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Abstract: Fetal heart rate (FHR) monitoring can serve as a benchmark to identify high-risk fetuses. 

Fetal phonocardiogram (FPCG) is the recording of the fetal heart sounds (FHS) by means of a small 

acoustic sensor placed on maternal abdomen. Being heavily contaminated by noise, FPCG 

processing implies mandatory filtering to make FPCG clinically usable. Aim of the present study was 

to perform a comparative analysis of filters based on Wavelet transform (WT) characterized by 

different combinations of mothers Wavelet and thresholding settings. By combining three mothers 

Wavelet (4
th

-order Coiflet, 4
th

-order Daubechies and 8
th

-order Symlet), two thresholding rules (Soft 

and Hard) and three thresholding algorithms (Universal, Rigorous and Minimax), 18 different 

WT-based filters were obtained and applied to 37 simulated and 119 experimental FPCG data 

(PhysioNet/PhysioBank). Filters performance was evaluated in terms of reliability in FHR estimation 

from filtered FPCG and noise reduction quantified by the signal-to-noise ratio (SNR). The filter 

obtained by combining the 4
th

-order Coiflet mother Wavelet with the Soft thresholding rule and the 

Universal thresholding algorithm was found to be optimal in both simulated and experimental FPCG 

data, since able to maintain FHR with respect to reference (138.7[137.7; 140.8] bpm vs. 140.2[139.7; 

140.7] bpm, P > 0.05, in simulated FPCG data; 139.6[113.4; 144.2] bpm vs. 140.5[135.2; 146.3] 

bpm,  P > 0.05, in experimental FPCG data) while strongly incrementing SNR (25.9[20.4; 31.3] dB 

vs. 0.7[−0.2; 2.9] dB, P < 10
-14

, in simulated FPCG data; 22.9[20.1; 25.7] dB vs. 15.6[13.8; 16.7] dB, 

P < 10
-37

, in experimental FPCG data). In conclusion, the WT-based filter obtained combining the 

4
th

-order Coiflet mother Wavelet with the thresholding settings constituted by the Soft rule and the 

Universal algorithm provides the optimal WT-based filter for FPCG filtering according to evaluation 

criteria based on both noise and clinical features. 

 



6035 

Mathematical Biosciences and Engineering  Volume 16, Issue 5, 6034–6046. 

Keywords: fetal monitoring; fetal phonocardiography; mothers wavelet; thresholding settings; 

wavelet transform filtering 

 

Abbreviations 

FHR: Fetal Heart Rate; FHS: Fetal Heart Sounds; FPCG: Fetal PhonoCardioGram; SNR: 

Signal-to-Noise Ratio; WT: Wavelet Transform 

1. Introduction  

Fetal monitoring, often consisting in the monitoring of the fetal cardiac activity, is finalized to 

understand the normal autonomic maturation of the fetus and can serve as a benchmark to identify 

high-risk fetuses. Fetal heart rate (FHR) is one of the most commonly monitored features due to the 

important clinical information that can be derived from its analysis. Normal FHR values range from 

110 bpm to 160 bpm. Prolonged (lasting more than 10 min) FHR deviations from this range indicate 

abnormal and possibly pathological fetal conditions [1]. Fetal tachycardia is usually due to maternal 

pyrexia, epidural analgesia, and sometimes, catecholamine secretion during the initial stages of a 

non-acute fetal hypoxemia. Instead, bradycardia is mainly due to maternal hypothermia, maternal use 

of beta-blocker drugs and fetal arrhythmias, even though it can also occur in normal fetuses of 

postdate pregnancies. Short (lasting at most 15 s) FHR deviations are also clinically relevant. If 

accelerations mainly indicate a neurologically responsive fetus, decelerations often indicate a critical 

health status. Thus, a correct identification of FHR is fundamental in the prenatal clinical 

investigations [1–9]. 

Fetal phonocardiography consists in the recording of the fetal heart sounds (FHS) by means of a 

small acoustic sensor placed on maternal abdomen (Figure 1). The acquired acoustic signal is then 

transduced into an electric signal, termed fetal phonocardiogram (FPCG), that can be visually or 

automatically analyzed [10,11]. FHS [2,12–13] are non-stationary natural vibro-acoustic waves 

produced by the fetal heart mechanical activity during a cardiac cycle. Specifically, they are short 

bursts of vibratory energy caused by cardiac valves movements with an acoustic character and a 

relatively short duration. There are two major sounds for each cardiac cycle. The first sound, which 

is the longest and loudest, corresponds to the asynchronous closure of mitral and tricuspid valves 

during the isovolumic contraction phase of the systole. On FPCG, the first sound is represented by 

the S1 waveform [3,12] that is characterized by a low frequency (20–40 Hz) spectral content. The 

second sound corresponds to the asynchronous closure of aortic and pulmonary valves during the 

isovolumic relaxation phase of the diastole; typically, it is shorter and less loud than the first sound 

due to anatomical differences in the valve leaflets (semilunar valves are more stretched than 

atrioventricular valves [14]). On FPCG, the second sound is represented by the S2 waveform [3,12] 

that is characterized by a high frequency (50–70 Hz) spectral content. The time interval between two 

consecutive S1 (or between two consecutive S2) waveforms represents the fetal cardiac period from 

which FHR can be derived. 

Compared to other fetal monitoring techniques, mainly the popular cardiotocography [15] and 

the indirect fetal electrocardiography [16–19], the fetal phonocardiography [2,3,9,11,12,20–23] is 

more suitable for continuous and long-term fetal monitoring, which is very desirable to promptly 

identify and treat possible fetal complications during pregnancy. Indeed, fetal phonocardiography is 
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non-invasive, completely harmless (as no energy is emitted), affordable (due to its low cost), easy to 

manage in any environment (even domestic), user-independent and can be performed at any stage of 

pregnancy. Differently, cardiotocography cannot be used for long-term fetal monitoring due to its 

high cost and instrumentation complexity; on the other hand, non-invasive fetal electrocardiography, 

although measurable approximately starting from the 20
th

 week of gestation, becomes more clinically 

significant and reliable during the last weeks of gestation, when the vernix caseosa layer surrounding 

and electrically shielding the fetus dissolves [16–19]. Despite its potential, wide spread of continuous 

and long-term fetal phonocardiographic monitoring is still limited by difficulties in automatic 

processing: FPCG is a signal heavily corrupted by noise and designing automatic procedures to 

denoise it remains very challenging [11,23]. Indeed, there are several sources of noise corrupting 

FPCG. FHS propagate from the internal acoustic source (i.e. the fetal heart) to the external acoustic 

receiver (i.e. the sensor) through a time-varying transmission pathway made up of several different 

layers (amniotic fluid, uterus muscular wall, fat tissue, etc.), each having different attenuation, 

reflection and refraction properties [11,23,24]. Additionally, sounds generated by physiological and 

non-physiological sources located nearby may interfere. Overall, noise affecting FPCG is classified 

as internal noise or external noise [11]. The internal noise [3,12] is a random corrupting acoustic 

signal mainly generated by maternal heart activity (10–40 Hz), maternal respiration, maternal 

digestion, placental blood turbulence and fetal movements (0–25 Hz). Instead, the external noise [4] 

is mainly due to power line interference (50/60 Hz), environmental noise and sensor movement 

during acquisition (all spectrum). As a consequence, the acquired raw FPCG results to be a 

superimposition of FHS, which is the signal of interest, and other sounds due to internal or external 

noise (Figure 1). Thus, FPCG is typically characterized by a low signal-to-noise ratio (SNR) and the 

frequency bands of maternal heart sounds and FHS overlap, making FPCG filtering very challenging [23]. 

As it is heavily contaminated by noise, FPCG processing implies mandatory filtering to make it 

clinically usable. Conventional approaches based on linear low-pass and high-pass filtering are not 

efficient [25] due to the existence of frequency bands in which FPCG and noise components 

overlap. Differently, filtering procedures based on Wavelet transform (WT) demonstrated to be 

promising [2,11,12,21,24–30]. Indeed, WT performs a correlation analysis; thus, its output is 

maximal when the input FPCG signal most resembles the chosen mother Wavelet. Additionally, 

WT decomposes data features into different scales. Since the FPCG signal has its energy 

concentrated in few WT levels [12,21,28–30], the few related WT coefficients are relatively large 

compared to the several coefficients related to noise, which is typically spread over several WT 

levels. WT filtering also includes a thresholding procedure to remove the low coefficients related to 

noise; eventually, the inverse WT is applied to get a filtered FPCG. The WT-based filters proposed in 

literature differ for used mothers Wavelet and thresholding settings (rules and algorithms). In 

particular, an interesting study by Chourasia et al. [29] compared several combinations of mothers 

Wavelet and thresholding settings and concluded that the 4
th

-order Coiflet mother Wavelet combined 

with Soft rule and Rigorous algorithm shows the best performance. However, evaluation has been 

done using only a noise-related feature (i.e. the mean squared error) and no clinical features. 

Consequently, clinical significance of the results has not been demonstrated since noise removal 

could indeed cause removal of some clinically useful FPCG components. Thus, the aim of the 

present work was to perform a comparative analysis of WT-based FPCG filtering approaches 

characterized by different combinations of mothers Wavelet and thresholding settings by considering 

both a noise-related feature, i.e. SNR, and the main clinical feature, i.e. FHR. 
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Figure 1. Raw FPCG (in gray), acquired by a small acoustic sensor placed on maternal 

abdomen, is heavily corrupted by noise and needs to be filtered to be clinically usable. 

Filtered FPCG (in black) is mainly constituted by two waveforms: S1, representing the 

sound generated by the asynchronous closure of mitral and tricuspid valves during the 

isovolumic contraction phase of the systole; and S2, representing the sound generated by 

the asynchronous closure of aortic and pulmonary valves during the isovolumic 

relaxation phase of the diastole. 

2. Methods 

In this study, both simulated and experimental raw FPCG (all available at 

PhysioNet/PhysioBank [31]) were filtered through 18 WT-based filtering approaches, each 

characterized by a different combination of mother Wavelet and thresholding settings. Filtered FPCG 

were then analyzed to evaluate FHR and noise reduction (SNR increment). The optimal WT-based 

filter was eventually identified as the one allowing the most accurate FHR evaluation and the highest 

SNR increment. 

2.1. Data 

2.1.1. Simulated data 

Simulated FPCG data belong to the ‘Simulated Fetal PCGs database’ [4,32] and consist of 37 

simulated FPCG obtained by summation of a sequence of simulated S1 and S2 waveforms with 

various kinds and levels of simulated internal and external noise. Simulated raw FPCG (sampling 

frequency: 1 kHz) were 8 min long. FHR values were obtained after manually annotating S1. SNR 

ranged from −1.11 dB to 7.37 dB. Such values of FHR and SNR were taken as reference when 

evaluating performances of a WT-based filter on simulated FPCG data. 

2.1.2. Experimental data 

Experimental FPCG data belong to the ‘Shiraz University (SU) fetal heart sounds database’ [22,33] 

and consist of 119 FPCG recorded on 109 pregnant women (99 women had one FPCG recorded, 3 had 
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two FPCG recorded, and 7 had FPCG of twins recorded individually). Experimental raw FPCG 

duration ranged from 28.65 s to 133.17 s; sampling frequency was generally 16 kHz, with a few 

signals recorded at 44 Hz and 100 Hz [22,33]. FHR relative to each raw FPCG was indirectly 

computed by using the FHR signal of simultaneously acquired cardiotocographic recordings; over 

the database, it ranged from 121.3 bpm to 172.1 bpm. SNR ranged from 9.6 dB to 21.6 dB. Such 

values of FHR and SNR were taken as reference when evaluating performances of a WT-based 

filtering procedures on experimental FPCG data. 

2.2. Processing procedure 

2.2.1. Pre-processing  

Each simulated and experimental FPCG was normalized by its maximum amplitude and 

rescaled so that its amplitude could vary between ±100. Normalized FPCG were pre-filtered by 

application of a conventional band-pass filter (3
rd

-order Butterworth filter with cut-off frequencies at 

20 Hz and 120 Hz [21,28]) before being submitted to a WT-based filter for further noise removal 

(Figure 2). 

2.2.2. Wavelet transform-based filtering procedure 

The proposed WT-based filtering procedure consists of three main steps (Figure 2): WT 

decomposition, denoising and reconstruction. Decomposition was performed on 7 levels (which we 

previously found to be suitable for WT-based FPCG filtering [21,28]) by using 3 different mothers 

Wavelet, namely the 4
th

-order Coiflet, the 4
th

-order Daubechies and the 8
th

-order Symlet, selected 

based on their morphological closeness to S1 and S2 waveforms [21,29,34,35] and to their 

orthogonality [26]. Once the pre-processed FPCG was decomposed, the levels introducing noise 

were removed according to predefined thresholding settings. Specifically, two thresholding rules, 

namely Soft and Hard, and three thresholding algorithms, namely Universal, Rigorous, and 

Minimax, were considered, being those the most commonly employed for non-stationary signals 

filtering [2,12,26,29,35]. Eventually, the filtered FPCG was obtained by WT reconstruction. All 

possible combinations of mothers Wavelet, thresholding rules and thresholding algorithms were 

considered, so that 18 different WT-based filters (F1 to F18; Table 1) were obtained.  

2.3. Features extraction and statistics 

Each filtered FPCG, either from simulated or experimental data, was characterized in terms of 

FHR, SNR and error (εFHR). Specifically, from each filtered FPCG, S1 sounds were automatically 

identified using PCG-Delineator, a previously published threshold-based application for accurate 

computerized identification of FPCG waveforms (S1 and S2) [28]. 

Successively, FHR (bpm) was evaluated as in Eq. 1, where fs indicates the sampling frequency 

and             represents the mean number of samples between two consecutive S1 waveforms: 

 

                                         (1) 
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SNR (dB) was calculated as in Eq. 2, where max(FPCG), min(FPCG) and std(FPCG) 

respectively indicate FPCG maximum, minimum and standard deviation [21]: 

 

Figure 2. WT-based procedure for FPCG filtering: the raw FPCG is pre-processed before 

being submitted to a WT-based filter. 

           
                   

           
                    (2) 

 

Eventually, εFHR (bpm) was computed ad in Eq. 3, where FHRRef and FHRWT are respectively the 

reference FHR and the FHR of the WT-filtered FPCG: 

                                      (3) 

Normality of FHR and SNR distributions over simulated and experimental FPCG data were 

evaluated using the Lilliefors test. Non-normal distributions were described in terms of 50
th

[25
th

;75
th

] 

percentiles and compared by means of the Wilcoxon Rank-Sum test. Statistical level of significance 

(P) was set at 0.05. 

2.4. Optimal filter identification 

Identification of the optimal WT-based filter, that is of the optimal combination of mother 
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Wavelet and thresholding settings, occurred by applying the following evaluation criteria. Among all 

possible mothers Wavelet and thresholding settings combinations, select those that provide FHR 

distributions not statistically different from reference FHR distributions. Among the selected 

combinations, identify those characterized by the highest median SNR. Among the identified 

combinations, select as optimal the one that provides the lowest median εFHR. 

Table 1. WT-based filters (F1 to F18) obtained by different combinations of three 

mothers Wavelet (4
th

-order Coiflet, 4
th

-order Daubechies and 8
th

-order Symlet), two 

thresholding rules (Soft and Hard) and three thresholding algorithms (Universal, 

Rigorous and Minimax). 

WT-based 

Filter 

Mother 

Wavelet 

Thresholding 

rule 

Thresholding 

algorithm 

F1 4
th

-order Coiflet Soft Universal 

F2 4
th

-order Coiflet Hard Universal 

F3 4
th

-order Coiflet Soft Rigorous 

F4 4
th

-order Coiflet Hard Rigorous 

F5 4
th

-order Coiflet Soft Minimax 

F6 4
th

-order Coiflet Hard Minimax 

F7 4
th

-order Daubechies Soft Universal 

F8 4
th

-order Daubechies Hard Universal 

F9 4
th

-order Daubechies Soft Rigorous 

F10 4
th

-order Daubechies Hard Rigorous 

F11 4
th

-order Daubechies Soft Minimax 

F12 4
th

-order Daubechies Hard Minimax 

F13 8
th

-order Symlet Soft Universal 

F14 8
th

-order Symlet Hard Universal 

F15 8
th

-order Symlet Soft Rigorous 

F16 8
th

-order Symlet Hard Rigorous 

F17 8
th

-order Symlet Soft Minimax 

F18 8
th

-order Symlet Hard Minimax 

3. Results 

3.1. Simulated data 

Results relative to the simulated FPCG data are reported in Table 2. Twelve filters (F1, F2, F3, 

F4, F5, F9, F11, F12, F13, F14, F15, F16) provided FHR not statistically different from the reference. 

Among them, those characterized by the highest median SNR (25.9 dB) were two, F1 and F13, with 

F1 being the one with the lowest median εFHR (1.3 bpm) with respect to reference. As a sample, 

Figure 3 depicts 10 s of simulated raw FPCG number 1 (SNR: 7.4 dB; in gray) and its filtered 

version (SNR: 14.4 dB; in black) obtained by application of F1 (4
th

-order Coiflet; Soft thresholding 

rule; Universal thresholding algorithm). 
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Table 2. Values of FHR and SNR obtained at reference and after the application of the 18 

WT-based filters (Table 1) to simulated and experimental FPCG data.             

* and ** indicate P < 0.05 and P < 0.01, respectively, when comparing against reference. 

  SIMULATED EXPERIMENTAL 

  
FHR 

(bpm) 

SNR 

(dB) 

εFHR 

(bpm) 

FHR 

(bpm) 

SNR 

(dB) 

εFHR 

(bpm) 

Reference 
140.2 

[139.7;140.7] 

0.7 

[−0.2;2.9] 

- 140.5 

[135.2;146.3] 

15.6 

[13.8;16.7] 

- 

WT-based 

filter 

 

F1 
138.7 

[137.7;140.8] 

25.9** 

[20.4;31.3] 

1.3 

[0.0;2.3] 

139.6 

[113.4;155.2] 

22.9** 

[20.1;25.7] 

0.9 

[−14.6;28.7] 

F2 
138.9 

[137.9;140.8] 

18.2** 

[15.8;22.7] 

0.8 

[0.0;2.2] 

136.9** 

[111.8;146.2] 

21.7** 

[18.8;25.2] 

6.9 

[−4.6;34.6] 

F3 
140.3 

[139.5;140.7] 

14.3** 

[13.7;15.1] 

0.1 

[−0.4;0.6] 

137.1 

[109.8;149.7] 

21.7** 

[18.8;25.2] 

4.3 

[−9.1;33.8] 

F4 
140.1 

[138.5;140.7] 

11.4** 

[10.8;12.1] 

0.2 

[−0.1;1.3] 

138.3* 

[113.1;147.9] 

21.6** 

[18.6;24.9] 

4.9 

[−8.4;30.2] 

F5 
138.8 

[134.3;140.7] 

21.9** 

[18.6;24.9] 

1.2 

[0.0;5.0] 

132.9** 

[106.5;147.2] 

22.8** 

[19.7;25.6] 

7.4 

[−8.1;34.8] 

F6 
138.8* 

[135.1;140.7] 

15.7** 

[14.1;16.9] 

1.0 

[0.0;4.1] 

135.1** 

[111.1;146.9] 

21.6** 

[18.7;25.1] 

5.2 

[−6.3;33.9] 

F7 
139.2* 

[136.1;140.7] 

26.3** 

[20.6;31.1] 

1.0 

[0.1;3.8] 

139.1 

[111.8;153.9] 

22.9** 

[19.9;25.7] 

1.7 

[−14.2;28.9] 

F8 
138.9** 

[135.8;140.7] 

18.7** 

[16.1;23.5] 

0.8 

[0.0;4.1] 

136.5** 

[110.8;145.2] 

21.8** 

[18.8;25.2] 

7.3 

[−5.4;34.8] 

F9 
140.3 

[139.1;140.7] 

14.5** 

[13.9;14.9] 

0.1 

[−0.2;0.9] 

136.2* 

[109.8;149.9] 

21.7** 

[18.8;25.2] 

5.1 

[−8.9;33.2] 

F10 
139.3** 

[137.1;140.6] 

11.6** 

[10.9;12.2] 

0.7 

[0.1;2.5] 

138.3* 

[112.5;147.7] 

21.6** 

[18.6;24.9] 

5.0 

[−8.2;30.5] 

F11 
140.5 

[136.1;140.7] 

21.9** 

[18.6;24.9] 

0.1 

[−0.2;2.9] 

133.1** 

[105.7;147.1] 

22.8** 

[19.7;25.6] 

8.0 

[−7.5;34.5] 

F12 
140.5 

[136.5;140.7] 

15.9** 

[14.5;17.3] 

0.1 

[0.0;2.4] 

135.7** 

[109.6;145.5] 

21.6** 

[18.7;25.2] 

6.0 

[−5.0;33.7] 

F13 
138.6 

[137.7;140.8] 

25.9** 

[20.3;31.1] 

1.6 

[0.0;2.4] 

139.4 

[114.2;154.9] 

22.9** 

[20.4;25.7] 

1.3 

[−15.4;27.7] 

F14 
138.8 

[137.6;140.8] 

18.1** 

[15.8;22.3] 

1.0 

[−0.1;2.1] 

134.3** 

[111.3;145.9] 

21.7** 

[18.8;25.2] 

8.2 

[−5.0;34.6] 

F15 
140.4 

[139.5;140.7] 

14.3** 

[13.9;15.1] 

0.1 

[−0.4;0.5] 

136.4 

[109.9;149.7] 

21.7** 

[18.8;25.2] 

4.0 

[−9.3;33.2] 

F16 
139.9 

[138.5;140.6] 

11.4** 

[11.1;12.1] 

0.2 

[0.0;1.4] 

138.7* 

[111.9;147.8] 

21.6** 

[18.6;24.9] 

4.6 

[−8.4;30.4] 

F17 
138.6* 

[132.8;140.7] 

21.8** 

[18.6;24.7] 

1.2 

[0.0;6.6] 

133.1** 

[107.3;148.6] 

22.8** 

[19.9;25.6] 

7.0 

[−8.5;35.2] 

F18 
138.8* 

[133.9;140.7] 

15.8** 

[14.5;17.1] 

1.2 

[0.0;5.6] 

134.9** 

[109.8;146.5] 

21.6** 

[18.7;25.1] 

6.2 

[−5.8;32.8] 
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Figure 3. Upper panel: Graphical representation of 10 s of simulated raw FPCG number 

1 (SNR: 7.4 dB; in gray), and its filtered version (SNR: 14.4 dB; in black) obtained by 

application of F1 (4
th

-order Coiflet; Soft thresholding rule; Universal thresholding 

algorithm). Red stars indicate S1 sounds identification by PCG-Delineator [28]. Lower 

panel: Tachogram of the same 10s of simulated raw FPCG number 1. Beats are labeled 

with black spots. 

3.2. Experimental data 

Results relative to the experimental data are reported in Table 2. Five filters (F1, F3, F7, F13, 

F15) provided FHR not statistically different from the reference. Among them, those characterized 

by the highest median SNR (22.9 dB) were three, F1, F7 and F13, with F1 being the one with the 

lowest median εFHR (0.9 bpm) with respect to reference. As a sample, Figure 4 depicts 10 s of 

experimental raw FPCG number 5 (SNR: 15.5 dB; in gray), and its filtered version (SNR: 21.7 dB; 

in black) obtained by application of F1 (4
th

-order Coiflet; Soft thresholding rule; Universal 

thresholding algorithm). 

4. Conclusions 

Any signal processing procedure finalized to remove noise from biomedical signals should be 

evaluated not only on noise features, such as mean square error and SNR, but also on clinical 

features. Indeed, it might happen that noise removal provides a very good-quality signal from which, 

however, some clinical features have been also deleted, making the filtered signal of limited clinical 

utility. WT-based filters have been proposed in literature as effective procedure to remove in-band 

noise from FPCG [2,11,12,21,24–30]. However, such filters have been mainly evaluated on noise 
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features [29,30]. Thus, the present work performed a comparative analysis of WT-based FPCG 

filtering approaches characterized by different combinations of mothers Wavelet and thresholding 

settings by considering both the SNR and the FHR. Only orthogonal mothers Wavelet (Coiflets, 

Daubechies, Symlets families) were found to be suitable to filter FPCG [26]; among them, the 

4
th
-order Coiflet is the most used one [21,26,29], often combined with 5 levels of decomposition [5,26,35] 

and Soft rule and Rigorous algorithm as thresholding settings [2,12,26,29,35]. No further 

investigation on the performance of the other possible combinations of mothers Wavelet and 

thresholding settings was so far been performed. Differently, the present work aimed to perform a 

comparative analysis of WT-based FPCG filtering approaches characterized by different 

combinations of mothers Wavelet and thresholding settings in order to identify the optimal WT-based 

filter for FPCG filtering. To this aim, three mothers Wavelet (the 4
th

-order Coiflet, the 4
th

-order 

Daubechies and the 8
th

-order Symlet), two thresholding rules (Soft and Hard) and three thresholding 

algorithms (Universal, Rigorous and Minimax) were combined in all possible ways so that 18 

different WT-based filters were obtained. Performance of these filters were then compared in order to 

identify the optimal one. Optimization was performed by minimizing loss of FPCG clinical 

information included in FHR and by maximizing noise reduction (i.e. by maximizing SNR). 

Evaluation was performed in both simulated and experimental FPCG data. In both cases, the 

WT-based filter obtained by combining the 4
th

-order Coiflet mother Wavelet with the thresholding 

settings constituted by the Soft rule and the Universal algorithm (F1) resulted to be optimal one. By 

applying F1 to simulated FPCG, FHR was maintained (F1: 138.7[137.7; 140.8] bpm; Reference: 

140.2[139.7; 140.7] bpm; P > 0.05; Table 2) while noise was strongly reduced (F1: SNR: 25.9[20.4; 

31.3] dB; Reference SNR: 0.7[−0.2; 2.9] dB; P < 10
-14

; Table 2). SNR values reported here were 

computed using Eq. 2 [21] and quantitatively differ from those reported in PhysioNet [4,31,32], 

possibly computed using a different formula; still the two SNR estimations are strongly linearly 

associated (correlation coefficient: 0.9996; P < 10
-57

), thus carrying the same information. In this 

study, SNR values were recomputed in order to allow a comparative analysis after filtering. Similar 

results were obtained when applying F1 to experimental FPCG; FHR was maintained (F1: 

139.6[113.4; 144.2] bpm; Reference: 140.5[135.2; 146.3] bpm; P > 0.05; Table 2) while SNR was 

strongly incremented (F1: 22.9[20.1; 25.7] dB; Reference: 15.6[13.8; 16.7] dB; P < 10
-37

; Table 2).  

Our optimal combination of mother Wavelet and thresholding settings (4
th

-order Coiflet mother 

Wavelet, Soft thresholding rule, Universal thresholding algorithm) was slightly different from 

previously proposed as optimal (4
th

-order Coiflet mother Wavelet, Soft thresholding rule, Rigorous 

thresholding algorithm) [29] mainly due to the introduction of clinical features in the evaluation 

criteria. Application of WT-based filters different from the optimal one on our data necessarily 

provided less satisfactory results. Nevertheless, it is interesting to highlight that, when using a 

specific mother Wavelet, Soft thresholding rule systematically provided better results than Hard 

thresholding rule. Moreover, there was no evidence about the existence of an optimal mother Wavelet 

when considered independently of associated thresholding settings. Rather, the performance of a 

WT-based filter strongly depends on the mother Wavelet-thresholding settings coupling [2,12,26,29,35], 

with the selection of thresholding settings being more relevant than the choice of mother Wavelet itself.  

In conclusion, the WT-based filter obtained combining the 4
th

-order Coiflet mother Wavelet 

with the thresholding settings constituted by the Soft thresholding rule and the Universal 

thresholding algorithm provides the optimal WT-based filter for FPCG filtering according to 

evaluation criteria based on both noise and clinical features. 
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Figure 4. Upper panel: Graphical representation of 10 s of experimental raw FPCG 

number 5 (SNR: 15.5 dB; in gray) and its filtered version (SNR: 21.7 dB; in black) 

obtained by application of F1 (4
th

-order Coiflet; Soft thresholding rule; Universal 

thresholding algorithm). Red stars indicate S1 sounds identification by PCG-Delineator [28]. 

Lower panel: Tachogram of the same 10 s of simulated raw FPCG number 1. Beats are 

labeled with black spots. 
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