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Abstract: In this paper, we investigate the dynamics of a stochastic SIRS epidemic model with non-
linear incidence rate and transfer from infectious to susceptible. Firstly, the existence and uniqueness
of global positive solution of the model with any positive initial value are proved. Next, sufficient
conditions for extinction and persistence of the disease are established. It is found that a large noise
intensity has the effect of suppressing the epidemic. At last, some numerical simulations are introduced
to demonstrate the theoretical results. Our results generalize and improve the existing results.
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1. Introduction

Mathematical models describing the population dynamics of infectious diseases have been playing
an important role in better understanding of epidemiological patterns and disease control for a long
time (see [1, 2, 3, 4]). Some infectious diseases confer temporary or permanent immunity. For some
diseases, such as cholera, pertussis and influenza, temporary immunity may disappear after some time.
And recovered individuals will become susceptible after losing the temporary immunity. This kind of
diseases can be modeled by SIRS models (see [5, 6]). In addition, for some bacterial agent diseases
such as meningitis and venereal diseases, recovery cannot generate immunity for a long time. Infected
individuals may recover after some treatments and go back directly to the susceptible class on account
of the presence of temporary antibodies. In [6], the authors investigated the following SIRS epidemic
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model with a nonlinear incidence βS f (I) and transfer from the infected class to the susceptible class


Ṡ (t) = Λ − µS (t) − βS (t) f (I(t)) + γ1I(t) + δR(t),
İ(t) = βS (t) f (I(t)) − (µ + γ1 + γ2 + α)I(t),
Ṙ(t) = γ2I(t) − (µ + δ)R(t),

(1.1)

with the initial conditions

S (0) = S 0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, (1.2)

where S (t), I(t) and R(t) are respectively the number of susceptible, infectious and recovered individ-
uals at time t. Λ is the recruitment rate of susceptible individuals, µ is the natural death rate, α is the
mortality caused by the disease, γ1 denotes the transfer rate from the infected class to the susceptible
class, γ2 is the recovery rate of the infective individuals, δ is the rate constant for loss of immunity.
Suppose that Λ and µ are positive, while α, γ1, γ2 and δ are nonnegative. f is a real locally Lips-
chitz function on R+ = [0,∞) satisfying f (0) = 0, f (I) > 0, f (I)/I is nonincreasing for I > 0 and
limI→0+

f (I)
I = f ′(0) > 0.

Denote R3
+ = {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0}. From [6], model (1.1) always has a disease-free

equilibrium E0 = (S 0, I0,R0) = (Λ
µ
, 0, 0). By using the next generation matrix method, [6] obtained

the basic reproduction number R0 =
Λβ f ′(0)

µ(µ+γ1+γ2+α) . Further, E0 is globally asymptotically stable in D if
R0 < 1, where D = {(S , I,R) ∈ R3

+ : S + I + R ≤ Λ
µ
}. If R0 > 1, there exists a globally asymptotically

stable endemic equilibrium E∗ = (S ∗, I∗,R∗).
However, model (1.1) is just a deterministic model. In the real world, epidemic models are always

affected by the environmental noise. Stochastic models may be a more appropriate way of modeling
epidemics in many circumstances (see [7, 8, 9, 10]). In [11, 12, 13], the authors investigated the
stochastic SIS epidemic models. In [14, 15, 16, 17, 18, 19, 20], the authors investigated the stochastic
SIRS epidemic models. In this paper, we investigate the following stochastic SIRS epidemic model

dS =
[
Λ − µS − βS f (I) + γ1I + δR

]
dt − σS f (I)dB(t),

dI =
[
βS f (I) − (µ + γ1 + γ2 + α)I

]
dt + σS f (I)dB(t),

dR =
[
γ2I − (µ + δ)R

]
dt,

(1.3)

with initial values S 0 > 0, I0 > 0,R0 > 0. Here we consider random perturbation in the environment,
which is assumed to be affected by the contact rate, so that β → β + σḂ(t), where B(t) is a standard
Brownian motions defined on the compete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. it is right continuous and F0 contains all P-null sets). σ2 represents the inten-
sity of B(t). Other parameters are defined as system (1.1). Model (1.3) covers many existing stochastic
models in [6, 9, 21, 22, 23] as special cases. For example, an epidemic model with relapse and bilinear
incidence was formulated in [9]. In [21], the authors investigated the dynamics of a stochastic SIR
epidemic model with saturated incidence. In [22], extinction and persistence of a stochastic SIRS epi-
demic model with saturated incidence rate and transfer from infectious to susceptible were considered.
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In [23], the authors proposed a class of stochastic SIRS epidemic models with nonlinear incidence
dS =

[
Λ − µS − βh(S ) f (I) + δR

]
dt − σh(S ) f (I)dB(t),

dI =
[
βh(S ) f (I) − (µ + γ + α)I

]
dt + σh(S ) f (I)dB(t),

dR =
[
γI − (µ + δ)R

]
dt,

(1.4)

where h(S ) is continuously differentiable and monotonically increasing with respect to S , h(0) = 0
and for any constant l > 0, Ml := sup0<S≤l

h(S )
S < ∞; f (I) is nonnegative and twice continuously

differentiable, f (I)/I is monotonically decreasing with respect to I, f (0) = 0 and f ′(0) > 0. Other
parameters are defined as those of system (1.3). In [23], the sufficient conditions for the extinction and
persistence of the disease for model (1.4) were discussed. Compared with model (1.3), model (1.4)
does not include the transfer from infectious to susceptible, although the incidence rate is more general.

Denote a ∧ b = min{a, b} for a, b ∈ R and E(X) represents the exception of random variable X.
Throughout this paper, we give the following assumptions.
(H1) f (0) = 0, f (I) > 0 holds for I > 0 and f is a real locally Lipschitz function on R+;
(H2) f (I)/I is nonincreasing on (0,+∞) and f ′(0) > 0;
(H3) There is a constant ϑ > 0, such that

| f (x1)/x1 − f (x2)/x2| ≤ ϑ|x1 − x2| for any x1, x2 ∈ (0,Λ/µ].

One can easily see from (H2) that

f (I) ≤ f ′(0)I for I ∈ R+. (1.5)

Our general results can be applied to some specific forms of the incidence rate, for instance:
(i) linear type: f (I) = I (see [9]);
(ii) saturated incidence rate: f (I) = I

1+aI (see [21, 22]);
(iii) non-monotonic incidence rate: f (I) = I

1+aI2 (see [24]);
(iv) incidence rate with media coverage: f (I) = Ie−mI , where m is a positive constant (see [25]);
(v) incidence rate with media coverage: f (I) = (1 − β̃I

β(m+I) )I, where m, β, β̃ are all positive constants
and β > β̃ (see [26]).

Our aim is to investigate how white noise affects the spread of disease, as described by model
(1.3). The remaining part of this paper is organized as follows. In Section 2, a unique global positive
solution of stochastic model (1.3) with any positive initial value is proved. Sufficient conditions for
disease extinction and persistence in the mean are given in Sections 3 and 4, respectively. In addition,
we discuss the relationship between R0 and Rs for different values of white noise intensity σ2, and
summarize a useful criterion for the extinction and persistence of the disease of model (1.3). In Section
5, some examples and numerical simulations are provided to illustrate the theoretical results. The paper
ends with a conclusion that the intensity of noise plays an important role in epidemic dynamics.

2. Existence and uniqueness of global positive solution

Since S (t), I(t) and R(t) in model (1.3) are respectively the numbers of the susceptible individuals,
infected individuals and recovered individuals at time t, they should be non-negative. Therefore, we
are only interested in its positive solutions. In this section, we show that model (1.3) has a unique
global positive solution with positive initial value by using the Lyapunov analysis method.
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Theorem 1. Suppose that (H1) and (H2) hold. Model (1.3) has a unique global positive solution
(S (t), I(t),R(t)) on [0,∞) for any (S 0, I0,R0) ∈ R3

+, that is, the solution will remain in R3
+ with proba-

bility one.

Proof. From (H1), it is easy to show that the coefficients of (1.3) are locally Lipschitz continu-
ous. Thus, for any given initial value (S 0, I0,R0) ∈ R3

+, there is a unique maximal local solution
(S (t), I(t),R(t)) on [0, τe), where τe is the explosion time. Now we show τe = ∞ a.s. Let n0 > 0 be
sufficiently large such that S 0, I0 and R0 all lie within the interval ( 1

n0
, n0). For each integer n ≥ n0,

define the stopping time

τn = inf
{

t ∈ [0, τe) : min{S , I,R} ≤
1
n

or max{S , I,R} ≥ n
}
,

where throughout this paper, we set inf ∅ = ∞. Clearly, τn is increasing as n→ ∞. Let τ∞ = limn→∞ τn.
Thus τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ and (S (t), I(t),R(t)) ∈ R3

+ a.s. for all
t ≥ 0.

Now, we show that τ∞ = ∞ a.s. Otherwise, there is a pair of constants T > 0 and ε ∈ (0, 1) such
that P{τ∞ ≤ T } > ε. Hence, for all n ≥ n0

P(Ωn) ≥ ε, (2.1)

where Ωn = {ω ∈ Ω : τn(ω) ≤ T }. Moreover, for any n ≥ n0 and t ≤ τn,

d[S (t) + I(t) + R(t)] ≤
[
Λ − µ(S (t) + I(t) + R(t))

]
dt,

which implies

S (t) + I(t) + R(t) ≤
 Λ

µ
, if S 0 + I0 + R0 ≤

Λ
µ
,

S 0 + I0 + R0, if S 0 + I0 + R0 >
Λ
µ
.

Denote K = max
{Λ
µ
, S 0 + I0 + R0

}
. Then

S (t) + I(t) + R(t) ≤ K (2.2)

for any t ≤ τn. Define a C2-function V : R3
+ → R+ by

V(S , I,R) = (S − 1 − ln S ) + (I − 1 − ln I) + (R − 1 − ln R).

For any n ≥ n0, the Itô formula shows that

EV(S (τn ∧ T ), I(τn ∧ T ),R(τn ∧ T ))

=V(S 0, I0,R0) + E

∫ τn∧T

0
LV(S (s), I(s),R(s)) ds, (2.3)

where LV : R3
+ → R is defined by

LV(S , I,R) =
(
1 −

1
S

)(
Λ − µS − βS f (I) + γ1I + δR

)
+

(
1 −

1
I

)(
βS f (I) − (µ + γ1 + γ2 + α)I

)
Mathematical Biosciences and Engineering Volume 16, Issue 5, 6047–6070.



6051

+
(
1 −

1
R

)(
γ2I − (µ + δ)R

)
+
σ2 f 2(I)

2
+
σ2S 2 f 2(I)

2I2

=Λ + µ + (µ + γ1 + γ2 + α) + (µ + δ) + β f (I) − (µ + α)I +
σ2 f 2(I)

2
+
σ2S 2 f 2(I)

2I2

−
Λ

S
−
γ1I
S
−
δR
S
−
γ2I
R
−
βS f (I)

I
− µS − µR.

From (1.5) and (2.2), for any 0 ≤ t ≤ τn ∧ T

LV(S , I,R) ≤Λ + µ + (µ + γ1 + γ2 + α) + (µ + δ) + β f ′(0)I +
σ2

2
I2 +

σ2

2
S 2

≤Λ + µ + (µ + γ1 + γ2 + α) + (µ + δ) + β f ′(0)K + σ2K2 =: M

Thus, from (2.3), it follows that

EV(S (τn ∧ T ), I(τn ∧ T ),R(τn ∧ T )) ≤ V(S 0, I0,R0) + ME(τn ∧ T )
≤ V(S 0, I0,R0) + MT,

for any n ≥ n0. Note that for every ω ∈ Ωn, there exists S (τn, ω), I(τn, ω) or R(τn, ω) that equals either
1/n or n. Hence

V(S (τn, ω), I(τn, ω),R(τn, ω)) ≥ (n − 1 − ln n) ∧
(
1
n
− 1 + ln n

)
.

It follows from (2.1) that

V(S 0, I0,R0) + MT ≥E
[
IΩn(ω)V(S (τn, ω), I(τn, ω),R(τn, ω))

]
≥ε

[
(n − 1 − ln n) ∧

(
1
n
− 1 + ln n

)]
,

where IΩn is the indicator function of Ωn. Letting n→ ∞ leads to the contradiction

∞ > V(S 0, I0,R0) + MT = ∞,

therefore we have τ∞ = ∞ a.s. The proof is therefore complete.

Remark 1. Theorem 1 shows that for any initial value (S 0, I0,R0) ∈ R3
+, model (1.3) has a unique

global solution (S (t), I(t),R(t)) ∈ R3
+ a.s. In addition, it follows from model (1.3) that

d[S (t) + I(t) + R(t)] =
[
Λ − µ(S (t) + I(t) + R(t)) − αI(t)

]
dt

≤
[
Λ − µ(S (t) + I(t) + R(t))

]
dt.

Thus, S (t) + I(t) + R(t) ≤
(
S 0 + I0 + R0 −

Λ
µ

)
e−µt + Λ

µ
, which implies

lim sup
t→∞

(
S (t) + I(t) + R(t)

)
≤

Λ

µ
.

Moreover, if S 0 + I0 + R0 ≤
Λ
µ

, then S (t) + I(t) + R(t) ≤ Λ
µ

a.s.. Therefore, the region

D =
{
(S , I,R) ∈ R3

+ : S + I + R ≤
Λ

µ

}
is a positively invariant set of model (1.3).

For simplicity, we introduce the notations X(t) = S (t) + I(t) + R(t), 〈x(t)〉 = 1
t

∫ t

0
x(s)ds.
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3. Extinction of disease

One of the main concerns in epidemiology is how we can regulate the disease dynamics so that
the disease will be eradicated in a long term. In this section, we provide the sufficient conditions for
extinction of the disease in model (1.3). Denote

Rs =
Λβ f ′(0)

µ(µ + γ1 + γ2 + α)
−

Λ2σ2( f ′(0))2

2µ2(µ + γ1 + γ2 + α)
, Φ(x) = −

σ2

2
x2 + βx − (µ + γ1 + γ2 + α).

For model (1.3), we give the following conditions.
(C1) Rs < 1, σ2 ≤

βµ

Λ f ′(0) and σ2 ≤
βµ

Λ f ′(0) ·
R0
2 ;

(C2) Rs < 1, βµ

Λ f ′(0) ·
R0
2 < σ2 < βµ

Λ f ′(0) ;
(C3) Rs < 1, σ2 ≥

βµ

Λ f ′(0) and σ2 > βµ

Λ f ′(0) ·
R0
2 ;

(C4) Rs ≥ 1, σ2 > βµ

Λ f ′(0) ·
R0
2 .

In addition, denote A1 = (µ + γ1 + γ2 + α)(Rs − 1), A2 = −
[
(µ + γ1 + γ2 + α) − β2

2σ2

]
.

Theorem 2. Suppose that (H1) and (H2) hold. Let (S (t), I(t),R(t)) be the solution of model (1.3) with
any given initial condition (S 0, I0,R0) ∈ R3

+.
(i) If (C1) holds, then lim supt→∞

ln I(t)
t ≤ A1 < 0 a.s.

(ii) If (C2) holds, then lim supt→∞
ln I(t)

t ≤ min{A1, A2} < 0 a.s.
(iii) If (C3) or (C4) holds, then lim supt→∞

ln I(t)
t ≤ A2 < 0 a.s.

Furthermore,

lim
t→∞

S (t) =
Λ

µ
, lim

t→∞
I(t) = 0, lim

t→∞
R(t) = 0 a.s.

Proof. Applying Itô formula to the second equation of model (1.3) leads to

d ln I(t) =

[
βS f (I)

I
− (µ + γ1 + γ2 + α) −

σ2

2

(S f (I)
I

)2
]
dt +

σS f (I)
I

dB(t).

Integrating both sides of the above equation from 0 to t, yields

ln I(t) =

∫ t

0

[
βS f (I)

I
− (µ + γ1 + γ2 + α) −

σ2

2

(S f (I)
I

)2
]
ds +

∫ t

0

σS f (I)
I

dB(s) + ln I0

=

∫ t

0
Φ
(S f (I)

I

)
ds + M1(t) + ln I0, (3.1)

where M1(t) =
∫ t

0
σS f (I)

I dB(s).
Let us discuss three cases separately.
Case 1. Assume that Rs < 1 and σ2 < βµ

Λ f ′(0) . Then Λ f ′(0)
µ

< β

σ2 and Φ(Λ f ′(0)
µ

) = (µ+γ1 +γ2 +α)(Rs −

1) < 0. For any 0 < ε < β

σ2 f ′(0)−
Λ
µ

sufficiently small, we have (Λ
µ

+ε) f ′(0) < β

σ2 and Φ
(
(Λ
µ

+ε) f ′(0)
)
< 0.

From Remark 1, for any ε > 0, there exists a constant T = T (ε) > 0 such that S (t) ≤ Λ
µ

+ ε for all
t > T . Then it follows from (1.5) that

Φ
(S f (I)

I

)
≤ Φ( f ′(0)S ) ≤ Φ

(
f ′(0)(

Λ

µ
+ ε)

)
< 0.
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Substituting this into (3.1), we have

ln I(t)
t

=
1
t

∫ T

0
Φ
(S f (I)

I

)
ds +

1
t

∫ t

T
Φ
(S f (I)

I

)
ds +

M1(t)
t

+
ln I0

t

≤
1
t

∫ T

0
Φ
(S f (I)

I

)
ds +

1
t

∫ t

T
Φ
(

f ′(0)(
Λ

µ
+ ε)

)
ds +

M1(t)
t

+
ln I0

t

=
1
t

∫ T

0
Φ
(S f (I)

I

)
ds + Φ

(
f ′(0)(

Λ

µ
+ ε)

) (
1 −

T
t

)
+

M1(t)
t

+
ln I0

t
. (3.2)

Clearly, M1(t) is a real-valued continuous local martingale vanishing at time 0 and

〈M1,M1〉t =

∫ T

0

[
σS f (I)

I

]2

ds +

∫ t

T

[
σS f (I)

I

]2

ds

≤

∫ T

0

[
σS f (I)

I

]2

ds + σ2( f ′(0))2
(
Λ

µ
+ ε

)2

(t − T ).

Note that

lim sup
t→∞

〈M1,M1〉t

t
≤ σ2( f ′(0))2

(
Λ

µ
+ ε

)2

< ∞,

then, from the strong law of large numbers (see [27]), it follows that

lim
t→∞

M1(t)
t

= lim
t→∞

1
t

∫ t

0

σS f (I)
I

dB(s) = 0 a.s. (3.3)

From (3.2) and (3.3), we have

lim sup
t→∞

ln I(t)
t
≤ Φ

(
f ′(0)(

Λ

µ
+ ε)

)
< 0 a.s.

By the continuity of Φ(t) and the arbitrariness of ε, we obtain

lim sup
t→∞

ln I(t)
t
≤ Φ

(Λ f ′(0)
µ

)
= (µ + γ1 + γ2 + α)(Rs − 1) < 0 a.s.

Case 2. Assume that Rs < 1 and σ2 =
βµ

Λ f ′(0) . Then Λ f ′(0)
µ

=
β

σ2 and Φ
(

S f (I)
I

)
≤ Φ

(
Λ f ′(0)
µ

)
< 0. The

following proof is similar to that of Case 1.
Case 3. Assume that σ2 > βµ

Λ f ′(0) ·
R0
2 . Since

Φ(x) = −
σ2

2

(
x −

β

σ2

)2
+

β2

2σ2 − (µ + γ1 + γ2 + α)

≤ −
[
(µ + γ1 + γ2 + α) −

β2

2σ2

]
.

Substituting this into (3.1), we have

ln I(t)
t
≤ −

[
(µ + γ1 + γ2 + α) −

β2

2σ2

]
+

M1(t)
t

+
ln I0

t
. (3.4)
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This, together with (3.3), yields

lim sup
t→∞

ln I(t)
t
≤ −

[
(µ + γ1 + γ2 + α) −

β2

2σ2

]
< 0 a.s..

From the proofs of Cases 1-3, it is easy to see that conclusions (i)-(iii) hold. Further, if one of
conditions (C1)–(C4) holds, then

lim
t→∞

I(t) = 0 a.s. (3.5)

That is to say, the disease I(t) dies out with probability one.
Next, we show limt→∞ R(t) = 0 a.s. Let Ω1 = {ω ∈ Ω : limt→∞ I(t, ω) = 0}, then (3.5) implies

P(Ω1) = 1. Hence, for any ω ∈ Ω1 and any constant ε1 > 0, there exists a constant T1 = T1(ω, ε1) > 0
such that for any t ≥ T1

I(t, ω) ≤ ε1. (3.6)

Substituting this into the third equation of model (1.3), we obtain

dR(t, ω) ≤
[
γ2ε1 − (µ + δ)R(t, ω)

]
dt, ω ∈ Ω1, t ≥ T1.

Then, from the comparison theorem, it follows that

lim sup
t→∞

R(t, ω) ≤
γ2ε1

µ + δ
, ω ∈ Ω1.

Since R(t, ω) > 0 for all ω ∈ Ω1 and t > 0, by the arbitrariness of ε1, we get limt→∞ R(t, ω) = 0, ω ∈ Ω1.
It follows from P(Ω1) = 1 that

lim
t→∞

R(t) = 0 a.s. (3.7)

At last, we prove the assertion limt→∞ S (t) = Λ
µ

a.s. It follows from model (1.3) that

dX(t) =
[
Λ − µX(t) − αI(t)

]
dt,

which implies

d
(
eµtX(t)

)
= eµt[Λ − αI(t)

]
dt. (3.8)

For any t > T , integrating both sides of (3.8) from T to t and using (3.6), we obtain that for any ω ∈ Ω1

X(t, ω) =e−µ(t−T )X(T, ω) +

∫ t

T
e−µ(t−s)[Λ − αI(s)

]
ds

≥e−µ(t−T )X(T, ω) +

∫ t

T
e−µ(t−s)[Λ − αε1

]
ds

=e−µ(t−T )X(T, ω) +
Λ − αε1

µ

[
1 − e−µ(t−T )].
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Thus, for any ω ∈ Ω1, we have lim inft→∞ X(t, ω) ≥ Λ−αε1
µ

, which, together with the arbitrariness of ε1,
yields

lim inf
t→∞

X(t, ω) ≥
Λ

µ
, for all ω ∈ Ω1.

From P(Ω1) = 1, we get lim inft→∞ X(t) ≥ Λ
µ

a.s. On the other hand, from Remark 1, it follows that
lim sup

t→∞
X(t) ≤ Λ

µ
. Thus, we have

lim
t→∞

X(t) = lim
t→∞

[S (t) + I(t) + R(t)] =
Λ

µ
a.s.,

which, together with (3.5) and (3.7), yields

lim
t→∞

S (t) =
Λ

µ
a.s.

The proof is therefore complete.

Remark 2. Theorem 2 shows that the disease of system (1.3) dies out with probability one if Rs < 1
and σ2 < βµ

Λ f ′(0) . Moreover, we note Rs in Theorem 2 is smaller than the basic reproduction number
R0 of system (1.1), and hence environmental noise may lead the disease to extinction. If σ = 0, then
system (1.3) can be reduced to system (1.1). Further, Theorem 2 is consistent with the result in [6].

Remark 3. If we let f (I) = I
1+aI , γ1 = 0, γ2 = γ, δ = 0, system (1.3) can be transformed into system

(1.3) in [21]. From Theorem 2, it follows that for any initial condition (S 0, I0,R0) ∈ R3
+, if one of

conditions (C1)–(C4) holds then the disease of system (1.3) will extinct with probability one. However,
Theorem 3.1 in [21] shows that for any initial condition (S 0, I0,R0) ∈ Γ, if σ2 > β2

2(µ+γ+α) , then the
disease of system (1.3) will tend to zero exponentially with probability one. Obviously, Theorem 2
generalizes and improves the corresponding result in [21].

Remark 4. Let f (I) = I
1+aI , system (1.3) can be changed into (1.2) in [22]. Theorem 2 shows that the

disease of system dies out with probability one. Particularly, if Rs ≥ 1 and βµ

Λ
·
R0
2 < σ2 < βµ

Λ
, Theorem

2 in this paper shows the extinction of the disease; however, Theorem 3.2 in [22] can not show the
extinction of the disease. Furthermore, we obtain limt→∞ S (t) = Λ

µ
and limt→∞ R(t) = 0 a.s. But, only

the disease extinction is found in Theorem 3.2 in [22]. Therefore, Theorem 2 in this paper improves
and generalizes Theorem 3.2 in [22].

Remark 5. Let h(S ) = S , γ1 = 0, γ2 = γ. From Theorem 2, extinction of model (1.3) requires that f (I)
is a real locally Lipschitz function on R+. However, from Corollary 1 in [23], extinction of model (1.3)
requires that f (I) is twice continuously differentiable on R+. Obviously, the conditions of Theorem 2
are weaker than those of Corollary 1 in [23].

4. Persistence of disease

When considering epidemic models, we are interested in when the disease will prevail in the popu-
lation. In the deterministic models, the problem can be solved by proving that the endemic equilibrium
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of the corresponding model is globally asymptotically stable. But for model (1.3), there is no endemic
equilibrium. In this section, we will establish sufficient conditions to ensure that the disease in model
(1.3) is permanent in the time mean. Now, we give the definition of persistence in the mean as follows.

Definition 1. Model (1.3) is said to be persistent in the mean if lim inft→∞〈I(t)〉 > 0 a.s.

For the convenience, we give the following useful lemma.

Lemma 1. (See [28]). Suppose x ∈ C(Ω × [0,+∞),R+) and F ∈ C(Ω × [0,+∞), (−∞,+∞)). If there
are three positive constants λ, λ0 and T such that

ln x(t) ≥ λt − λ0

∫ t

0
x(s)ds + F(t), a.s., for all t ≥ T,

where lim
t→∞

F(t)
t = 0 a.s., then lim inft→∞

1
t

∫ t

0
x(s)ds ≥ λ

λ0
a.s.

Theorem 3. Suppose that (H1)− (H3) hold. Let (S (t), I(t),R(t)) be the solution of model (1.3) with any
given initial condition (S 0, I0,R0) ∈ R3

+. If Rs > 1, then

(i) lim inf
t→∞

〈S (t)〉 ≥
Λµ

µ2 + Λβ f ′(0)
> 0 a.s.;

(ii) lim inf
t→∞

〈I(t)〉 ≥
µ2Φ

(
Λ f ′(0)
µ

)
βΛ( f ′(0))2

(
1 − Λσ2 f ′(0)

2µβ

)
(µϑ + β)

> 0 a.s.;

(iii) lim inf
t→∞

〈R(t)〉 ≥
γ2µ

2Φ
(

Λ f ′(0)
µ

)
(µ + δ)βΛ( f ′(0))2

(
1 − Λσ2 f ′(0)

2µβ

)(
µϑ + β

) > 0 a.s.

Proof. From Remark 1, it follows that, for any 0 < ε < 2β
σ2 f ′(0)

(
1 − Λσ2 f ′(0)

2µβ

)
, there exists a constant

T = T (ε) > 0 such that X(t) ≤ Λ
µ

+ ε for all t ≥ T . Note that 0 < f (I) ≤ f ′(0)I, then from the first
equation of model (1.3), we can derive that

S (t) − S 0 ≥

∫ T

0

[
Λ − µS (s) − βS (s) f (I(s))

]
ds +

∫ t

T

[
Λ − µS (s) − β f ′(0)

(Λ

µ
+ ε

)
S (s)

]
ds

−

∫ t

0
σS (s) f (I(s))dB(s)

=

∫ T

0

[
Λ − µS (s) − βS (s) f (I(s))

]
ds +

∫ t

T

[
Λ −

(
µ + β f ′(0)

(Λ

µ
+ ε

))
S (s)

]
ds

−

∫ t

0
σS (s) f (I(s))dB(s),

which implies(
µ+β f ′(0)

(Λ

µ
+ ε

))1
t

∫ t

0
S (s)ds

≥ Λ −
ΛT

t
−

S (t) − S 0

t
−

M2(t)
t

+
1
t

∫ T

0

[
Λ − µS (s) − βS (s) f (I(s))

]
ds, (4.1)
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where M2(t) =
∫ t

0
σS (s) f (I(s))dB(s). Clearly, M2(t) is a real-valued continuous local martingale van-

ishing at time 0 and

〈M2,M2〉t =

∫ T

0

[
σS (s) f (I(s))

]2
ds +

∫ t

T

[
σS (s) f (I(s))

]2
ds

≤

∫ T

0

[
σS (s) f (I(s))

]2
ds + σ2( f ′(0))2

(Λ

µ
+ ε

)4
(t − T ).

Note that lim supt→∞
〈M2,M2〉t

t ≤ σ2( f ′(0))2
(

Λ
µ

+ ε
)4
< ∞. Then, from the strong law of large numbers

(see [27]), it follows that

lim
t→∞

M2(t)
t

= lim
t→∞

1
t

∫ t

0
σS (s) f (I(s))dB(s) = 0 a.s. (4.2)

This, together with (4.1), yields

lim inf
t→∞

1
t

∫ t

0
S (s)ds ≥

Λ

µ + β f ′(0)
(

Λ
µ

+ ε
) a.s.,

From the arbitrariness of ε, it follows that

lim inf
t→∞

1
t

∫ t

0
S (s)ds ≥

Λµ

µ2 + Λβ f ′(0)
> 0 a.s.,

In the following, we will prove that (ii) holds. Note that S (t) ≤ Λ
µ

+ ε for all t ≥ T and 0 < f (I) ≤

f ′(0)I, then, for any t ≥ T , 0 < S f (I)
I ≤ f ′(0)S ≤ f ′(0)

(
Λ
µ

+ ε
)
, which implies 0 < S f (I)

f ′(0)( Λ
µ +ε)I

≤ 1. Then,

we have

Φ
(S f (I)

I

)
− Φ

(
f ′(0)(

Λ

µ
+ ε)

)
≥ − β f ′(0)

[
1 −

σ2 f ′(0)
2β

(Λ

µ
+ ε

)](Λ

µ
+ ε −

S f (I)
f ′(0)I

)
.

That is,

Φ
(S f (I)

I

)
≥Φ

(
f ′(0)(

Λ

µ
+ ε)

)
− β f ′(0)

[
1 −

σ2 f ′(0)
2β

(Λ

µ
+ ε

)](Λ

µ
+ ε −

S f (I)
f ′(0)I

)
.

Substituting this into (3.1) yields

ln I(t) ≥
∫ T

0
Φ
(S f (I)

I

)
ds + Φ

(
f ′(0)(

Λ

µ
+ ε)

)
(t − T ) + M1(t) + ln I0

− β f ′(0)
[
1 −

σ2 f ′(0)
2β

(Λ

µ
+ ε

)] ∫ t

T

(
Λ

µ
+ ε −

S f (I)
f ′(0)I

)
ds. (4.3)

In addition, from the first equation of model (1.3), it follows that

S (t) − S (T ) =

∫ t

T

[
Λ − µS (s) − βS (s) f (I(s)) + γ1I(s) + δR(s)

]
ds −

∫ t

T
σS (s) f (I(s))dB(s)
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≥

∫ t

T

[
Λ − µS (s) − βS (s) f (I(s))

]
ds −

∫ t

T
σS (s) f (I(s))dB(s)

=

∫ t

T

[
µ
(Λ

µ
+ ε −

S (s) f (I(s))
f ′(0)I(s)

)
− µS (s)

(
1 −

f (I(s))
f ′(0)I(s)

)
− µε − βS (s) f (I(s))

]
ds − M2(t).

(4.4)

By the Assumption (H3), we know that there exists a constant ϑ > 0, such that 1− f (I)
I ≤ f ′(0)ϑI. Note

that f (I) ≤ f ′(0)I and S (t) ≤ Λ
µ

+ ε for any t > T , we have

S (t) − S (T ) ≥
∫ t

T

[
µ
(Λ

µ
+ ε −

S (s) f (I(s))
f ′(0)I(s)

)
− f ′(0)S (s)(µϑ + β)I(s) − µε

]
ds − M2(t)

≥

∫ t

T

[
µ
(Λ

µ
+ ε −

S (s) f (I(s))
f ′(0)I(s)

)
− f ′(0)

(Λ

µ
+ ε

)
(µϑ + β)I(s) − µε

]
ds − M2(t),

which implies

µ

∫ t

T

(Λ

µ
+ ε −

S (s) f (I(s))
f ′(0)I(s)

)
ds ≤ f ′(0)

(Λ

µ
+ ε

)
(µϑ + β)

∫ t

T
I(s)ds + µε(t − T ) + S (t) − S (T ) + M2(t).

(4.5)

Substituting (4.5) into (4.3), we obtain

ln I(t) ≥Φ
(

f ′(0)(
Λ

µ
+ ε)

)
t − β f ′(0)

[
1 −

σ2 f ′(0)
2β

(Λ

µ
+ ε

)]
εt

−
β( f ′(0))2

µ

[
1 −

σ2 f ′(0)
2β

(Λ

µ
+ ε

)](Λ

µ
+ ε

)
(µϑ + β)

∫ t

0
I(s)ds + F1(t),

where

F1(t) =

∫ T

0
Φ
(S f (I)

I

)
ds − Φ

(
f ′(0)(

Λ

µ
+ ε)

)
T + M1(t) + ln I0

−
β f ′(0)
µ

[
1 −

σ2 f ′(0)
2β

(Λ

µ
+ ε

)][
− µεT + M2(t) + S (t) − S (T )

]
.

From (3.3) and (4.2), it follows that limt→∞
F1(t)

t = 0 a.s. Note that Rs > 1. For any ε > 0 sufficiently
small, we have

Φ
(

f ′(0)(
Λ

µ
+ ε)

)
= (µ + γ1 + γ2 + α)(Rs − 1) +

(
β −

Λσ2 f ′(0)
µ

)
f ′(0)ε −

σ2( f ′(0))2

2
ε2 > 0,

and 1 − σ2 f ′(0)
2β

(
Λ
µ

+ ε
)
> 0. Using Lemma 1, it follows from the arbitrariness of ε that

lim inf
t→∞

〈I(t)〉 ≥
µ2Φ

(
Λ f ′(0)
µ

)
βΛ( f ′(0))2

(
1 − Λσ2 f ′(0)

2µβ

)
(µϑ + β)

> 0 a.s. (4.6)
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The assertion (ii) is proved.
Now, we will give the proof of (iii). It follows from the third equation of model (1.3) that

R(t) − R0

t
= γ2〈I(t)〉 − (µ + δ)〈R(t)〉, (4.7)

which, together with (4.6), yields

lim inf
t→∞

〈R(t)〉 ≥
γ2µ

2Φ
(

Λ f ′(0)
µ

)
(µ + δ)βΛ( f ′(0))2

(
1 − Λσ2 f ′(0)

2µβ

)(
µϑ + β

) > 0 a.s.

The proof is therefore complete.

Remark 6. From Theorem 3, one can see that if Rs > 1, the disease persists and prevails. Clearly, if
we let σ = 0, then Theorem 3 is coincident with the result in [6].

Remark 7. Theorems 2 and 3 imply that Rs is the threshold of system (1.3) if σ2 < βµ

Λ f ′(0) . Namely, the
disease dies out with probability one if Rs < 1, whereas if Rs > 1, the infection may become almost
surely persistent in the time mean.

Remark 8. By constructing V(I) = ln I and using Lemma 1, we obtain that, for any (S 0, I0,R0) ∈ R3
+,

if Rs > 1, then lim inft→∞〈S (t)〉 > 0, lim inft→∞〈I(t)〉 > 0, lim inft→∞〈R(t)〉 > 0 a.s. However, Theorem
3.5 in [22] only obtained that, for any (S 0, I0,R0) ∈ Γ, lim inft→∞〈I(t)〉 > 0 by constructing V(I) =

ln I + aI, which can be seen in the proof.

Remark 9. Let h(S ) = S , γ1 = 0 and γ2 = γ, then system (1.3) is consistent with system (1.4). The
methods in proofs of Theorem 3 in our paper and [23] are different. Further, the results in [23] and
our paper are different. From Theorem 3 in our paper, we have

lim inf
t→∞

〈I(t)〉 ≥
(µ + γ + α)(Rs − 1)

βΛ

µ2 ( f ′(0))2
(
1 − Λσ2 f ′(0)

2µβ

)
(µϑ + β)

=: A1 > 0 a.s.

From Theorem 3 in [23], we have lim inft→∞〈I(t)〉 ≥ (µ+γ+α)(Rs−1)
D∗ =: A2 > 0 a.s., where D∗ =

f ′(0)
[
β
(
µ+α

µ
+

γ

µ+δ

)
+ (µ + γ + α) max0≤ζ≤Λ

µ

f (ζ)−ζ f ′(ζ)
f 2(ζ)

]
.

For general function f , it is difficult to compare A1 with A2. However, when f is a specific function,
we can compare A1 with A2. For example, let f (I) = (1 − β̃I

m+I )I, where m > 0 and 0 < β̃ < 1. If

0 < m < µβ̃(µ+δ)(µ+γ+α)
βδγ

(
1

(1−β̃)2 −1
)
, then A3 := 2µβ

Λ

[
1− D∗µ2m

βΛ(µβ̃+β)

]
< 2µβ

Λ

[
1− µ(µ+γ+α)

βΛ

]
=: A4. It is easy to show

that A3 < σ
2 < A4 yields A1 =

(µ+γ+α)(Rs−1)
βΛ

µ2

(
1−Λσ2

2µβ

)
( µβ̃m +β)

> (µ+γ+α)(Rs−1)
D∗ = A2. In addition, condition A3 < σ

2 < A4

ensures that the conditions of Theorem 3 in our paper and [23] hold. In this case, our results are better
than those in [23].

In the following, we will summarize a useful criterion for the extinction and persistence of the
disease of model (1.3). First, we discuss the relationship between R0 and Rs for different values of
white noise intensity σ2 in the following three cases.
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Case of R0 ≤ 1. From Rs = R0 −
Λ2σ2( f ′(0))2

2µ2(µ+γ1+γ2+α) , it follows that Rs < 1 for any σ > 0. Clearly,
βµ

Λ f ′(0) >
βµ

Λ f ′(0) ·
R0
2 . Now, we differ three cases

if σ2 ≥
βµ

Λ f ′(0) >
βµ

Λ f ′(0) ·
R0
2 , then (C3) holds;

if βµ

Λ f ′(0) > σ
2 > βµ

Λ f ′(0) ·
R0
2 , then (C2) holds;

if βµ

Λ f ′(0) >
βµ

Λ f ′(0) ·
R0
2 ≥ σ

2, then (C1) holds.

Hence, if R0 ≤ 1, then for any σ > 0, the disease dies out with probability one.
Case of 1 < R0 ≤ 2. It follows that

2µ2(µ + γ1 + γ2 + α)
Λ2( f ′(0))2 (R0 − 1) ≤

βµ

Λ f ′(0)
·
R0

2
≤

βµ

Λ f ′(0)
.

On the other hand, Rs < 1 is equivalent to σ2 > 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1). Now, we differ four cases

if σ2 < 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1), then condition in Theorem 3 holds;

if 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1) < σ2 < βµ

Λ f ′(0) ·
R0
2 ≤

βµ

Λ f ′(0) , then (C1) holds;

if 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1) ≤ βµ

Λ f ′(0) ·
R0
2 < σ2 < βµ

Λ f ′(0) , then (C2) holds;

if 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1) ≤ βµ

Λ f ′(0) ·
R0
2 ≤

βµ

Λ f ′(0) < σ
2, then (C3) holds.

Thus, for 1 < R0 ≤ 2, if σ2 > 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1) (i.e. Rs < 1), then the disease dies out with

probability one, whereas if σ2 < 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1) (i.e. Rs > 1), then the infection may become

almost surely persistent in the time mean. Therefore, if 1 < R0 ≤ 2, then Rs is the threshold parameter.
Case of R0 > 2. On the one hand, it follows that

βµ

Λ f ′(0)
<

2µ2(µ + γ1 + γ2 + α)
Λ2( f ′(0))2 (R0 − 1) <

βµ

Λ f ′(0)
·
R0

2
.

On the other hand, Rs < 1 is equivalent to σ2 > 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1). Now, we differ four cases

if σ2 ≤
βµ

Λ f ′(0) <
2µ2(µ+γ1+γ2+α)

Λ2( f ′(0))2 (R0 − 1) < βµ

Λ f ′(0) ·
R0
2 , then Rs > 1;

if βµ

Λ f ′(0) < σ
2 < 2µ2(µ+γ1+γ2+α)

Λ2( f ′(0))2 (R0 − 1) < βµ

Λ f ′(0) ·
R0
2 , then Rs > 1;

if βµ

Λ f ′(0) <
2µ2(µ+γ1+γ2+α)

Λ2( f ′(0))2 (R0 − 1) ≤ σ2 ≤
βµ

Λ f ′(0) ·
R0
2 , then conditions

in Theorems 2 and 3 are not satisfied;
if βµ

Λ f ′(0) <
2µ2(µ+γ1+γ2+α)

Λ2( f ′(0))2 (R0 − 1) < βµ

Λ f ′(0) ·
R0
2 < σ2, then (C3) holds.

Thus, if σ2 < 2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0−1) (i.e. Rs > 1), then the infection may become almost surely persistent

in the mean, whereas if σ2 > βµ

Λ f ′(0) ·
R0
2 (i.e. (C3) in Theorem 2 holds), then the disease dies out.

We summarize the above analysis as follows.

Corollary 1. Let Assumptions (H1) − (H3) hold and let (S (t), I(t),R(t)) be the solution of model (1.3)
with any given initial condition (S 0, I0,R0) ∈ R3

+. The solution (S (t), I(t),R(t)) has the property:
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(i) if R0 ≤ 1, then the disease dies out with probability one for any σ > 0;
(ii) if 1 < R0 ≤ 2, then Rs is the threshold parameter, i.e., the disease dies out with probability one if
Rs < 1, whereas if Rs > 1, the infection may become almost surely persistent in the time mean;
(iii) if R0 > 2, then the disease dies out with probability one if σ2 > βµ

Λ f ′(0) ·
R0
2 , while if σ2 <

2µ2(µ+γ1+γ2+α)
Λ2( f ′(0))2 (R0 − 1), the infection may become almost surely persistent in the time mean.

5. Numerical simulations

In this section, we analyze the stochastic behaviors of model (1.3) by means of the numerical simula-
tions in order to make readers understand our results more better. Throughout the following numerical
simulations, we choose f (I) = I, f (I) = I

1+aI2 and f (I) = Ie−mI , respectively. Thus, f (I) ≤ I. The
numerical simulations of epidemic dynamics are carried out for the academic tests with the arbitrary
values of the parameters, which do not correspond to some epidemic and exhibit only the theoretical
properties of numerical solutions of considered models.

Example 1. Let f (I) = I. Numerical experiments were made by using the following parameters:

Λ = 0.8, µ = 0.4, γ1 = 0.4, γ2 = 0.1, α = 0.3, δ = 0.5, (S 0, I0,R0) = (1, 1, 0).

(i) In order to demonstrate the conclusion (i) in Corollary 1, we take β = 0.3 and σ2 = 0.2. By a
simple computation, R0 = 0.5 < 1. From the numerical simulations given in Figure 1, the disease I(t)
in deterministic model (1.1) and stochastic model (1.3) will die out with probability one (Figure 1).

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

N
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

 

 

S(t)

I(t)

R(t)

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

N
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

 

 

S(t)

I(t)

R(t)

(b)

Figure 1. (a) The trajectories of deterministic SIRS model (1.1). (b) The trajectories of
stochastic SIRS model (1.3) with σ2 = 0.2.

(ii) In order to demonstrate the conclusion (ii) in Corollary 1, we take β = 0.8. By a simple
computation, we obtain 1 < R0 ≈ 1.33 < 2. From the numerical simulations given in Figure 2(a), it is
shown that disease I(t) of deterministic model (1.1) is permanent in the population.

1◦ Assume that σ2 = 0.4. By a simple computation, we obtain Rs ≈ 0.66 < 1. It can be seen from
Figure 2(b) that disease I(t) in model (1.3) will die out with probability one.

2◦ Assume that σ2 = 0.02. By computing, Rs ≈ 1.297 > 1. From the numerical simulations given
in Figure 3, it is shown that disease I(t) of model (1.3) is permanent in the mean with probability one.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 6047–6070.



6062

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

N
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

 

 

S(t)

I(t)

R(t)

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

N
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

 

 

S(t)

I(t)

R(t)

(b)

Figure 2. (a) The trajectories of deterministic SIRS model (1.1). (b) The trajectories of
stochastic SIRS model (1.3) with σ2 = 0.4.
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Figure 3. The trajectories of stochastic SIRS model (1.3) with σ2 = 0.02. (a) the trajectories
of susceptible individuals, (b) the trajectories of infectious individuals, (c) the trajectories of
recovered individuals.

(iii) In order to demonstrate the conclusion (iii) in Corollary 1, we take β = 1.5. By a simple com-
putation, R0 = 2.5 > 2. From Figure 4(a), it follows that I(t) of (1.1) is permanent in the population.

1◦ Assume that σ2 = 0.03 (σ2 = 0.3). By a simple computation, σ2 < 2µ2(µ+γ1+γ2+α)
Λ2 (R0 − 1) = 0.9.

It can be seen from Figure 4(b) (4(c)) that disease I(t) in model (1.3) is permanent in the time mean.
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2◦ Assume that σ2 = 1. By computing, σ2 > βµ

Λ
·
R0
2 = 0.9375. From the numerical simulations

given in Figure 4(d), it is shown that disease I(t) of model (1.3) will die out with probability one.
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Figure 4. The trajectories of stochastic SIRS model (1.3). (a) σ2 = 0, (b) σ2 = 0.03, (c)
σ2 = 0.3, (d) σ2 = 1.

Example 2. Let f (I) = I
1+aI2 and a = 1. Other parameters are defined as Example 1.

(i)From the numerical simulations given in Figure 5, the disease I(t) in deterministic model (1.1)
and stochastic model (1.3) will die out with probability one.
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Figure 5. (a) The trajectories of deterministic SIRS model (1.1). (b) The trajectories of
stochastic SIRS model (1.3) with σ2 = 0.2.
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(ii)From Figure 6(a), we obtain that disease I(t) of (1.1) is permanent in the population.
1◦ If σ2 = 0.4. From Figure 6(b), disease I(t) in model (1.3) will be extinct with probability one.
2◦ If σ2 = 0.02. From Figure 7, disease I(t) of model (1.3) is permanent in the mean.
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Figure 6. (a) The trajectories of deterministic SIRS model (1.1). (b) The trajectories of
stochastic SIRS model (1.3) with σ2 = 0.4.
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Figure 7. The trajectories of SIRS model (1.3) with σ2 = 0.02. (a) the trajectories of
susceptible individuals, (b) the trajectories of infectious individuals, (c) the trajectories of
recovered individuals.

(iii) From the numerical simulations given in Figure 8(a), it is shown that disease I(t) of determin-
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istic model (1.1) is permanent in the population.
1◦ If σ2 = 0.03 (σ2 = 0.3). From Figure 8(b) (8(c)), disease I(t) in (1.3) is permanent in mean.
2◦ If σ2 = 1. From Figure 8(d), we obtain that disease I(t) of model (1.3) will be extinct.
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Figure 8. The trajectories of stochastic SIRS model (1.3). (a) σ2 = 0, (b) σ2 = 0.03, (c)
σ2 = 0.3, (d) σ2 = 1.

Example 3. Let f (I) = Ie−mI and m = 1. Other parameters are defined as Example 1.

(i)From Figure 9, the disease I(t) in model (1.1) and model (1.3) will die out with probability one.
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Figure 9. (a) The trajectories of deterministic SIRS model (1.1). (b) The trajectories of
stochastic SIRS model (1.3) with σ2 = 0.2.
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(ii)From Figure 10(a), we obtain that disease I(t) of (1.1) is permanent in the population.
1◦ If σ2 = 0.4. From Figure 10(b), disease I(t) in model (1.3) will be extinct with probability one.
2◦ If σ2 = 0.02. From Figure 11, disease I(t) of model (1.3) is permanent in the mean.
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Figure 10. (a) The trajectories of deterministic SIRS model (1.1). (b) The trajectories of
stochastic SIRS model (1.3) with σ2 = 0.4.
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Figure 11. The trajectories of stochastic SIRS model (1.3) withσ2 = 0.02. (a) the trajectories
of susceptible individuals, (b) the trajectories of infectious individuals, (c) the trajectories of
recovered individuals.

(iii) From the numerical simulations given in Figure 12(a), it is shown that disease I(t) of determin-
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istic model (1.1) is permanent in the population.
1◦ If σ2 = 0.03 (σ2 = 0.3). From Figure 12(b) (12(c)), we get that disease I(t) in model (1.3) is

permanent in the mean.
2◦ If σ2 = 1. From Figure 12(d), we obtain that disease I(t) of model (1.3) will be extinct with

probability one.
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Figure 12. The trajectories of stochastic SIRS model (1.3). (a) σ2 = 0, (b) σ2 = 0.03, (c)
σ2 = 0.3, (d) σ2 = 1.

From Examples 1, 2 and 3, we can see that different incidence rates of diseases have different
effects on the extinction and persistence in the mean of diseases. In addition, the intensity of noise
plays an important role in epidemic dynamics. Comparing Figures 3 and 11 (or Figures 7 and 11), we
can conclude that massive media coverages are needed to prevent the disease to spread widely in the
population. This is consistent with the results in [26].

Comparing Figures 5(a) and 5(b), we conclude that if R0 < 1, then I(t) becomes extinct regardless
of the intensity of noise. From Figures 6(a), 6(b) and 7, if 1 < R0 < 2, then great intensity of the noise
can make diseases extinction. From Figure 8(d), if R0 > 2, the disease becomes extinct as the intensity
of the noise is large.

6. Conclusions and discussions

This paper is concerned with the persistence and extinction of a stochastic SIRS epidemic model
with nonlinear incidence rate and transfer from infectious to susceptible. To begin with, we consider the
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global existence and uniqueness of the positive solution to model (1.3) with any positive initial value.
Next, sufficient criteria for the persistence and extinction of the disease are established. Then, we
discuss the relationship between R0 and Rs for different values of white noise intensity σ2. In addition,
we find that in case of neglecting the impact of environmental noises, the deterministic threshold R0

may exist and the threshold parameter will be overestimated. Furthermore, we discover that a large
noise has the effect of suppressing the epidemic. So these results show that noises have important
effects on the persistence and extinction of the disease. In addition, we can see that different incidence
rates of diseases have different effects on epidemic dynamics.

Although there are important discoveries revealed by these studies, there are also limitations for
the model. Theorem 2 shows that the particular expression for the nonlinear transmission makes no
influence on the extinction of the disease. We leave these as our future work.
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