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Abstract: In this paper by adding the factors of disease relapse and vaccination in the space hetero-
geneous environment, we establish and discuss a class of reaction-diffusion S VIR model with relapse
and a varying external source in spatial heterogeneous environment. By applying a different method
than the Lyapunov function, we study the long-term dynamic behavior of this model by means of
global exponential attractor theory and gradient flow method. The global asymptotic stability and the
persistence of epidemic are proved. To test the validity of our theoretical results, we choose some
specific epidemic disease with some more practical and more definitive official data to simulate the
global stability and exponential attraction of the model. The simulation results showed that the factors
of disease relapse, vaccination and spatial heterogeneity had a great influence on the persists uniformly
of the disease.
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1. Introduction

The idea of invisible living creatures as agents of disease goes back at least to the writings of
Aristotle (384 BC–322 BC). In the 16th century, it developed as a theory. The AIDS epidemic, the
recent SARS epidemic, MERS, Ebola virus and outbursts of diseases such as the Zika virus are events
of concern and interest to many people. The mechanism of transmission of infections is now known
for most diseases. Some diseases transmitted by viral agents, such as influenza, measles, rubella and
chicken pox, confer immunity against reinfection, others transmitted by bacteria, such as tuberculosis,
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meningitis, and gonorrhea, confer no immunity against reinfection. While malaria, is transmitted not
directly from human to human but by vectors, usually insects that are infected by humans transmit the
disease to humans. There are also diseases such as West Nile virus which are transmitted back and forth
between animals and vectors [1]. The first known result in mathematical epidemiology is a defense
of the practice of inoculation against smallpox in 1760 by Daniel Bernouilli. The first contributions
to modern mathematical epidemiology are due to P.D. En’ko between 1873 and 1894 [2], then many
scholars pay more attention to the global stability problem [3–7], bifurcation problem [8–11] and the
optimal control problem [12, 13] of the disease.

Recently, reaction–diffusion equations have been used by many authors in epidemiology as well as
virology. Researchers have established many types of model with diffusion such as S IR model [14,15],
S IS model [16], Lyme disease model [17,18], malaria model [19] and so on. Some authors specifically
study the global stability of the spread of diseases [20–27]; others discuss the traveling wave solutions
about reaction–diffusion models [28–33]. The authors of [34] applied energy estimates in their proofs
to discussed cholera epidemic.

In the theory of epidemiology, it has been recognized that environmental heterogeneity is a signif-
icant factor in the spread of infectious diseases. Constrained by factors such as altitude, temperature,
humidity, latitude, climate, and living factors, the diffusion of epidemics in different environments is
vastly different. In 2008, Allen et al. [35] proposed a simple diffusive S IS (susceptible–infected–
susceptible) model with space-dependent disease transmission rate β (x) and recovery rate γ (x), given
by


∂S
∂t = dS ∆S − β (x) S I

S +I + γ (x) I, x ∈ Ω, t > 0,
∂I
∂t = dI∆I + β (x) S I

S +I − γ (x) I, x ∈ Ω, t > 0,
∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω, t > 0,
S (x, 0) = S 0 (x) , I (x, 0) = I0 (x) , x ∈ Ω.

(1.1)

where Ω is a bounded domain in Rm and S + I is the total number of individuals at t = 0. They studied
the existence, uniqueness, stability of the disease-free equilibrium and studied the asymptotic behavior
of the unique endemic equilibrium as dS approaches zero. More precisely, their results implied that
if the spatial environment can be modified to include low-risk sites and the movement of susceptible
individuals can be restricted, then it may be possible to eliminate the infectious disease. In some
subsequent work, Peng [36] discussed the asymptotic profiles of the steady states for the epidemic
reaction–diffusion model (1.1). The global stability of the steady states of (1.1) was also investigated
by Peng and Liu [37] in 2009. Four years later, Peng and Yi [38] studied the effects of epidemic risk and
population movement on the spatiotemporal transmission of infectious disease via the S IS epidemic
reaction–diffusion model (1.1). In 2011, Lou and Zhao [19] introduced a reaction–diffusion malaria
model with incubation period in the vector population. Kuniya and Wang [39] gave the Lyapunov
functions and global stability for a spatially diffusive S IR epidemic model for only one diffusion, for
systems with multiple diffusions, the author did not get the method to construct the Lyapunov function.
Deng and Wu [40] discussed the global dynamics of a S IS epidemic reaction-diffusion model, which
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reads as follows: 
∂S
∂t = dS ∆S − β (x) S I + γ (x) I, x ∈ Ω, t > 0,
∂I
∂t = dI∆I + β (x) S I − γ (x) I, x ∈ Ω, t > 0,
∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω, t > 0,
S (x, 0) = S 0 (x) , I (x, 0) = I0 (x) , x ∈ Ω.

(1.2)

The authors only discussed the attractivity and global stability of the constant coefficient model, and
constructed the Lyapunov function of the constant system. Wu and Zou [41] analyzed the asymptotic
profiles of steady states for the model (1.2) with mass action infection mechanism. In 2017, Li et
al. [42] studied the following S IS reaction-diffusion system with a linear external source:

∂S
∂t − dS ∆S = Λ (x) − S − β (x) S I

S +I + θγ (x) I, x ∈ Ω, t > 0,
∂I
∂t − dI∆I = β (x) S I

S +I − γ (x) I, x ∈ Ω, t > 0,
∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω, t > 0,
S (x, 0) = S 0 (x) , I (x, 0) = I0 (x) , x ∈ Ω.

(1.3)

The authors showed the uniform bounds of solutions, established the threshold dynamics in terms
of the basic reproduction number and discussed the global stability of the unique constant endemic
equilibrium when spatial environment is homogeneous. In particular, the asymptotic profile of en-
demic equilibria is determined if the diffusion rate of the susceptible or infected population at 0 or ∞.
Since the Lyapunov function is difficult to construct, the authors did not discuss the global stability
of endemic for heterogeneous models. In 2018, Cai et al. [43] investigated the dynamical outcomes
of a host–parasite model incorporating both horizontal and vertical transmissions in a spatial hetero-
geneous environment. The work of Tong and Lei [44] concerns an SIS epidemic reaction–diffusion
model. They also failed to construct Lyapunov functions suitable for spatial heterogeneous models.
Therefore, the construction of the Lyapunov function of the spatial heterogeneous model is very dif-
ficult. In discussing the long-term dynamic behavior of disease in space, we also need to try to find
other methods.

On the other hand, many diseases such as hepatitis, malaria, rabies, tuberculosis and HIV/AIDS
will produce relapse after being treatment. We also know that vaccination is an important means of
preventing infection and relapse of these diseases. Therefore, the effect of spatial factors on relapse
and vaccination should be taken into account. Inspired by the above literature, in this manuscript, we
study an S VIR epidemic reaction-diffusion model with relapse and a varying external source in spa-
tially heterogeneous environment. This model has the following significant differences and difficulties
compared to the above models. First, after joining the relapse, the coupling between the equations in
the system is stronger. Thus, the method to prove the positivity of the solution in the prior literature
can no longer be used in the coupled model. Second, because the coefficients in the model are all spa-
tially heterogeneous and the number of equations increases, so the Lyapunov function method, which
proves the global asymptotic stability of the system, is also difficult to achieve due to the increased
technical difficulty of construction. For this reason, we turn to discuss the global dynamics of the
system by using the attractor theory of infinite dimensional dynamical systems. It is well-known that
the global attractor is an important theory to describe the long-term dynamic behavior of dissipative
infinite-dimensional dynamical systems [45–54]. Finally, we conduct a large number of numerical
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simulations. From the simulation we can see that spatial heterogeneity has a great influence on the
long-term dynamic behavior of epidemics. Reducing the relapse rate and increasing the vaccination
rate can effectively control the spread of the disease.

The organization of this paper is as follows. In Section 2, we present the model under some assump-
tion. Then by using general comparison principle of the quasi-monotone nonlinear reaction-diffusion
system and the comparison principle of parabolic equation, we prove the existence of the positive so-
lutions. We also give the uniform boundedness and the existence of global solutions to our system.
In Section 3, we prove the existence theorem of global exponential attract set for our real model and
apply this result to discuss the global stability and the persistence of the infection disease. That is,
by applying the property of global attractor and gradient flow method, we prove that the non-constant
disease-free equilibrium is globally asymptotically stable and the endemic is persisting uniformly un-
der some new threshold conditions. To test the validity of our theoretical results, we choose some
specific epidemic disease with some more practical and more definitive official data to simulate the
global stability and exponential attraction of the model. The stability and global exponential attractive-
ness of both constant and non-constant equilibria are simulated in Section 4. In Section 5, we give our
conclusions and some discussions.

2. Positive and uniform boundedness of solutions to a reaction-diffusion S VIR epidemic model
with relapse in heterogeneous environment

In this section, we consider a reaction-diffusion S VIR model with relapse and spatially heteroge-
neous environment. Our model is divided into four compartments, namely the susceptible individuals
(S ), vaccinated individuals (V), infected individuals (I) and temporary restorers (R). The transfer dia-
gram and parameters description as shown below:

Figure 1. Transfer diagram for the S VIR model with relapse and spatially heterogeneous
environment.
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Table 1. State variables and parameters of S VIR model.

Parameter Description
S (x, t) Density of susceptible individuals at location x and time t.
V(x, t) Density of vaccinated individuals at location x and time t.
I(x, t) Density of infected individuals at location x and time t.
R(x, t) Density of temporary restorers at location x and time t.
Λ(x) Total recruitment scale into this homogeneous social mixing

community at location x.
α(x) Vaccination rate at location x.
βi(x), i = 1, 2 Effective transmission rate (average number of effective in-

teractions per susceptible, vaccination individuals and in-
fected individuals ) at location x.

ρ(x) Relapse rate at location x.
φ(x) Per-capita recovery (treatment) rate at location x.
µ(x) Natural mortality rate at location x.
ηi(x), i = 1, 2 Disease-related death rate at location x.

From Figure 1, the following system with the initial-boundary-value conditions is constructed by:

∂S
∂t = dS ∆S + Λ (x) − β1 (x) S I

S +I −
[
µ (x) + α (x)

]
S , x ∈ Ω, t > 0,

∂V
∂t = dV∆V + α (x) S − β2 (x) VI

V+I − µ (x) V, x ∈ Ω, t > 0,
∂I
∂t = dI∆I + β1 (x) S I

S +I + β2 (x) VI
V+I + ρ (x) R −

[
µ (x) + η1 (x) + φ (x)

]
I, x ∈ Ω, t > 0,

∂R
∂t = dR∆R + φ (x) I −

[
ρ (x) + µ (x) + η2 (x)

]
R, x ∈ Ω, t > 0,

∂S
∂n = ∂V

∂n = ∂I
∂n = ∂R

∂n = 0, x ∈ ∂Ω, t > 0,
S (x, 0) = S 0 (x) ,V (x, 0) = V0 (x) , I (x, 0) = I0 (x) ,R (x, 0) = R0 (x) , x ∈ Ω.

(2.1)

Here, Ω is a bounded domain in Rm (m ≥ 1) with smooth boundary ∂Ω (when m > 1), dS , dV , dI , dR > 0
are diffusion coefficients and α (x) , β1 (x) , β2 (x) , ρ (x) , φ (x) , µ (x) , η1 (x) , η2 (x) and Λ (x) are positive
Hölder continuous functions on accounting for the rates of vaccination, disease transmission, relapse,
recovery, natural death, disease-related death and total recruitment scale respectively. Neumann bound-
ary conditions ∂S

∂n = ∂V
∂n = ∂I

∂n = ∂R
∂n = 0 denotes that the change rate on the boundary of the region Ω

is equal to 0. It is straightforward to verify that S I
S +I

(
VI

V+I

)
is a Lipschitz continuous function of S (V)

and I in the open first quadrant. Therefore, we can extend it to the entire first quadrant by defining it
to be zero whenever S = 0 (V = 0) or I = 0. Throughout the paper, we assume that the initial value
S 0(x),V0(x), I0(x) and R0(x) are nonnegative continuous functions on Ω, and the number of infected
individuals is positive, i.e.,

∫
Ω

I0(x)dx > 0. Specific parameters described in Table 1.
With the development of science and technology and the improvement of medical standards, vac-

cines play an important role in the prevention and control of disease transmission. So we considered
a group of people who were vaccinated with preventive vaccines in the model (2.1). In the model, I
denotes the infected person, and R denotes the person who is temporarily recovered by treatment after
the infection but may also relapse. These two groups of people carry the disease-causing virus, so
we need to consider their disease-induced rates. S denotes a susceptible population, and V denotes an
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uninfected person who has been vaccinated. They are not ill before they are exposed to pathogenic bac-
teria or infected people, so we only need to consider the natural mortality of these two types of people.
There are many diseases in real life that have such properties, such as hepatitis B, smallpox, etc.,

In the following, we discuss the positivity and boundedness of the solution of system (2.1). In many
articles, the positivity, boundedness, and existence of solutions of the model have been discussed, such
as models that lose immunity in [55–57]. The authors in [55] construct a model of ordinary differential
equations, which is naturally less difficult for the proof of positive, boundedness, and existence of so-
lutions. For example, the positive problem of the solution can be easily obtained through contradiction
analysis even without using the comparison principle. The model in our manuscript is diffused, and
the difficulty of analysis is naturally higher than that of the ODE model. Models in [56] and [57] are
diffusion models, and the model of [57] assumes that all diffusion coefficients are equal at the time
of construction. In [56], when discussing the existence of the solution of the model (Theorem 2.1
in [56]), the condition that the diffusion coefficients are equal is added. We all know that it is very easy
to add the equations in the system when the diffusion coefficients are equal, and then researchers can
discuss positivity, boundedness and existence of the solution for this equation about the rate of change
of the total population. However, the model diffusion coefficients in our manuscripts are different, we
refuse to add any conditions to the diffusion coefficient from beginning to end. Therefore, from the
perspective of the diffusion system, our model is more general. These are places where our models
and discussion methods differ from other existing results. Firstly, we give an comparison theorem for
semilinear parabolic differential equation that we need to use later.

Denote

QT = Ω × (0,T ] , S T = ∂Ω × (0,T ] ,

Li ≡ −

n∑
j,k=1

a(i)
jk (x)

∂2

∂x j∂xk
+

n∑
j=1

b(i)
j (x)

∂

∂x j
,

Biui = ui or Biui =
∂ui

∂n
+ bi (x) ui,

where n is the unit outside normal vector of ∂Ω and bi (x) ≥ 0. The following lemma is similar to the
Theorem 4.2.9 in Chinese books [58], but for the convenience of the reader, we give its conclusions
and a brief proof.

Lemma 2.1. Let u, v ∈ C2,1 (QT ) ∩ C
(
QT

)
, satisfy

Liui − fi (x, t, u) ≥ Livi − fi (x, t, v) , (x, t) ∈ QT ,

Biui ≥ Bivi, (x, t) ∈ S T ,

ui (x, 0) ≥ vi (x, 0) , i = 1, 2, ...,m,

and
∂ fi

∂u j
≥ 0, i , j, i, j = 1, 2, ...,m.

Then

(1) u (x, t) ≥ v (x, t) in QT .
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(2) If there exist (x0, t0) ∈ QT and µ : 0 ≤ µ ≤ m, such that (u − v)µ (x0, t0) = 0, then for any
(x, t) ∈ Qt0 , there has (u − v)µ (x, t) = 0.

Proof. Let w = u − v, then by using differential mean value theorem for multivariate functions

Liui − Livi −
[
fi (x, t, u) − fi (x, t, v)

]
=Liwi −

[
fi (x, t, u1, u2, u3, ..., um−1, um) − fi (x, t, v1, u2, u3, ..., um−1, um)

+ fi (x, t, v1, u2, u3, ..., um−1, um) − fi (x, t, v1, v2, u3, ..., um−1, um)

+... + fi (x, t, v1, v2, v3, ..., vm−1, um) − fi (x, t, v1, v2, v3, ..., vm−1, vm)
]

=Liwi −

m∑
j=1

∂ fi

∂u j

(
x, t, v1, ..., v j−1, v j + ξ j

(
u j − v j

)
, v j+1, ..., um

) (
u j − v j

)
=:Liwi +

m∑
j=1

hi jw j ≥ 0, i = 1, 2, ...,m.

In view of ∂ fi
∂u j
≥ 0, i , j, i, j = 1, 2, ...,m, therefore, hi j = −

∂ fi
∂u j
≤ 0. If x ∈ Ω, we have w (x, 0) ≥ 0 and

Biwi|S T ≥ 0, i = 1, 2, ...,m. Then by the strong maximum principle in the form of equation derivatives,
we can prove that w (x, t) ≥ 0, that is u (x, t) ≥ v (x, t) in QT . Finally, if there exist (x0, t0) ∈ QT and
µ : 0 ≤ µ ≤ m, such that wµ (x0, t0) = 0, then for any (x, t) ∈ Qt0 , there has wµ (x, t) = 0, that is
(u − v)µ (x, t) = 0. �

The above lemma can also be derived indirectly from [59, Theorem 7.3.4]. Let X := L2 (Ω) be a
Banach space, L1, L2, L3 and L4 be a linear operator on D (L) = (D (L1) ,D (L2) ,D (L3) ,D (L4)) ⊂ X
defined by

L1S (x) := dS ∆S (x) , L2V (x) := dV∆V (x) ,
L3I (x) := dI∆I (x) , L4R (x) := dR∆R (x) ,

D (L1) :=
{

S ∈ H2 (Ω) ;
∂S
∂n

= 0 on ∂Ω

}
,

D (L2) :=
{

V ∈ H2 (Ω) ;
∂V
∂n

= 0 on ∂Ω

}
,

D (L3) :=
{

I ∈ H2 (Ω) ;
∂I
∂n

= 0 on ∂Ω

}
,

D (L4) :=
{

R ∈ H2 (Ω) ;
∂R
∂n

= 0 on ∂Ω

}
.

Then, we can see that L1, L2, L3, L4 are respectively the infinitesimal generator of strongly continuous
semigroup

{
etL1

}
t≥0
,
{
etL2

}
t≥0
,
{
etL3

}
t≥0
,
{
etL4

}
t≥0

in H2 (Ω). Let
(
H2 (Ω)

)4
= H2 (Ω)×H2 (Ω) × H2 (Ω) ×

H2 (Ω) and define L :
(
H2 (Ω)

)4
→

(
H2 (Ω)

)4
,∀u := (S ,V, I,R) ∈

(
H2 (Ω)

)4
, then

L (S ,V, I,R) (x) :=


L1S (x)
L2V (x)
L3I (x)
L4R (x)

 , D (L) := D (L1) × D (L2) × D (L3) × D (L4)
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is also the infinitesimal generator of a strongly continuous semigroup
{
etL

}
t≥0

in Y :=
(
H2 (Ω)

)4
, where

etL =


etL1

etL2

etL3

etL4

 and etLu =


etL1S
etL2V
etL3 I
etL4R

 .
Note that Y is a Banach space equipped with norm∥∥∥(S ,V, I,R)T

∥∥∥
Y := max

{
‖S ‖H2(Ω) , ‖V‖H2(Ω) , ‖I‖H2(Ω) , ‖R‖H2(Ω)

}
.

Let G be a nonlinear operator on Y defined by

G (S ,V, I,R) (x)
:= (g1 (S ,V, I,R) (x) , g2 (S ,V, I,R) (x) , g3 (S ,V, I,R) (x) , g4 (S ,V, I,R) (x))T ,

where
g1 (S ,V, I,R) (x) = Λ (x) − β1 (x) S I

S +I −
[
µ (x) + α (x)

]
S ,

g2 (S ,V, I,R) (x) = α (x) S − β2 (x) VI
V+I − µ (x) V,

g3 (S ,V, I,R) (x) = β1 (x) S I
S +I + β2 (x) VI

V+I + ρ (x) R −
[
µ (x) + η1 (x) + φ (x)

]
I,

g4 (S ,V, I,R) (x) = φ (x) I −
[
ρ (x) + µ (x) + η2 (x)

]
R.

Let F = ( f1, f2, f3, f4), where

fi (S ,V, I,R) =

{
gi (S ,V, I,R) (x) , S ,V, I,R > 0,
0, others,

i = 1, 2, 3, 4.

Using the operators L and F defined by above, we can rewrite the problem (2.1) into the following
abstract form in Y.

d
dt

u (t) = Lu (t) + F (u (t)) , u (t) :=


S (·, t)
V (·, t)
I (·, t)
R (·, t)

 , u (0) :=


S 0 (·)
V0 (·)
I0 (·)
R0. (·)

 . (2.2)

Because L is the generator of a C0-semigroup of contractions on Y and F is locally Lipschitz with
respect to u, apply [60, Corollary 11.1.2] and [60, Corollary 11.3.1], we know that there exists at least
one saturated solution u : [0,T )→ Y, which is a classical solution of system (2.2), such that

u (t) = etLu0 +

∫ t

0
e(t−s)LF (u (s)) ds. (2.3)

Moreover, if S (x, 0),V(x, 0), I(x, 0),R(x, 0) ∈ C2(Ω), then u (x, t) ∈ C2,1(Ω × (0,T ]).
In the following, we discuss the positivity of the solution of system (2.2) and the existence of the

solution of system (2.1).

Theorem 2.2. Assume that (S (x, t),V(x, t), I(x, t),R(x, t)) be a solution of system (2.2), and
S (x, t),V(x, t), I(x, t),R(x, t) ∈ C(Ω × (0,T ]) ∩ C2,1(Ω × (0,T ]) where T is the maximal existing time.
If S (x, 0) > 0,V(x, 0) > 0, I(x, 0) > 0,R(x, 0) > 0 for x ∈ Ω, then the solution S (x, t) > 0,V(x, t), >
0, I(x, t) > 0,R(x, t) > 0, (x, t) ∈ Ω × (0,T ] and u (t) = (S (x, t),V(x, t), I(x, t),R(x, t)) is a solution of
system (2.1).
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Proof. We denote that

f̃1 (S ,V, I,R) =

{
−β1 (x) S I

S +I −
[
µ (x) + α (x)

]
S , S ,V, I,R > 0,

0, others,

f̃2 (S ,V, I,R) =

{
−β2 (x) VI

V+I − µ (x) V, S ,V, I,R > 0,
0, others.

It is obviously that f̃1 (S ,V, I,R) ≤ f1 (S ,V, I,R) and 0 is a solution of equation
∂S
∂t − dS ∆S = f̃1 (S ,V, I,R) ,
∂S
∂n = 0,
S (x, 0) = 0.

If S is the solution of the equation 
∂S
∂t − dS ∆S = f1 (S ,V, I,R) ,
∂S
∂n = 0,
S (x, 0) = S 0(x) > 0.

then by using [61, Theorem 2.2.1], we get S (x, t) > 0. Similarly, it is obviously that f̃2 (S ,V, I,R) ≤
f2 (S ,V, I,R) and 0 is a solution of equation

∂V
∂t − dV∆V = f̃2 (S ,V, I,R) ,
∂V
∂n = 0,
V(x, 0) = 0.

If V is the solution of the equation 
∂V
∂t − dV∆V = f2 (S ,V, I,R) ,
∂V
∂n = 0,
V(x, 0) = V0(x) > 0.

then by using [61, Theorem 2.2.1], we get V(x, t) > 0. At this time, S and V are just the solutions of
the first and the second equations system (2.2). Then for the third and the forth equations of system
(2.2), we know that

∂ f3
∂R =

{
ρ (x) , S ,V, I,R > 0,
0, others,

∂ f4
∂I =

{
φ (x) , S ,V, I,R > 0,
0, others,

therefore, ∂ f3
∂R ≥ 0, ∂ f4

∂I ≥ 0. By the comparison principle Lemma 2.1, we can obtain I(x, t) > 0 and
R(x, t) > 0. Because under the condition of S ,V, I,R > 0, we have F = G, therefore, u (t) is also the
solution of (2.1). �

From now on, for any given continuous function f on Ω, we denote

f ∗ = max
x∈Ω

f (x) and f∗ = min
x∈Ω

f (x) .

In the following, we need to give the Gronwall type differential inequality. Moreover, we do not
make assumptions about the positivity of all the functions that appear in the lemma. This lemma will
play an important role in the proof of the following lemmas and theorems.
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Lemma 2.3. u (t) , c (t) , h (t) are three real functions defined on [a,T ), u (t) is absolutely continuous
on [a,T ), c (t) is integrable on [a,T ). If the following inequality holds,

d
dt

u (t) + c (t) u (t) ≤ h (t) , a.e. t ∈ [a,T ) , (2.4)

then

u (t) ≤ e−
∫ t

a c(τ)dτu (a) +

∫ t

a
e−

∫ t
s c(τ)dτh (s) ds.

Theorem 2.4. Assume that (S (x, t),V(x, t), I(x, t),R(x, t)) be a solution of system (2.1), and
S (x, t),V(x, t), I(x, t),R(x, t) ∈ C(Ω × (0,T ]) ∩ C2,1(Ω × (0,T ]) where T is the maximal exist-
ing time. If S (x, 0) > 0,V(x, 0) > 0, I(x, 0) > 0,R(x, 0) > 0 for x ∈ Ω, then the solution
(S (x, t),V(x, t), I(x, t),R(x, t)) uniformly bounded on Ω.

Proof. We consider the following total population at time t. Define

U (t) =

∫
Ω

[S (x, t) + V(x, t) + I (x, t) + R (x, t)] dx.

From system (2.1), it is easy to see that

dU (t)
dt

=

∫
Ω

[
∂

∂t
S (x, t) +

∂

∂t
V(x, t) +

∂

∂t
I (x, t) +

∂

∂t
R (x, t)

]
dx

=

∫
Ω

{dS ∆S + dV∆V + dI∆I + dR∆R + Λ (x) − µ (x) S

−µ (x) V −
[
µ (x) + η1 (x)

]
I −

[
µ (x) + η2 (x)

]
R
}
dx

≤dS

∫
Ω

∆S dx + dV

∫
Ω

∆Vdx + dI

∫
Ω

∆Idx + dR

∫
Ω

∆Rdx

+

∫
Ω

{Λ∗ − µ∗ [S + V + I + R]} dx

=dS

∫
∂Ω

∂S
∂n

ds + dV

∫
∂Ω

∂V
∂n

ds + dI

∫
∂Ω

∂I
∂n

ds + dR

∫
∂Ω

∂R
∂n

ds

+ Λ∗ |Ω| − µ∗U (t)

=Λ∗ |Ω| − µ∗U (t) .

By Lemma 2.3, we can obtain that

U (t) ≤ U (0) e−µ∗t +
Λ∗ |Ω|

µ∗

(
1 − e−µ∗t

)
.

So U(t) ≤ max
{
U(0), Λ∗ |Ω|

µ∗

}
, where

U(0) =

∫
Ω

[S (x, 0) + V (x, 0) + I (x, 0) + R (x, 0)] dx

≤

∫
Ω

‖S (x, 0) + V (x, 0) + I(x, 0) + R(x, 0)‖∞ dx
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= ‖S (x, 0) + V (x, 0) + I(x, 0) + R(x, 0)‖∞ |Ω| .

This shows that U(t) =
∫

Ω
(S + V + I + R) dx is bounded. By Theorem 2.2, we obtain that

‖S + V + I + R‖L1(Ω) =

∫
Ω

|S + V + I + R| (x, t) dx

=

∫
Ω

(S + V + I + R) (x, t) dx

≤max
{
‖S (x, 0) + V (x, 0) + I(x, 0) + R(x, 0)‖∞ |Ω| ,

Λ∗ |Ω|

µ∗

}
.

We denote that K = max
{
‖S (x, 0) + V (x, 0) + I(x, 0) + R(x, 0)‖∞ |Ω| ,

Λ∗ |Ω|

µ∗

}
, then we know∫

Ω

(S + V + I + R)dx ≤ K.

In view of [62, Lemma 2.1], there exists a positive constant K∗ depending on K such that

‖S + V + I + R‖L∞(Ω) ≤ K∗.

Thus, we can obtain that S (x, t),V(x, t), I(x, t),R(x, t) are uniformly bounded on Ω. This implies the
boundedness of the solution of system (2.1). �

By [60, Corollary 11.3.2] we can deduce that the saturated solution u (t) =

(S (x, t),V(x, t), I(x, t),R(x, t)) is either global or lim
t→+∞

‖u(t)‖Y = +∞. From Theorem 2.4 we
know that u (t) is bounded, hence, u (t) is a global solution.

3. Threshold dynamics of the reaction-diffusion S VIR epidemic model with relapse in
heterogeneous environment

In this section, we will analyze the qualitative behavior of system (2.1). It is clearly seen that
system (2.1) admits a disease-free equilibrium E0 (x) = (S 0 (x) ,V0 (x) , 0, 0), then we prove that the
existence of principal eigenvalues of system (2.1). Linearizing the second and the third equations of
(2.1) at disease-free equilibrium, we get

∂I
∂t = dI∆I +

[
β1 (x) + β2 (x)

]
I + ρ (x) R −

[
µ (x) + η1 (x) + φ (x)

]
I, x ∈ Ω, t > 0,

∂R
∂t = dR∆R + φ (x) I −

[
ρ (x) + µ (x) + η2 (x)

]
R, x ∈ Ω, t > 0,

∂I
∂n = ∂R

∂n = 0, x ∈ ∂Ω, t > 0.

(3.1)

Let I = eλtϕ (x) ,R = eλtψ (x), equations (3.1) can be rewritten as
dI∆ϕ (x) +

[
β1 (x) + β2 (x) − (µ (x) + η1 (x) + φ (x))

]
ϕ (x) + ρ (x)ψ (x) = λϕ (x) , x ∈ Ω,

dR∆ψ (x) + φ (x)ϕ (x) −
[
ρ (x) + µ (x) + η2 (x)

]
ψ (x) = λψ (x) , x ∈ Ω,

∂ϕ

∂n =
∂ψ

∂n = 0, x ∈ ∂Ω.

(3.2)
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Denote Φ (x) = (ϕ (x) , ψ (x))T ,D =

[
dI 0
0 dR

]
and

M (x) =
(
mi j (x)

)
=

[
β1 (x) + β2 (x) − (µ (x) + η1 (x) + φ (x)) ρ (x)
φ (x) −

[
ρ (x) + µ (x) + η2 (x)

] ]
,

where mi j (x) ≥ 0, i , j, x ∈ Ω. Therefore, equations (3.2) can be rewritten asλΦ (x) = D∆Φ (x) + M (x) Φ (x) , x ∈ Ω,
∂Φ
∂n = 0, x ∈ ∂Ω

(3.3)

By [59, Theorem 7.6.1], we can obtain that there exists a real eigenvalue λ∗ of Eq (3.3) and a corre-
sponding eigenvector Φ∗ (x) satisfying Φ∗ (x) >> 0 for all x ∈ Ω in the case of Neumann boundary
conditions.

3.1. Long-term dynamics of the reaction-diffusion S VIR epidemic model

Before discussing the global dynamics of the reaction-diffusion S VIR model with relapse and spa-
tial heterogeneous in detail, we need to recall some concept and existing results of exponential attractor
and measure of noncompactness.

Let X be a Banach space with the decomposition

X = X1 ⊕ X2; dimX1 < ∞

and denote orthogonal projector by P : X → X1 and (I − P) : X → X2. In addition, let {Q (t)}t≥0

be a continuous semigroup on X. The following Condition (C*) introduced in [53] is an important
condition for verifying the global exponential attraction.

Condition (C*): For any bounded set B ⊂ X there exist positive constants tB,C and α such that for
any ε > 0 there exists a finite dimensional subspace X1 ⊂ X satisfies

{‖PQ (t) B‖}t≥tB is bounded,

‖(I − P) Q (t) B‖ < Ce−αt + ε for t ≥ tB,

where P : X→ X1 is a orthogonal projector.
In the following, we denote that H = L2 (Ω)∩C2,1 (Ω), H1= H1

0 (Ω)∩C2,1 (Ω) ,H4 = H ×H ×H ×H
and H4

1 = H1×H1×H1×H1. Note that H4 and H4
1 are Banach spaces equipped with norm∥∥∥(S ,V, I,R)T

∥∥∥
H4 := max {‖S ‖H , ‖V‖H , ‖I‖H , ‖R‖H} .

and ∥∥∥(S ,V, I,R)T
∥∥∥

H4
1

:= max
{
‖S ‖H1 , ‖V‖H1 , ‖I‖H1 , ‖R‖H1

}
.

Definition 3.1. ( [49, Definition A.2.1]) A mapping L +G : H1 → H is called a gradient-type operator
if there exists a C1 functional F : H1→ R1 and for some constant C > 0 such that DF (u) ⊂ H for
every u ∈ Hβ for some β ≤ 1, and

〈DF (u) , Lu + G (u)〉H ≤ −C1 ‖DF (u)‖2H , ∀u ∈ H1,

DF (u0) = 0⇔ Lu0 + G (u0) = 0.

In this case, F is called the energy functional of L + G.
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Theorem 3.2. System (2.1) exists a global exponential attract set A∗, it exponential attracts any
bounded set in H4.

Proof. It is known by the existence of the global solution that if ∀ϕ = u (0) =

(S 0 (x) ,V0 (x) , I0 (x) ,R0 (x))T
∈ H4

1, then system (2.1) has a global solution u = (S ,V, I,R)T
∈

C0
(
[0,∞) ,H4

)
. It means that system (2.1) generates a operator semigroup Q (t) =

(Q1 (t) ,Q2 (t) ,Q3 (t) ,Q4 (t))T and Q (t)ϕ = u (t, ϕ).
We first prove that the operator semigroup Q (t) has an absorbing set BR̂ ⊂ H4. It follows from the

inner product of the first equation of system (2.1) in H with S , we have that〈
dS ∆S + Λ (x) − β1 (x)

S I
S + I

−
[
µ (x) + α (x)

]
S , S

〉
H

=dS

∫
Ω

S ∆S dx +

∫
Ω

Λ (x) S dx −
∫

Ω

β1 (x)
S 2I

S + I
dx −

∫
Ω

[
µ (x) + α (x)

]
S 2dx

≤ − dS ‖S ‖2H 1
2

+

∫
Ω

Λ (x) S dx

≤ − dS ‖S ‖2H 1
2

+ Λ∗
∫

Ω

S dx,

where H 1
2

is the fractional power subspace generated by the sectorial operator L. From Theorem 2.2
and Theorem 2.4, we can obtain that S is positive and bounded. Hence, there exists a C1 > 0 such that

Λ∗
∫

Ω

S dx ≤ C1.

Since H 1
2
↪→ H, so there exists a C > 0, such that

‖S ‖H 1
2
≥ C ‖S ‖H , ∀S ∈ H 1

2
.

As we know that
1
2

d
dt
〈S , S 〉H = 〈S t, S 〉H ,

hence,
1
2

d
dt
‖S ‖2H ≤ −dS C2 ‖S ‖2H + C1,

By Lemma 2.3, we obtain that

‖S ‖2H ≤ e−γ1t ‖S 0 (x)‖2H +
2C1

γ1

(
1 − e−γ1t) ,

where γ1 = 2dS C2. It follows from the inner product of the second equation of system (2.1) in H with
V , we have that 〈

dV∆V + α (x) S − β2 (x)
VI

V + I
− µ (x) V,V

〉
H

=dV

∫
Ω

V∆Vdx +

∫
Ω

α (x) S Vdx −
∫

Ω

β2 (x)
V2I

V + I
dx −

∫
Ω

µ (x) V2dx
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≤ − dV ‖V‖2H 1
2

+ α∗
∫

Ω

S Vdx,

From Theorem 2.2 and Theorem 2.4, we can obtain that S ,V are positive and bounded. Hence, there
exists a C2 > 0 such that

α∗
∫

Ω

S Vdx ≤ C2.

Since H 1
2
↪→ H, so there exists a C > 0, such that

‖V‖H 1
2
≥ C ‖V‖H , ∀V ∈ H 1

2
.

Hence,
1
2

d
dt
‖V‖2H ≤ −dVC2 ‖V‖2H + C2,

By Lemma 2.3, we obtain that

‖V‖2H ≤ e−γ2t ‖V0 (x)‖2H +
2C2

γ2

(
1 − e−γ2t) ,

where γ2 = 2dVC2. It follows from the inner product of the third equation of system (2.1) in H with I,
we have that 〈

dI∆I + β1 (x)
S I

S + I
+ β2 (x)

VI
V + I

+ ρ (x) R −
[
µ (x) + η1 (x) + φ (x)

]
I, I

〉
H

=dI

∫
Ω

I∆Idx +

∫
Ω

β1 (x)
S I2

S + I
dx +

∫
Ω

β2 (x)
VI2

V + I
dx +

∫
Ω

ρ (x) IRdx

−

∫
Ω

[
µ (x) + η1 (x) + φ (x)

]
I2dx

≤ − dI ‖I‖2H 1
2

+

∫
Ω

β1 (x)
S I2

S + I
dx +

∫
Ω

β2 (x)
VI2

V + I
dx +

∫
Ω

ρ (x) IRdx

≤ − dI ‖I‖2H 1
2

+
(
β∗1 + β∗2

) ∫
Ω

I2dx + ρ∗
∫

Ω

IRdx,

From Theorem 2.2 and Theorem 2.4, we can obtain that I,R are positive and bounded. Hence, there
exists a C3 > 0 such that (

β∗1 + β∗2
) ∫

Ω

I2dx + ρ∗
∫

Ω

IRdx ≤ C35.

Since H 1
2
↪→ H, so there exists a C > 0, such that

‖I‖H 1
2
≥ C ‖I‖H , ∀I ∈ H 1

2
.

Hence,
1
2

d
dt
‖I‖2H ≤ −dIC2 ‖I‖2H + C3,

By Lemma 2.3, we obtain that

‖I‖2H ≤ e−γ3t ‖I0 (x)‖2H +
2C3

γ3

(
1 − e−γ3t) ,
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where γ3 = 2dIC2. It follows from the inner product of the forth equation of system (2.1) in H with R,
we have that 〈

dR∆R + φ (x) I −
[
ρ (x) + µ (x) + η2 (x)

]
R,R

〉
H

=dR

∫
Ω

R∆Rdx +

∫
Ω

φ (x) IRdx −
∫

Ω

[
ρ (x) + µ (x) + η2 (x)

]
R2dx

≤ − dR ‖R‖2H 1
2

+ φ∗
∫

Ω

IRdx.

From Theorem 2.2 and Theorem 2.4, we can obtain that there exists a C4 > 0 such that

φ∗
∫

Ω

IRdx ≤ C4.

Since H 1
2
↪→ H, so there exists a C > 0, such that

‖R‖H 1
2
≥ C ‖R‖H , ∀R ∈ H 1

2
.

Hence,
1
2

d
dt
‖R‖2H ≤ −dRC2 ‖R‖2H + C4,

By Lemma 2.3, we obtain that

‖R‖2H ≤ e−γ4t ‖R0 (x)‖2H +
2C4

γ4

(
1 − e−γ4t) ,

where γ4 = 2dRC2. Therefore, it implies if R̂2 > max
{

2C1
γ1
, 2C2
γ2
, 2C3
γ3
, 2C4
γ4

}
, then there exists a t0 > 0, such

that for any t ≥ t0, there has u (t, ϕ) ⊂ BR̂. Thence, BR̂ ⊂ H4 is the absorbing set.
Next we verify Condition (C*). Since L1 = dS ∆ : H1 → H is a symmetrical sectorial operator, so

the eigenvectors
{
e j

}
j∈N

corresponding to the eigenvalues
{
λS , j

}
j∈N

are the complete orthonormal basis
of H, that is for any S ∈ H,

S =

∞∑
k=1

xkek, ‖S ‖2H =

∞∑
k=1

x2
k .

In addition, ∀NS > 0,∃KS ≥ 1 such that −NS ≥ λS , j,∀ j ≥ KS + 1.
Let

HKS
1 = span

{
e1, e2, ..., eKS

}
and HKS

2 =
(
HKS

1

)⊥
.

Then, each S ∈ H can be decomposed as

S = PS + (I − P) S := S 1 + S 2,

S 1 =

KS∑
i=1

xiei ∈ HKS
1 , S 2 =

∞∑
j=KS +1

x je j ∈ HKS
2 ,

where P : H → HKS
1 is the orthogonal projector. There are similar decomposition forms for each

V, I,R ∈ H.
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Since Q (t) has a bounded absorbing set BR̂ ⊂ H4, then for any bounded set B ⊂

H4, there exists a tB > 0, without loss of generality, we assume that tB > t0 such that
(S (t, S 0 (x)) ,V (t,V0 (x)) , I (t, I0 (x)) ,R (t,R0 (x))) ⊂ BR̂, where

S (t, S 0 (x)) = Q1 (t) S 0 (x) , V (t,V0 (x)) = Q2 (t) V0 (x) ,
I (t, I0 (x)) = Q3 (t) I0 (x) , R (t,R0 (x)) = Q4 (t) R0 (x) ,

∀ (S 0 (x) ,V0 (x) , I0 (x) ,R0 (x)) ∈ B,t ≥ tB, then

‖S (t, S 0 (x))‖2H = ‖Q1 (t) S 0 (x)‖2H ≤ R̂2,∀t ≥ tB,

‖V (t,V0 (x))‖2H = ‖Q2 (t) V0 (x)‖2H ≤ R̂2,∀t ≥ tB,

‖I (t, I0 (x))‖2H = ‖Q3 (t) I0 (x)‖2H ≤ R̂2,∀t ≥ tB,

‖R (t,R0 (x))‖2H = ‖QR (t) R0 (x)‖2H ≤ R̂2,∀t ≥ tB.

Hence,
‖PQ (t)ϕ‖H4 ≤ R̂, ∀t ≥ tB.

It means that {‖PQ (t) B‖H4}t≥tB is bounded.
It follows from the inner product of the first equation of system (2.1) in H with S 2, we have that

1
2

d
dt
〈S , S 2〉H = 〈S t, S 2〉H

=

〈
dS ∆S + Λ (x) − β1 (x)

S I
S + I

−
[
µ (x) + α (x)

]
S , S 2

〉
H

= 〈dS ∆S , S 2〉H +

〈
Λ (x) − β1 (x)

S I
S + I

−
[
µ (x) + α (x)

]
S , S 2

〉
H

= 〈dS ∆S 1 + dS ∆S 2, S 2〉H +

〈
Λ (x) − β1 (x)

S I
S + I

−
[
µ (x) + α (x)

]
S , S 2

〉
H

≤ 〈dS ∆S 2, S 2〉H +

〈
Λ (x) − β1 (x)

S I
S + I

−
[
µ (x) + α (x)

]
S , S 2

〉
H
,

where

〈dS ∆S 2, S 2〉H = − dS ‖S 2‖
2
H 1

2

=dS

∞∑
j=KS +1

λS , jx2
j

≤ − dS NS

∞∑
j=KS +1

x2
j = −dS NS ‖S 2‖

2
H .

Since t ≥ tB, ‖S ‖H ≤ R̂. Then〈
Λ (x) − β1 (x)

S I
S + I

−
[
µ (x) + α (x)

]
S , S 2

〉
H

≤

∥∥∥∥∥Λ (x) − β1 (x)
S I

S + I
−

[
µ (x) + α (x)

]
S
∥∥∥∥∥

H
‖S 2‖H

≤
(
‖Λ (x)‖H + ‖β1 (x) S ‖H +

∥∥∥[µ (x) + α (x)
]
S
∥∥∥

H

)
R̂
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≤
[
Λ∗ +

(
β∗1 + µ∗ + α∗

)
R̂
]

R̂ := CS ,R̂.

Hence,
d
dt
‖S 2‖

2
H ≤ −2dS NS ‖u2‖

2
H + 2CS ,R̂.

By Lemma 2.3,

‖S 2‖
2
H ≤ e−2dS NS (t−tB)

‖S 2 (tB)‖2H +
CS ,R̂

dS NS

(
1 − e−2dS NS (t−tB)

)
, ∀t ≥ tB

and NS > 0 is arbitrary. Similarly,

‖V2‖
2
H ≤ e−2dV NV (t−tB)

‖V2 (tB)‖2H +
CV,R̂

dV NV

(
1 − e−2dV NV (t−tB)

)
, ∀t ≥ tB,

‖I2‖
2
H ≤ e−2dI NI (t−tB)

‖I2 (tB)‖2H +
CI,R̂

dINI

(
1 − e−2dI NI (t−tB)

)
, ∀t ≥ tB,

‖R2‖
2
H ≤ e−2dRNR(t−tB)

‖R2 (tB)‖2H +
CR,R̂

dRNR

(
1 − e−2dRNR(t−tB)

)
, ∀t ≥ tB

and NV ,NI ,NR > 0 are arbitrary. Therefore, we deduce that the Condition (C*) holds. By [53,
Theorem 4.1], we obtain that system (2.1) has a global exponential attract setA∗. �

After getting the global exponential attract set, we discuss the stability and uniform persistence of
the epidemic disease.

Theorem 3.3. The following statements are valid.

(1) If λ∗ < 0, then

lim
t→∞

S (x, t) = S 0 (x) , lim
t→∞

V (x, t) = V0 (x) , lim
t→∞

I (x, t) = 0, lim
t→∞

R (x, t) = 0

in H, and hence, the disease-free equilibrium is globally asymptotically stable.
(2) If λ∗ > 0, then there exists a function γ (x) > 0 independent of the initial data, such that any

solution (S ,V, I,R) satisfies

lim inf
t→∞

S (x, t) ≥ γ (x) , lim inf
t→∞

V (x, t) ≥ γ (x) ,

lim inf
t→∞

I (x, t) ≥ γ (x) , lim inf
t→∞

R (x, t) ≥ γ (x)

for x ∈ Ω, and hence, the disease persists uniformly.

Proof. (1) Suppose λ∗ < 0. Using the comparison principle, we can show that I (x, t)→ 0,R (x, t)→
0 as t → ∞ for every x ∈ Ω. First, we observe from the system (2.1) that

∂I
∂t ≤ dI∆I +

{
β1 (x) + β2 (x) −

[
µ (x) + η1 (x) + φ (x)

]}
I + ρ (x) R,

x ∈ Ω, t > 0,
∂R
∂t ≤ dR∆R + φ (x) I −

[
ρ (x) + µ (x) + η2 (x)

]
R, x ∈ Ω, t > 0.
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Next, let us define
(
Ĩ (x, t) , R̃ (x, t)

)
=

(
Meλ

∗tϕ∗ (x) ,Meλ
∗tψ∗ (x)

)
where λ∗ < 0, ϕ∗ (x) >>

0, ψ∗ (x) >> 0 are the eigenvalue and eigenvectors in equations (3.2) and M is chosen so large that
I (x, 0) ≤ Ĩ (x, 0) ,R (x, 0) ≤ R̃ (x, 0) for every x ∈ Ω. It can be easily shown that

(
Ĩ (x, t) , R̃ (x, t)

)
satisfies 

∂Ĩ
∂t = dI∆Ĩ +

{
β1 (x) + β2 (x) −

[
µ (x) + η1 (x) + φ (x)

]}
Ĩ + ρ (x) R̃,

x ∈ Ω, t > 0,
∂R̃
∂t = dR∆R̃ + φ (x) Ĩ −

[
ρ (x) + µ (x) + η2 (x)

]
R̃, x ∈ Ω, t > 0,

∂Ĩ
∂n = ∂R̃

∂n = 0, x ∈ ∂Ω.

By the comparison principle Lemma 2.1, I (x, t) ≤ Ĩ (x, t) ,R (x, t) ≤ R̃ (x, t) for every x ∈ Ω

and t ≥ 0. Since Ĩ (x, t) → 0, R̃ (x, t) → 0 as t → ∞ for every x ∈ Ω, we also have that
I (x, t)→ 0,R (x, t)→ 0 as t → ∞ for every x ∈ Ω.
Next we claim S (·, t) → S 0 (x) uniformly on as t → ∞. Given any small constant ε > 0, there
exists a large time T > 0 such that 0 ≤ I(x, t) ≤ ε for all x ∈ Ω, t ≥ T . From the first equation in
system (2.1), it is easily observed that S is a super-solution to

∂w
∂t − dS ∆w = Λ (x) − β∗1ε −

[
µ (x) + α (x)

]
w, x ∈ Ω, t ≥ T,

∂w
∂n = 0, x ∈ ∂Ω,

w (x,T ) = S (x,T ) , x ∈ Ω

(3.4)

and a sub-solution to 
∂v
∂t − dS ∆v = Λ (x) −

[
µ (x) + α (x)

]
v, x ∈ Ω, t ≥ T,

∂v
∂n = 0, x ∈ ∂Ω,

v (x,T ) = S (x,T ) , x ∈ Ω.

(3.5)

Denote by w and v the solution of system (3.4) and system (3.5), respectively. The parabolic
comparison principle gives

w (x, t) ≤ S (x, t) ≤ v (x, t) for all x ∈ Ω, t ≥ T .

For system (3.4), we can verify that〈
dS ∆w + Λ (x) − β∗1ε −

[
µ (x) + α (x)

]
w,w

〉
H

=dS

∫
Ω

w∆wdx +

∫
Ω

Λ (x) wdx −
∫

Ω

β∗1εwdx −
∫

Ω

[
µ (x) + α (x)

]
w2dx

≤ − dS ‖w‖2H 1
2

+ Λ∗
∫

Ω

wdx.

It is similar to the proof of Theorem 3.2, we can obtain that system (3.4) exists a global expo-
nential attract set Aw. In addition, system (3.4) has a variational structure, the corresponding
functional of the variational structure is

F (w) =

∫
Ω

[
dS

2
|∇w|2 − g (x,w)

]
dx,
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where
g (x,w) =

∫ w

0

[
Λ (x) − β∗1ε −

[
µ (x) + α (x)

]
w
]
dw.

Then

〈DF (w) , Lw + G (w)〉H
=

〈
DF (w) , dS ∆w + Λ (x) − β∗1ε −

[
µ (x) + α (x)

]
w
〉

H

≤ −C ‖DF (w)‖2H ,

where C > 0, so L + G is a gradient type operator. From [49, Theorem A.2.2], we can prove that

lim
t→∞

w (x, t) = S 0
− (ε, x) in H,

where S 0
− (ε, x) is the unique positive steady state of problems (3.4). Similarly, for system (3.5),

we can obtain
lim
t→∞

v (x, t) = S 0 (x) in H,

where S 0 (x) is the unique positive steady state of problems (3.5). Furthermore, due to the arbi-
trariness of ε, it is checked that

S 0
− (ε, x)→ S 0 (x) in H, as ε→ 0.

Thus, our analysis implies that S (·, t) → S 0 (x) uniformly on as t → ∞. Similarly, we can also
prove that V (·, t)→ V0 (x) uniformly on as t → ∞.

(2) Since λ∗ > 0. It is observed that the solution of
∂S −
∂t − dS ∆S − = Λ (x) −

[
β1 (x) + µ (x) + α (x)

]
S −, x ∈ Ω, t ≥ T,

∂S −
∂n = 0, x ∈ ∂Ω,

S − (x,T ) = S (x,T ) , x ∈ Ω

(3.6)

is a sub-solution of the first equation in (2.1). Similar to the proof of conclusion (1), system (3.6)
is also a gradient type equation. From [49, Theorem A.2.2], we can prove that

lim
t→∞

S − (x, t) = S ∗− (x) in H,

By weak maximum principle, we know that S ∗− (x) > 0 for all x ∈ Ω. Similarly, we can also prove
that V∗− (x) > 0 for all x ∈ Ω. Next, let us define (I− (x, t) ,R− (x, t)) = (εϕ∗ (x) , εψ∗ (x)) where
ϕ∗ (x) >> 0, ψ∗ (x) >> 0 are the eigenvalue and eigenvectors in equations (3.2) and ε > 0 is a
sufficiently small constant. Substituting εϕ∗, εψ∗ into the third and the forth equations of system
(2.1), we know

εdI∆ϕ
∗ + β1 (x)

S εϕ∗

S + εϕ∗
+ β2 (x)

V∗εϕ∗

V∗ + εϕ∗
+ ερ (x)ψ∗

− ε
[
µ (x) + η1 (x) + φ (x)

]
ϕ∗ −

∂ (εϕ∗)
∂t

=εdI∆ϕ
∗ + β1 (x)

S εϕ∗

S + εϕ∗
+ β2 (x)

V∗εϕ∗

V∗ + εϕ∗
+ ερ (x)ψ∗
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− ε
[
µ (x) + η1 (x) + φ (x)

]
ϕ∗ + εβ1 (x)ϕ∗ − εβ1 (x)ϕ∗ + εβ2 (x)ϕ∗ − εβ2 (x)ϕ∗

=ε
{
dI∆ϕ

∗ +
[
β1 (x) + β2 (x)

]
ϕ∗ −

[
µ (x) + η1 (x) + φ (x)

]
ϕ∗ + ρ (x)ψ∗

}
+ εβ1 (x)ϕ∗

[
S ∗

S ∗ + εϕ∗
− 1

]
+ εβ2 (x)ϕ∗

[
V∗

V∗ + εϕ∗
− 1

]
=εϕ∗

[
λ∗ + β1 (x)

(
S ∗

S ∗ + εϕ∗
− 1

)
+ β2 (x)

(
V∗

V∗ + εϕ∗
− 1

)]
> 0

and

εdR∆ψ∗ + εφ (x)ϕ∗ − ε
[
ρ (x) + µ (x) + η2 (x)

]
ψ∗ −

∂ (εψ∗)
∂t

=ε
[
dR∆ψ∗ + φ (x)ϕ∗ −

[
ρ (x) + µ (x) + η2 (x)

]
ψ∗

]
=ελ∗ψ∗ > 0.

Therefore, (εϕ∗, εψ∗) is the sub-solution of the third and the forth equations of system (2.1). We
choose 0 < γ (x) < min

{
S ∗− (x) ,V∗− (x) , εϕ∗ (x) , εψ∗ (x)

}
, we can obtain that

lim inf
t→∞

S (x, t) ≥ γ (x) , lim inf
t→∞

V (x, t) ≥ γ (x) ,

lim inf
t→∞

I (x, t) ≥ γ (x) , lim inf
t→∞

R (x, t) ≥ γ (x)

for x ∈ Ω, then it shows that the disease persists.
�

The synthesis of Theorem 3.2 and Theorem 3.3 can give the following results: if λ∗ > 0, then the
positive solution of system (2.1) is globally exponential attractive and the attraction domain is A∗.
From an epidemiological point of view, the disease persists in this situation. The epidemic is globally
asymptotically stable or attracted by the global exponential attract set.

4. Numerical simulation

In this section, we hope to select a specific epidemic disease with some more practical and more
definitive data to simulate the stability of our S VIR model with relapse. As we know, HBV epidemic
model is a kind of infectious disease model with relapse and vaccination is the most effective way to
prevent hepatitis. WHO also releases global hepatitis report every year. From “Global Hepatitis Report,
2017” [63], we know that in worldwide, approximately 240 million people have chronic hepatitis B
virus infection. Without an expanded and accelerated response, the number of people living with
hepatitis B virus is projected to remain at the current, high levels for the next 40-50 years, with a
cumulative 20 million deaths occurring between 2015 and 2030. A stepped-up global response can
no longer be delayed. From World Health Statistics [64], we can find that the data of global natural
mortality, the male natural mortality rate is 19% and female natural mortality rate is 12.9% respectively.
After a simple calculation we can get the natural mortality rate of the global is 15.95%. In conclusion,
we can get the data in Table 2.

According to the data in Table 2, we will first simulate the stability of the constant coefficient model
about system (2.1) when Λ, β1, β2, α, ρ, φ, µ, η1 and η2 are assumed to be positive constants. Then we
can obtain the stability of disease-free equilibrium of constant coefficient model (Figure 2).
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Table 2. The parameters description of HBV model.

Parameter Description Data estimated Data sources
Λ Recruitment scale of the population. 300year−1 [63]
β1 Estimated HBV prevalence (Transmission rate) with-

out vaccination.
0.062year−1 [63]

β2 Estimated HBV prevalence (Transmission rate) with
vaccination.

0.035year−1 [63]

α vaccinate rate. 0.39year−1 [63]
ρ Relapse rate. 0.3year−1 Estimate
φ The per-capita recovery (treatment) rate. 0.08year−1 Estimate
µ Natural mortality rate. 0.1595year−1 [64]
η1 The disease-related death rate of the HBV. 0.2year−1 [63]
η2 The disease-related death rate of being treated. 0.1year−1 Estimate
dS The diffusion coefficient of susceptible individuals. 2year−1 Estimate
dV The diffusion coefficient of vaccinated individuals. 2.5year−1 Estimate
dI The diffusion coefficient of infected individuals. 1.5year−1 Estimate
dR The diffusion coefficient of restored individuals. 5year−1 Estimate

Figure 2. The global stability of disease-free equilibrium of constant coefficient model.

From the numerical simulation, it can be seen that although hepatitis B is still the primary disease
endangering human health, however, the global hepatitis B disease has shown a trend of extinction.

In this article, we discuss the dynamics of the epidemic model with a spatial heterogeneous envi-
ronment, so we then simulate the stability and persistence of the spatial system (2.1). From the system
(2.1) we can see that all the parameters are x− related functions, so we choose different functions will
directly lead to different stability results. We choose β1 (x) = 1

1+x , µ (x) = e−2x, φ (x) = e−x, ρ (x) =

0.4 sin x, η1 (x) = 0.2, η2 (x) = 0.1 and select other parameters from Table 2. We can show the global
stability of non-constant disease-free equilibrium E0 (x) of system (2.1) (Figure 3).

We choose µ (x) = e−x, φ (x) = 1
1+x , β1 (x) = 0.62, β2 (x) = 0.33e−x and select other parameters from

Table 2. We can obtain that the spatial heterogeneity epidemic is global stability (Figure 4).

We choose µ (x) = e−x, φ (x) = 1
1+x , ρ (x) = 0.4 sin x, β1 (x) = 0.62, β2 (x) = 0.33e−x and select

other parameters from Table 2. We can clearly see that the spatial heterogeneity epidemic is persists
uniformly (Figure 5).
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Figure 3. The global stability of non-constant disease-free equilibrium E0 (x) of system (2.1)
when β1 (x) = 1

1+x , µ (x) = e−2x, φ (x) = e−x, ρ (x) = 0.4 sin x, η1 (x) = 0.2, η2 (x) = 0.1.

Figure 4. The global stability of endemic of spatial heterogeneity system (2.1) when µ (x) =

e−x, φ (x) = 1
1+x , β1 (x) = 0.62, β2 (x) = 0.33e−x.

Figure 5. The spatial heterogeneity epidemic is persists uniformly when µ (x) = e−x, φ (x) =
1

1+x , ρ (x) = 0.4 sin x, β1 (x) = 0.62, β2 (x) = 0.33e−x.

In Figure 5, we can find that the image of the solution is turbulent, and the amplitude decreases
with time. Finally, the image of the turmoil is controlled in range. And this range is the scope of the
global exponential attract set. From the comparison of Figure 4 and Figure 5, we can find that spatial
heterogeneity has a great impact on the spread of disease, and different parameters lead to changes in
long-term dynamic behavior.

From all above simulation we can clearly see that the disease-free equilibrium of the constant-
coefficient model is global asymptotic stability. For spatial heterogeneous models, the stability of the
model is dependent on the spatial parameters and diffusion coefficients. In addition, we can also see
that the image whether rising or falling is very fast in the initial stage, which also confirms that the
solutions of system (2.1) are global exponential attract.

5. Conclusions and discussion

We have formulated a reaction-diffusion S VIR model with relapse in the spatially heterogeneous
environment. We first prove the positivity of solution by using the comparison principle of monotone
nonlinear reaction-diffusion dynamical system and comparison principle of parabolic equation. Most
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of the models in the previous work are non-coupled models or systems that contain only one diffusion
equation. The usual way to study these two problems is to study one of the equations in the model
first (such as eigenvalue problems or the existence of solutions), and then to get the properties of
several other equations. However, the above methods do not applicable to the coupling system of the
four diffusion equations we have established in this paper. In addition, we prove that the disease-free
equilibrium is globally asymptotically stable and the endemic is persisting uniformly by the global
exponential attract set theory. From our proof, we can find that λ∗ has threshold characteristics. From
the numerical simulation we can find the effect of spatial heterogeneity on the diffusion of disease is
very large. Simulation results show that the best way to eliminate the disease is to control the contact
rate. Reduce the relapse rate or increase the vaccination rate can make the disease tends to a stable
state. Choosing different spatial coefficients can produce a fundamental change of the global dynamics
of the system.
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