from the Krein-Rutman’s theorem that its
spectral radius r(S ζ) is a positive eigenvalue, so it is a continuous function of ζ. Then r(S ζ) = 1 has
a unique real root ζ0 such that sign(ζ0) = sign(r(S 0) − 1). Since r(S 0) = r(K) = R0, we have the sign
relation (4.6).

Next we show the latter half. If we take ζ ∈ Σ, there exists an eigenfunction yζ ∈ E \ {0} such that
S ζyζ = yζ . If we use the notation |yζ |(a) := |yζ(a)|, it follows that

|yζ |(a) = |S ζyζ(a)|

=

∣∣∣∣∣∣
∫ ω

0

∫ ω

η

β(a, σ)N(σ)e−ζ(σ−η) Γ(σ)
Γ(η)

dσyζ(η)dη

∣∣∣∣∣∣
≤

∫ ω

0

∫ ω

η

β(a, σ)N(σ)
∣∣∣e−ζ(σ−η)

∣∣∣ Γ(σ)
Γ(η)

dσ|yζ |(η)dη

= S<ζ |yζ |(η).

In short, |yζ | ≤ |S ζyζ | ≤ S<ζ |yζ |. Let F<ζ be an eigenfunctional of S ∗
<ζ

corresponding to the eigenvalue
r(S<ζ). By Proposition 3.6, it is strictly positive. Then we have

r(S<ζ)〈F<ζ , |yζ |〉 = 〈F<ζ , S<ζ |yζ |〉 ≥ 〈F<ζ , |yζ |〉

and dividing the both sides by 〈F<ζ , |yζ |〉 > 0, we obtain r(S<ζ) ≥ 1. This implies<ζ ≤ ζ0 for all ζ ∈ Σ

by the sign relation. Let us show that ζ = ζ0 if<ζ = ζ0. In this case, we have |yζ | ≤ S<ζ |yζ | = S ζ0 |yζ |.
In particular |yζ | = S ζ0 |yζ | holds. In fact, if we assume |yζ | < S ζ0 |yζ | then

〈Fζ0 , |yζ |〉 < 〈Fζ0 , S ζ0 |yζ |〉 = 〈S ∗ζ0
Fζ0 , |yζ |〉 = r(S ζ0)〈Fζ0 , |yζ |〉 = 〈Fζ0 , |yζ |〉,

which is a contradiction. Let y0 be the eigenfunction of S ζ0 corresponding to 1 = r(S ζ0). Since |yζ | is
a positive eigenfunction of the nonsupporting operator S ζ0 , it follows from Proposition 3.6 that there
exists c > 0 such that |yζ | = cy0 and, without loss of generality, we can assume that c = 1. Hence the
function yζ is represented as yζ(a) = eiv(a)y0(a) for some real valued function v : (0, ω) → R. From the
relation |S ζyζ | = S ζ0y0 with ζ = ζ0 + =ζ, we have∣∣∣∣∣∣

∫ ω

0

∫ ω

η

β(a, σ)N(σ)e−ζ(σ−η) Γ(σ)
Γ(η)

dσeiv(η)y0(η)dη

∣∣∣∣∣∣ =

∫ ω

0

∫ ω

η

β(a, σ)N(σ)e−ζ0(σ−η) Γ(σ)
Γ(η)

y0(η)dσdη.

(4.8)
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Applying Lemma 6.12 in [33], it follows that −=ζ(σ − η) + v(η) = κ for some constant κ. Inserting
yζ = eiv(a)y0 into the relation S ζyζ = yζ , we have eiκS ζ0y0 = eiv(a)y0, so κ = v(a) and =ζ = 0. Then ζ0 is
the strictly dominant eigenvalue. �

Finally we can conclude the following stability theorem.

Theorem 4.5. If R0 < 1, the disease-free steady state is locally asymptotically stable whereas unstable
if R0 > 1.

Proof. The C0-semigroup {etA0} is zero for t ≥ ω, so it is eventually norm continuous. Since F0 is
compact, {et(A0+F0)}t≥0 is also eventually norm continuous [34]. Then applying the spectral mapping
theorem, etω0(A0+F0) = ets(A0+F0) for all t ≥ 0. Then it holds that

ζ0 = max
ζ∈Σ
<ζ = max

ζ∈σ(A0+F0)
<ζ = s(A0 + F0) = ω0(A0 + F0),

where ω(A) denotes the growth bound of the semigroup etA. Then it follows that

sign(ζ0) = sign(R0 − 1) = sign(ω(A0 + F0)).

Thus by the principle of linearized stability, the disease-free steady state is locally asymptotically stable
if R0 < 1, while it is unstable if R0 > 1. �

Theorem 4.6. If R0 < 1, the disease-free steady state is globally asymptotically stable.

Proof. Let U(t) and V(t) be the semiflows induced by the mild solution of (2.13) and the mild solution
v(t) of

v(t) = e−
1
α tetAu0 +

1
α

∫ t

0
e−

1
α (t−s)e(t−s)A [

v(s) + αF ′[0](v(s))
]
ds.

Since F (u) ≤ F ′[0]u for u ∈ C, by using iterative argument, it is easily seen that U(t) ≤ V(t) in C. For
the asymptotic behavior of the linearized equation, it is shown above that if R0 = r(K) < 1, then

lim
t→∞

V(t)u0 = 0, u0 ∈ C, (4.9)

which implies the global stability of the disease-free steady state. �

4.2. Endemic steady states

Next we consider the local stability of endemic steady states. Throughout this subsection, we again
adopt the separable mixing assumption. As is shown in the previous section, the endemic steady state
exists if and only if R0 > 1, so we assume this supercriticality condition to consider the stability of the
endemic steady state. Let (s∗(a), i∗(a), r∗(a))T ∈ E3

+ = (L1
+(0, ω))3 be an endemic steady state. Again

let us introduce the small perturbation terms:

x(t, a) = s(t, a) − s∗(a), y(t, a) = i(t, a) − i∗(a), z(t, a) = r(t, a) − r∗(a).
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Then the system (2.7) is rewritten as(
∂

∂t
+
∂

∂a

)
x(t, a) = −λ[a|y(t, ·)]s∗(a) − λ∗(a)x(t, a) + δ(a)z(t, a),(

∂

∂t
+
∂

∂a

)
y(t, a) = λ[a|y(t, ·)]s∗(a) + λ∗(a)x(t, a) − γ(a)y(t, a),(

∂

∂t
+
∂

∂a

)
z(t, a) = γ(a)y(t, a) − δ(a)z(t, a),

(4.10)

x(t, 0) = y(t, 0) = z(t, 0) = 0.

Since x(t, a) + y(t, a) + z(t, a) = 0, (4.10) is reduced to (y, z)-system, so it can be formulated as an
abstract linear problem on the Banach space E2:

d
dt

v(t) = Av(t) + Fv(t), v(0) = v0, (4.11)

where A is defined as the same asA in Section 2, and

(Fv)(a) =

(
λ[a|v1]s∗(a) − λ∗(a)(v1(a) + v2(a)) − γ(a)v2(a)

γ(a)v1(a) − δ(a)v2(a)

)
, v =

(
v1

v2

)
∈ E2. (4.12)

Now let us consider the resolvent equation for A + F:

(ζ − (A + F))v = u, u ∈ E2, v =

(
v1

v2

)
∈ D(A). (4.13)

By the definition of the operators A and F, v1 satisfies

v1(a) =

∫ a

0
e−

∫ a
σ2

(ζ+γ(z)+λ∗(z))dz

×

(
−λ∗(σ2)

∫ σ2

0
e−

∫ σ2
σ3

(ζ+δ(z))dz(γ(σ3)v1(σ3) + u2(σ3))dσ3 + s∗(σ2)λ[σ2|v1] + u1(σ2)
)

dσ2.

(4.14)

Once v1 is determined by (4.14), v2 is calculated as

v2(a) =

∫ a

0
e−ζ(a−σ) ∆(a)

∆(σ)
[γ(σ)v1(σ) + u2(σ)]dσ. (4.15)

Define an operator Vζ on E by

(Vζφ)(a) := −
∫ a

0
e−

∫ a
σ2

(ζ+γ(z)+λ∗(z))dz
λ∗(σ2)

∫ σ2

0
e−

∫ σ2
σ3

(ζ+δ(z))dz
γ(σ3)φ(σ3)dσ3dσ2. (4.16)

Moreover, define an operator g and a given function h as

g[φ, ζ](a) :=
∫ a

0
e−

∫ a
σ2

(ζ+γ(z)+λ∗(z))dzs∗(σ2)φ(σ2)dσ2, (4.17)
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h[u, ζ](a) :=
∫ a

0
e−

∫ a
σ2

(ζ+γ(z)+λ∗(z))dz
[
−λ∗(σ2)

∫ σ2

0
e−

∫ σ2
σ3

(ζ+δ(z))dzu2(σ3)dσ3 + u1(σ2)
]

dσ2. (4.18)

Thus if we suppose λ = λ[· | v1] is given, the equation (4.14) with respect to v1 is rewritten as

v1(a) = (Vζv1)(a) + g[λ, ζ](a) + h[u, ζ](a). (4.19)

Since Vζ is Volterra type operator, R(1; Vζ) := (I − Vζ)−1 exists and (4.19) is solved as:

v1 = R(1; Vζ)(g[λ, ζ] + h[u, ζ]). (4.20)

Then we have

λ(a) =

∫ ω

0
β(a, σ)N(σ)v1(σ)dσ

=

∫ ω

0
β(a, σ)N(σ)R(1; Vζ)(g[λ, ζ] + h[u, ζ])(σ)dσ

=

∫ ω

0
β(a, σ)N(σ)R(1; Vζ)g[λ, ζ](σ)dσ +

∫ ω

0
β(a, σ)N(σ)R(1; Vζ)h[u, ζ](σ)dσ

=: (Wζλ)(a) + ξ(a; u, ζ),

(4.21)

where Wζ is an integral operator from L1(0, ω) into itself defined by

(Wζφ)(a) :=
∫ ω

0
β(a, σ)N(σ)R(1; Vζ)g[φ, ζ](σ)dσ. (4.22)

Roughly speaking, if (I−Wζ)−1 exists, λ can be calculated as (I−Wζ)−1ξ and the resolvent (ζ−(A+F))−1

exists.

Lemma 4.7. For the linearized generator A + F at the steady state, it holds that

σ(A + F) = Pσ(A + F) = {ζ ∈ C : 1 ∈ Pσ(Wζ)}, (4.23)

where σ(A) denotes the spectrum of A.

Proof. From the expression (4.20) and (4.15), we know that A + F has a compact resolvent, so it
holds that σ(A + F) = Pσ(A + F) (Theorem 6.29, [35]). Let S := {ζ ∈ C : 1 ∈ σ(Wζ)}. From the
above argument, it follows that C \ S ⊂ ρ(A + F), where ρ(A) denotes the resolvent set of A. Thus
S ⊃ σ(A + F) = Pσ(A + F). Since Wζ is a compact operator, its spectrum different from zero is an
eigenvalue (Theorem 6.26, [35]), so there exists an eigenfunction φζ such that Wζφζ = φζ if ζ ∈ S. In
this case, (

v1

v2

)
=

(
((I − Vζ)−1g[φζ , ζ])(a)∫ a

0
e−ζ(a−σ) ∆(a)

∆(σ)γ(σ)v1(σ)dσ

)
,

becomes an eigenfunction of A + F associated with eigenvalue ζ. Hence we have S ⊂ Pσ(A + F). Then
we have (4.23). �
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In the following, we again adopt the separable mixing assumption that

β(a, σ) = β1(a)β2(σ), (4.24)

in order to simply make use of bifurcation arguments explicitly, although our argument could be applied
to the model with the general transmission coefficient as is observed in [18].

In the separable mixing case, we can observe that

((I −Wζ)β1)(a) = β1(a)
(
1 −

∫ ω

0
β2(σ)N(σ)R(1; Vζ)g[β1, ζ](σ)dσ

)
, (4.25)

which shows that β1 is a positive eigenvector of Wζ .
As is shown in section 3, if we introduce a bifurcation parameter ε > 0 such that β1 = εβ10 and

R0 = 1 when ε = 1, we have λ∗ = c(ε)εβ10 for a right neighborhood at ε = 1, c(1) = 0 and c′(1) > 0.
Then the parametrized model has the basic reproduction number ε. Now we define a two parameter
function Λ as

Λ(ζ, ε) := 1 −
∫ ω

0
β2(σ)N(σ)R(1; Vζ,ε)g[εβ10, ζ](σ)dσ, (4.26)

where

(Vζ,εφ)(a) := −c(ε)ε
∫ a

0
e−

∫ a
σ2

(ζ+γ(z)+c(ε)εβ10(z))dz
β10(σ2)

∫ σ2

0
e−

∫ σ2
σ3

(ζ+δ(z))dz
γ(σ3)φ(σ3)dσ3dσ2. (4.27)

Then the operator I −Wζ is not invertible if and only if Λ(ζ, ε) = 0.
Since Vζ = 0 for ε = 1, we have Λ(0, 1) = 1 − R0 = 0. Observe that

∂Λ

∂ζ
(0; 1) = −

∫ ω

0
β2(σ)N(σ)

∫ σ

0
(σ2 − σ)

Γ(σ)
Γ(σ2)

β10(σ2)dσ2dσ > 0. (4.28)

Therefore it follows from the Implicit Function Theorem that Λ(ζ, ε) = 0 can be solved as ζ = ζ(ε)
with ζ(1) = 0 in the neighborhood of (ζ, ε) = (1, 0). From Lemma 4.1, we know that ζ(1) = 0 is the
dominant real eigenvalue of the linearized generator A + F when ε = 1.

Theorem 4.8. For the separable mixing case, the endemic steady state bifurcated from the disease-free
steady state is locally asymptotically stable, if R0 > 1 and |R0 − 1| is sufficiently small.

Proof. Observe that

∂Λ

∂ε
(0, 1) = −

∂

∂ε

∫ ω

0
β2(σ)N(σ)

∞∑
k=0

(Vk
ζ,εg[εβ10, ζ])(σ)dσ

∣∣∣∣∣∣∣
(ζ,ε)=(0,1)

. (4.29)

On the first term of the summation in (4.29),

−
∂

∂ε

∫ ω

0
β2(σ)N(σ)g[εβ10, ζ](σ)dσ

∣∣∣∣∣
(ζ,ε)=(0,1)

= −
∂

∂ε

∫ ω

0
β2(σ)N(σ)

∫ σ

0
e−

∫ σ
σ2

(ζ+γ(z)+εc(ε)β10(z))dzs∗(σ2; ε)εβ10(σ2)dσ2dσ
∣∣∣∣∣
(ζ,ε)=(0,1)

,

(4.30)
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where s∗(·; ε) is the prevalence of susceptibles in the bifurcated endemic steady state with the bifurca-
tion parameter ε. Since λ∗(a)s∗(a) = b∗(a) and (3.12), we have

∂

∂ε
s∗(σ2; 1) =

∂

∂ε

1
εc(ε)β10(σ2)

∞∑
k=0

T [εc(ε)β10]k f [εc(ε)β10](σ2, 0)

∣∣∣∣∣∣∣
ε=1

=
∂

∂ε

1
εc(ε)β10(σ2)

{ f [εc(ε)β10](σ2, 0) + T [εc(ε)β10] f [εc(ε)β10](σ2, 0)}
∣∣∣∣∣
ε=1

= −c′(1)
∫ σ2

0
β10(z)

[
1 −

∫ σ2

z
Π(σ, z)dσ

]
dz < 0.

(4.31)

Therefore we obtain

−
∂

∂ε

∫ ω

0
β2(σ)N(σ)g[εβ10, ζ](σ)dσ

∣∣∣∣∣
ε=1,ζ=0

= J1 + J2 + J3, (4.32)

where

J1 = c′(1)
∫ ω

0
β2(σ)N(σ)

∫ σ

0

∫ σ

σ2

β10(ζ)dζ
Γ(σ)
Γ(σ2)

β10(σ2)dσ2dσ,

J2 =

∫ ω

0
β2(σ)N(σ)

∫ σ

0

Γ(σ)
Γ(σ2)

β10(σ2)
∫ σ2

0
β10(ζ)

[
1 −

∫ σ2

ζ

Π(σ3, ζ)dσ3

]
dζdσ2dσ,

J3 := −
∫ ω

0
β2(σ)N(σ)

∫ σ

0

Γ(σ)
Γ(σ2)

β10(σ2)dσ2dσ.

(4.33)

From our assumption, we have J3 = −R0 = −1. Moreover, it follows from (3.27) and (3.30) that

J2 = −c′(1)
∂Θ

∂c
(0, 1) = 1. (4.34)

On the second term of the summation in (4.29),

−
∂

∂ε

∫ ω

0
β2(σ)N(σ)Vζ,εg[εβ10, ζ](σ)dσ

∣∣∣∣∣
ε=1,ζ=0

=

∫ ω

0
β2(σ)N(σ)

∫ σ

0
e−

∫ σ
σ2
γ(z)dz

β10(σ2)c′(1)
∫ σ2

0
e−

∫ σ2
σ3

δ(z)dz
γ(σ3)

×

∫ σ3

0
e−

∫ σ3
σ4

γ(z)dz
β10(σ4)dσ4dσ3dσ2dσ =: J4

(4.35)

The third and the subsequent term in (4.29) is equal to zero, hence we obtain

∂Λ

∂ε
(0; 1) = J1 + J2 + J3 + J4 > 0. (4.36)

Therefore we conclude that

ζ′(1) = −

(
∂Λ

∂ζ
(0; 1)

)−1
∂Λ

∂ε
(0; 1) < 0, (4.37)

which shows that the dominant real eigenvalue moves to the left when ε crosses the unity. Using the
Rouché theorem ([36, 37]), we can show that another eigenvalues stays in the left half plane if |ε − 1|
is small enough. Then we conclude that the forwardly bifurcated small endemic steady state is locally
asymptotically stable. �
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5. Global behavior

In this section, we again adopt the separable mixing assumption 3.8 to discuss the persistence thresh-
old result of the SIRS model. The reader may find elementary ideas and techniques in [22, 38, 39].
A key idea is that the weak persistence could imply the strong persistence if there exists a compact
attractor for the semiflow defined by the basic dynamical system.

5.1. Weak persistence

First we consider the weak persistence of the semiflow induced from our SIRS epidemic model.
The persistence can be seen as a mathematical formulation of the disease endemicity.

Definition 5.1. Let X be an arbitrary nonempty set and ρ : X → R+. A semiflow Φ : [0,∞) × X → X is
called uniformly weakly ρ-persistent, if there exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε for all x ∈ X with ρ(x) > 0, (5.1)

and is called uniformly strongly ρ-persistent, if there exists some ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε for all x ∈ X with ρ(x) > 0. (5.2)

Now we set the state space X = {(x1, x2, x3)T ∈ E3
+ | x1 + x2 + x3 = 1} and the continuous semiflow

Φ(t, x0) = u(t; x0), which is the solution of (2.7) with the initial value x0. Let us consider the persis-
tence of the system (2.7) under the separable mixing assumption 3.8. Then the force of infection λ is
represented as the form of separation of variables:

λ[a | i(t, ·)] = β1(a)
∫ ω

0
β2(σ)N(σ)i(t, σ)dσ = β1(a)φ(t), (5.3)

where
φ(t) :=

∫ ω

0
β2(σ)N(σ)i(t, σ)dσ. (5.4)

Integrating along the characteristic line, for t > a, we have an expression

i(t, a) =

∫ a

0

Γ(a)
Γ(η)

λ[η | i(t − a + η, ·)]s(t − a + η, η)dη

=

∫ a

0

Γ(a)
Γ(η)

β1(η)φ(t − a + η)s(t − a + η, η)dη.
(5.5)

Lemma 5.2. If ‖i0‖E > 0, then ‖i(t)‖E > 0 for all t > 0, where i(t) := i(t, ·) ∈ L1(0, ω).

Proof. Let t0 = inf{t ∈ R+ : ‖i(t)‖E = 0} and suppose that t0 < ∞. As ‖i(t)‖E is continuous with respect
to t, our assumption implies that t0 > 0 and i(t0, a) = 0 for almost all a ∈ (0, ω). Let us fix a positive
number 0 < h < t0 ∧ δ0, where δ0 is defined in Assumption 3.3. From (2.7), we have

i(t0, a) = 0 ≥
Γ(a)

Γ(a − t)
i(t0 − h, a − h), a ∈ (h, ω), (5.6)
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which shows that i(t0 − h, a) = 0 for almost all a ∈ (0, ω − h). Using (5.5), we obtain for almost all
a ∈ (0, t0 ∧ ω),

i(t0, a) =

∫ a

0

Γ(a)
Γ(η)

β1(η)φ(t0 − a + η)s(t0 − a + η, η)dη = 0. (5.7)

From the Assumption 3.3 and the separable mixing assumption, we have β1(a) > 0 for all a ∈ (0, ω)
and s(t0 − a + η, η) > 0 for all η > 0 because s(t, 0) = 1 for t ≥ 0. Then we have φ(t0 − a + η) = 0 for
almost all η ∈ (0, a) and a ∈ (0, t0 ∧ ω). Hence we have φ(t) = 0 for all t ∈ (0 ∨ (t0 − ω), t0). Observe
that

φ(t) =

∫ ω

0
β2(σ)N(σ)i(t, σ)dσ ≥ β

∫ ω

ω−δ0

N(σ)i(t, σ)dσ. (5.8)

Then i(t, a) = 0 for almost all a ∈ (ω − δ0, ω) and t ∈ (0 ∨ (t0 − ω), t0). Since ω − δ0 < ω − h and
t0 − h ∈ (0 ∨ (t0 − ω), t0) , we have i(t0 − h, a) = 0 for almost all a ∈ (0, ω), so ‖i(t0 − h)‖E = 0, which
contradicts the definition of t0. Then we have t0 = ∞ and our conclusion. �

Define the function ρ : X → R+ as

ρ(x1, x2, x3) =

∫ ω

0
N(σ)x2(σ)dσ. (5.9)

We decompose the state space X into two disjoint subsets:

X0 := {x ∈ X | ρ(x) > 0}, ∂X0 := {x ∈ X | ρ(x) = 0}. (5.10)

Then we obtain

Lemma 5.3. If ρ(s0, i0, r0) > 0, then ρ(Ψ(t, (s0, i0, r0)) > 0 for all t > 0.

Proof. If ρ(s0, i0, r0) > 0, then ‖i0‖E > 0. From of Lemma 5.2, ‖i(t, ·)‖E > 0 for all t > 0. Thus we
obtain ρ(Ψ(t, (s0, i0, r0)) =

∫ ω

0
N(σ)i(t, σ)dσ > 0 for all t > 0. �

Theorem 5.4. Suppose that the separable mixing assumption 3.8 holds. If R0 > 1, then the semiflow
Φ is uniformly weak ρ-persistent. That is, there exists a number ε > 0 such that

lim sup
t→∞

∫ ω

0
N(σ)i(t, σ)dσ > ε (5.11)

for all (s0, i0, r0)T ∈ X with ρ((s0, i0, r0)) > 0

Proof. Substituting (5.5) into the definition (5.4), we have

φ(t) =

∫ ω

0
β2(σ)N(σ)i(t, σ)dσ

=

∫ ω

0
β2(σ)N(σ)

∫ σ

0

Γ(σ)
Γ(η)

β1(η)φ(t − σ + η)s(t − σ + η, η)dηdσ

=

∫ ω

0
β2(σ)N(σ)

∫ σ

0

Γ(σ)
Γ(σ − η)

β1(σ − η)φ(t − η)s(t − η, σ − η)dηdσ

=

∫ ω

0
φ(t − η)

∫ ω

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)s(t − η, σ − η)dσdη

=

∫ ω

0
φ(t − η)

∫ t

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)s(t − η, σ − η)dσdη.

(5.12)
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For given b ≥ 0, define φb(t) := φ(t + b). Here we adopt a convention that N(a) = 0 for a > ω. For
t > ω, we can observe that

φb(t) =

∫ ω

0
φb(t − η)

∫ t+b

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)s(t + b − η, σ − η)dσdη

=

∫ ω

0
φb(t − η)

∫ t

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)s(t + b − η, σ − η)dσdη.

(5.13)

Since (
∂

∂t
+
∂

∂a

)
s(t, a) ≥ −λ[a|i(t, ·)]s(t, a),

then s is estimated as
s(t, a) ≥ e−

∫ a
0 λ[z|i(t−a+z,·)]dz for t > ω. (5.14)

Thus we obtain

φb(t) ≥
∫ ω

0
φb(t − η)

∫ t

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)e−

∫ σ−η
0 β1(z)φ(t+b−σ+z)dzdσdη. (5.15)

Now we are going to prove (5.11) by contradiction. Assume that for all ε > 0, there exist a time T0 > 0
and an initial data x0 = (s0, i0, r0)T ∈ X such that ρ(Φ(t, x0)) ≤ ε for all t ≥ T0. We set T0 > ω without
loss of generality. By (5.15), we obtain

φb(t) ≥
∫ ω

0
φb(t − η)

∫ t

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)e−εβ

∞
2

∫ σ−η
0 β1(z)dzdσdη, (5.16)

where β∞2 = supa∈[0,ω] β2(a). For sufficiently large T > ω and t > T0,

φb+T (t) ≥
∫ t+T

0
φb+T (t − η)

∫ t+T

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)e−εβ

∞
2

∫ σ−η
0 β1(z)dzdσdη

≥

∫ t

0
φb+T (t − η)

∫ η+T

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)e−εβ

∞
2 M

∫ σ−η
0 β1(z)dzdσdη.

(5.17)

Since φ is a bounded function, it is Laplace transformable on {λ > 0}. By (5.17), we obtain

φ̂b+T (λ) ≥ φ̂b+T (λ)F(ε, λ,T ), (5.18)

where

F(ε, λ,T ) =

∫ ∞

0
e−λη

∫ η+T

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)e−εM

∫ σ−η
0 β1(z)dzdσdη. (5.19)

In particular, note that

F(0, 0,T ) =

∫ ∞

0

∫ η+T

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)dσdη

=

∫ ω

0

∫ ω

η

β2(σ)N(σ)
Γ(σ)

Γ(σ − η)
β1(σ − η)dσdη

=

∫ ω

0

∫ ω

η

β2(σ)N(σ)
Γ(σ)
Γ(η)

β1(η)dσdη = R0 > 1.

(5.20)
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Because of the continuity of F(·, ·, ·), there are small positive number ε, λ, and large positive number
T > ω such that F(ε, λ,T ) > 1 which implies φ̂b+T (λ) = 0 by (5.18). Then for sufficiently large T > ω,
φb+T (t) = 0 for all t ∈ (0,∞). If we take sufficiently large T1 such that T1 > b + T ,

0 = φb+T (T1 − b − T ) =

∫ ω

0
β2(σ)N(σ)i(T1, σ)dσ, (5.21)

which implies i(T1, a) = 0 for almost all a ∈ (ω−δ0, ω). Let us take positive numbers p and q such that
0 < p < q < ω− δ0 with q− p < δ0, then (p + τ, q + τ) ⊂ (ω− δ0, ω) for ω− δ0 − p < τ < ω− q. Hence
i(T1 +τ, a) = 0 for almost all a ∈ (p+τ, q+τ), that is, i(T1, a) = 0 for almost all a ∈ (p, q). Repeating to
choose p and q finitely many times, we obtain i(T1, a) = 0 for almost all a ∈ (0, ω − δ0). Consequently
i(T1, a) = 0 for almost all a ∈ (0, ω), so

∫ ω

0
N(σ)i(T1, σ)dσ = 0, which contradicts Lemma 5.3. �

5.2. The existence of global compact attractor

Let Φ : R × X → X be the semiflow induced by the mild solution of the system (2.7). Then it is
easy to see that Φ is state-continuous, i.e., all maps Φ(t, ·) : X → X, t ≥ 0 is continuous. According
to [22], here we summarize some basic definitions for a semiflow Φ in a metric space X. A nonempty,
compact, invariant set K ⊂ X is called a compact attractor of bounded sets if K attracts all bounded
sets of X. The state-continuous semiflow Φ is called point-dissipative if there exists a bounded subset
B of X which attracts all points in X. Φ is called asymptotically smooth if Φ is asymptotically compact
on every forward invariant bounded closed set. Φ is called eventually bounded on a set M ⊂ X if
Φ([r,∞) × M) is bounded for some r > 0.

Theorem 5.5. Suppose the Assumption 3.8. There exists a compact attractor B of bounded sets in X.

Proof. From Theorem 2.33 of [22], the statement is proved if we can check that the semiflow Φ is
point-dissipative, eventually bounded on every bounded sets in X and asymptotically smooth. The first
and the second conditions hold trivially, because X itself is a bounded set. We are going to prove the
eventual smoothness. As X itself is forward invariant bounded closed set, it is sufficient to show that
Φ(t, ·)X is compact. In order to check the Fréchet-Kolmogolov criterion for the compactness of sets in
Lp(R) (Theorem B.1, [22]; [29]), it is sufficient to show the equi-continuity in L1 of Φ(t, ·)X for a large
t > 0. By Assumption 3.3, for any ε > 0 there exists some κ ∈ (0, ε) such that

∫ ω

0
|β(a + h, η) − β(a, η)|da < ε uniformly for η ∈ R,∫ ω

0
|δ(a + h) − δ(a)|da < ε,

∫ ω

0
|γ(a + h) − γ(a)|da < ε.

(5.22)

whenever |h| < κ. For sufficiently large T0 > ω, letB = {Φ(T0; (s0, i0, r0)) | (s0, i0, r0)T ∈ X}. Integrating
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s, i and r in (2.7) along the characteristic line, for t > ω > a and |h| < κ,

|s(t, a + h) − s(t, a)| ≤
∣∣∣∣e− ∫ a+h

0 λ[z|i(t−a−h+z,·)]dz − e−
∫ a

0 λ[z|i(t−a+z,·)]dz
∣∣∣∣

+

∣∣∣∣∣∣
∫ a+h

0
e−

∫ a+h
σ

λ[z|i(t−a−h+z,·)]dzδ(σ)r(t − a − h + σ,σ)dσ

−

∫ a

0
e−

∫ a
σ
λ[z|i(t−a+z,·)]dzδ(σ)r(t − a + σ,σ)dσ

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ a+h

0
λ[z | i(t − a − h + z, ·)]dz −

∫ a

0
λ[z | i(t − a + z, ·)]dz

∣∣∣∣∣∣
+

∣∣∣∣∣∫ a

0

(
e−

∫ a+h
σ+h λ[z|i(t−a−h+z,·)]dzδ(σ + h)r(t − a + σ,σ + h)dσ

− e−
∫ a
σ
λ[z|i(t−a+z,·)]dzδ(σ)r(t − a + σ,σ)

)
dσ

∣∣∣∣
+

∣∣∣∣∣∣
∫ 0

−h
e−

∫ a+h
σ+h λ[z|i(t−a−h+z,·)]dzδ(σ + h)r(t − a + σ,σ + h)dσ

∣∣∣∣∣∣
≤ (1 + δ∞ + Bω(1 + β∞ + δ∞ω))ε

+ δ∞
∫ a

0
|r(t − a + σ,σ + h) − r(t − a + σ,σ)| dσ.

(5.23)

By the same kind of calculation, we have

|r(t, a + h) − r(t, a)| ≤ γ∞
∫ a

0
|i(t − a + σ,σ + h) − i(t − a + σ,σ)| dσ + (1 + γ∞ + γ∞ω)ε,

|i(t, a + h) − i(t, a)| ≤ β∞Bω
∫ a

0
|s(t − a + σ,σ + h) − s(t − a + σ,σ)| dσ + ωB(1 + 2β∞ω + β∞)ε.

(5.24)
Thus for all t > 3ω,

|s(t, a + h) − s(t, a)| ≤ c1ε + c2

∫ a

0
|s(t − a + ξ, ξ + h) − s(t − a + ξ, ξ)|dξ, (5.25)

where

c1 := 1 + δ∞ + Bω(1 + β1
∞β2

∞ + δ∞ω) + δ∞ω(1 + γ∞ + γ∞ω) +
1
2
δ∞γ∞ω3B(1 + 2β∞ω + β∞),

c2 := β∞γ∞δ∞ω.

Define a function

h(b) := c2e−c2b
∫ b

0
|s(t − a + ξ, ξ + h) − s(t − a + ξ, ξ)|dξ, for b ∈ (0, ω). (5.26)

Then h′ satisfies

h′(b) = c2e−c2b

[
|s(t − a + b, b + h) − s(t − a + b, b)| − c2

∫ b

0
|s(t − a + ξ, ξ + h) − s(t − a + ξ, ξ)|dξ

]
≤ c1c2e−c2bε.

(5.27)
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Therefore we know that h(b) ≤ c1(1 − e−c2b)ε holds. Then we have

c2e−c2a
∫ a

0
|s(t − a + ξ, ξ + h) − s(t − a + ξ, ξ)|dξ ≤ c1(1 − e−c2a)ε, (5.28)

which shows that ∫ a

0
|s(t − a + ξ, ξ + h) − s(t − a + ξ, ξ)|dξ ≤

c1

c2
ec2ωε. (5.29)

Thus each PiB (i = 1, 2, 3) is relatively compact subsets of E, where each Pi : X → E is the projection
to the i-th component. This implies the set B is relatively compact set in X. �

Theorem 5.6. Suppose the Assumption 3.8. If R0 > 1, then the semiflow Φ is uniformly strongly
ρ-persistent.

Proof. To show this, it is needed to show that there is no total trajectory φ : R→ B such that ρ(φ(0)) = 0
and ρ(φ(t)) > 0 for all t ∈ R \ {0} (see [22] Theorem 5.2.). Assume ρ(φ(0)) = 0. Then we obtain
i0 = 0 ∈ E. For t ∈ [0, ω], I(t) :=

∫ ω

0
N(σ)i(t, σ)dσ is estimated as

I(t) =

∫ t

0
N(σ)i(t, σ)dσ +

∫ ω

t
N(σ)i(t, σ)dσ

≤

∫ t

0
N(σ)

∫ σ

0
e−

∫ σ
η
γ(z)dzλ[η | i(t − σ + η, ·)]s(t − σ + η, η)dηdσ

+

∫ ω

t
N(σ)

∫ t

0
e−

∫ σ
η
γ(z+σ−t)dzλ[σ − t + η | i(η, ·)]s(η, σ − t + η)dηdσ

≤ β∞B
{∫ t

0

∫ σ

0
I(t − σ + η)dηdσ +

∫ ω

t

∫ t

0
I(η)dηdσ

}
≤ β∞Bω

∫ t

0
I(η)dη.

(5.30)

From the Gronwall inequality, we conclude that I(t) = 0 for all t ∈ [0, ω], which shows that there is no
trajectory such as mentioned at the beginning. �

6. Numerical simulation

In this section, we provide numerical examples that support our theoretical results. Let ω := 1 to
normalize the age interval as [0, 1]. Fix the age-specific death rate as µ(a) := [10(1 − a)2]−1, a ∈ [0, 1).
We then see that µ ∈ L1

loc,+(0, 1),
∫ 1

0
µ(σ)dσ = ∞ and `(a) = exp

(
−

∫ a

0
µ(σ)dσ

)
= exp(−a/[10(1− a)]),

a ∈ [0, 1) (see Figure 1 (a)). Let B := 1/
∫ 1

0
`(a)da ≈ 1.2527, and thus, the total population is

normalized as
∫ 1

0
N(a)da =

∫ 1

0
B`(a)da = 1. We fix the following parameter functions:

γ(a) := 100, δ(a) := δ0

[
arctan 20

(
a −

1
2

)
+
π

2

]
, a ∈ [0, 1],

β(a, σ) = β(a) := β0

(
√

ae−2a +
1

100

)
, (a, σ) ∈ [0, 1] × [0, 1],

(6.1)
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Figure 1. The survival function `(a) = exp(−a/[10(1 − a)]), the loss-of-immunity rate δ(a)
and the transmission coefficient β(a, σ) = β(a) given as in (6.1) versus age a ∈ [0, 1).

where β0 > 0 and δ0 > 0 are positive constants. The choice of these functions is based on the following
biological assumptions: the average infectious period 1/γ(a) = 1/100 is age-independent and 100
times smaller than the maximum attainable age; the loss-of-immunity rate δ(a) is high in the elderly
people (see Figure 1 (b)); the transmission coefficient β(a, σ) = β(a) depends only on the age of
susceptibles and the youth people are more likely to be infected (see Figure 1 (c)). We can easily check
that all necessary assumptions on the parameter functions stated in the previous sections are satisfied.
In particular, the basic reproduction number R0 is explicitly calculated as

R0 =

∫ 1

0

∫ 1

η

N(σ)
Γ(σ)
Γ(η)

dσβ(η)dη

≈1.2527 β0

∫ 1

0

∫ 1

η

e−
σ

10(1−σ) e−100(σ−η)dσ
(
√
ηe−2η +

1
100

)
dη. (6.2)

In what follows, we fix the following initial data x0 = (s0, i0, r0):

s0(a) := 1 − i0(a), i0(a) :=
1
2

e−100(a− 1
2 )2

× 10−3, r0(a) := 0, a ∈ [0, 1].

We first verify the threshold property of R0 under the fixed δ0 = 1. For β0 = 380, we obtain
R0 ≈ 0.9812 < 1. Hence, by Theorem 4.6, we can expect that the disease-free steady state is globally
asymptotically stable. In fact, Figure 2 (a) exhibits that the age distribution of infected population
converges to zero as time evolves. On the other hand, for β0 = 400, we obtain R0 ≈ 1.0329 > 1. Hence,
by Theorems 3.7, 4.5, 4.8 and 5.6, we can expect that the disease-free steady state is unstable, there
exists a locally asymptotically stable endemic steady state and the semiflow Φ is uniformly strongly
ρ-persistent. In fact, Figure 2 (b) exhibits that the age distribution of infected population converges to
a positive distribution as time evolves. This example suggests that the endemic steady state is not only
locally but also globally asymptotically stable in this case.

We next observe the effect of loss of immunity δ0 under the fixed β0 = 600. Note that R0 is
independent of δ0 and fixed to 1.5493 > 1 in this case. In Figure 3, we see that the infected population
increases in particular in the elderly age class as the effect of loss of immunity δ0 increases. Specifically,
the total number of infected population

∫ 1

0
N(σ)i(t, σ)dσ converges to 0.0095, 0.0338 and 0.0747 as

time evolves for δ0 = 1, 20 and 70, respectively. This implies that R0 for the SIRS epidemic model
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(a) R0 ≈ 0.9812 < 1 for β0 = 380. (b) R0 ≈ 1.0329 > 1 for β0 = 400.

Figure 2. Time evolution of the age distribution i(t, a) of infected population for different β0.

(a) δ0 = 1. (b) δ0 = 20. (c) δ0 = 70.

Figure 3. Time evolution of the age distribution i(t, a) of infected population for different δ0

(R0 ≈ 1.5493 > 1).

does not reflect the intensity of the disease endemicity but it is the threshold for the eradication or
persistence of the disease.

7. Vaccination

We here briefly consider a mass-vaccination effect on the basic system (2.1) to clear the implication
of reinfection on R0 and the threshold results, because it has practically important implications that
the reinfection phenomena would make disease control more difficult and complex. In fact, threshold
results of the SIRS epidemic are similar to those of the SIR epidemic, but its controllability is very
much different from the SIR epidemic. An important effect of vaccination policy is reduction of the
effective size of the susceptible population, however in the reinfection model, there is a possibility
that a disease can invade a fully vaccinated population, and we are naturally led to the idea of the
reinfection threshold ([6, 7]). In other words, for the SIRS reinfection model, mass-vaccination policy
is not necessarily almighty.

Suppose that newborns in the virgin population are mass vaccinated with coverage ε ∈ [0, 1] and
the immunological status of newly vaccinated individuals is identical with that of the newly recovered
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(a) Rε ≈ 0.9696 < 1 for ε = 1. (b) Rε ≈ 1.0339 > 1 for ε = 0.8.

Figure 4. Time evolution of the age distribution i(t, a) of infected population when the
boundary condition of the system is replaced by s(t, 0) = 1 − ε, i(t, 0) = 0 and r(t, 0) = ε for
β0 = 500 and δ0 = 30 (R0 ≈ 1.2911).

individuals. Then it is easy to see that the boundary condition in (2.1) is replaced by s(t, 0) = 1 − ε,
i(t, 0) = 0 and r(t, 0) = ε. Then it is easy to see that the disease-free steady state is a partially
immunized state given by (s†, i†, r†) = (1 − ε∆(a), 0, ε∆(a)). Here let us introduce the effective next
generation operator Kε as

(Kεφ)(a) := s†(a)
∫ ω

0

∫ ω

η

β(a, σ)N(σ)
Γ(σ)
Γ(η)

dσφ(η)dη. (7.1)

Then the effective reproduction number Rε is given by its spectral radius r(Kε). From the monotonicity
of the spectral radius, we have Rε ≤ R0. Let σ := R1/R0, where R1 is the effective reproduction
number for the fully vaccinated population. Given that the qualitative change in the epidemiological
implication occurs for the prevalence and controllability at R0 = 1/σ, Gomes et al. ([40, 41]) referred
to 1/σ as the reinfection threshold of R0. As seen above, the reinfection threshold of R0 corresponds
to the fact that σR0 = R1 = 1, i.e., R0 = 1/σ does not imply a bifurcation point of the basic system
(2.1), but the threshold condition R1 = 1 of the fully vaccinated system. The disease is uncontrollable
by the mass vaccination if R1 = σR0 > 1, because the fully vaccinated population can be invaded by
the disease.

As an example, we consider the same parameter functions as in Section 6 with β0 = 500 and
δ0 = 30. In this case, we have R0 ≈ 1.2911, and thus, the disease will persist without vaccination. For
ε = 1, we obtain R1 ≈ 0.9696 < 1, and hence, the reinfection threshold is σ−1 = R0/R1 ≈ 1.33 > R0,
the complete mass-vaccination policy is successful and the disease will be eradicated in this case (see
Figure 4 (a)). On the other hand, for ε = 0.8, we obtain Rε ≈ 1.0339 > 1. This implies that the disease
will persist even if 80 percent of newborns are successfully immunized by vaccination in this case (see
Figure 4 (b)). In fact, as in (6.2), we can calculate Rε as

Rε = R0 − ε

∫ 1

0

∫ 1

η

N(σ)
Γ(σ)
Γ(η)

dσ∆(η)β(η)dη, (7.2)
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and hence, Rε < 1 is equivalent to

ε >
R0 − 1∫ 1

0

∫ 1

η
N(σ)Γ(σ)

Γ(η) dσ∆(η)β(η)dη
≈ 0.9054. (7.3)

That is, more than 90 percent of newborns should be immunized to control the disease in this case,
and (7.3) is a much severe criterion than the usual critical coverage of immunization ε > 1 − 1/R0

calculated for the SIR disease with permanent immunity.

8. Discussion

In this paper, we have rigorously established the threshold property of R0 in the age-structured
SIRS model that the disease will be naturally eradicated if R0 < 1, while it is strongly persistent and
endemic steady states exists if R0 > 1. It is noted that different from the SIR model, we have not yet
known whether the endemic steady state is unique or not even in the separable mixing case, because
the characteristic equation satisfied by the force of infection at the endemic steady state is complex,
and not monotone. The number of endemic steady states and their stability should be investigated
in future. Although our main analysis depends on the separable mixing assumption, it is limited and
could be relaxed to obtain the same kind of results.

Using numerical calculations, we have shown that the loss of immunity has a drastic effect on
the critical coverage of immunization. In fact, if the basic reproduction number is grater than the
reinfection threshold, we cannot control the disease by the mass vaccination to newborns. We have
shown the critical coverage of immunization for the separable mixing case.

For future extension of our model and real-world applications, it is noted that if the vaccination
effect is incomplete, the vaccinated individuals could be partially susceptible and their infection would
lead partial infectivity. If the secondary infection will lead a longer infective period, the reproductivity
enhancement would occur and we could expect that there exist subcritical endemic steady states [7].
In such a case, even the subcriticality R0 < 1 does not guarantee the eradication of the disease.

Another possible extension would be realized if we introduce the class age structure of recovered
individuals, because the loss of immunity depends on the time since recovery. It is a future challenge
to develop age-structured epidemic models that can describe more realistic, complex dynamics of
susceptibility, infectivity and immunity within host individuals.
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