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Abstract: Brucellosis is one of the worlds major infectious and contagious bacterial disease. In order
to study different types of brucellosis transmission models among sheep, we propose a deterministic
model to investigate the transmission dynamics of brucellosis with the flock of sheep divided into basic
ewes and other sheep. The global dynamical behavior of this model is given: including the basic repro-
duction number, the existence and uniqueness of positive equilibrium, the global asymptotic stability
of the equilibrium. We prove the uniqueness of positive endemic equilibrium through using proof by
contradiction, and the global stability of endemic equilibrium by using Lyapunov function. Especially,
we give the specific coefficients of global Lyapunov function, and show the calculation method of
these specific coefficients. By running numerical simulations for the cases with the basic reproduction
number to demonstrate the global stability of the equilibria and the unique endemic equilibrium, re-
spectively. By some sensitivity analysis of the basic reproduction number on parameters, we find that
vaccination rate of sheep and seropositive detection rate of recessive infected sheep are very important
factor for brucellosis.
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1. Introduction

Brucellosis is an infectious bacterial disease often spread via direct contact with infected animals or
contaminated animal products [1, 2]. Brucellosis can transmit to other animals through direct contacts
with infected animals or indirect transmission by brucella in the environment. The disease primarily
affects cattle, sheep and dogs. In the real world, the infected sheep remain the main source of brucel-
losis infection, and the basic ewes and other sheep (which includes stock ram and fattening sheep) are
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often mixed feeding together, therefore there must exist the mixed cross infection between other sheep
and basic ewes [3]. Brucellosis is prevalent for more than a century in many parts of the world, and
it is well controlled in most developed countries. However, more than 500,000 new cases are reported
each year around the world [4–7].

Mathematical modeling has the potential to analyze the mechanisms of transmission and the com-
plexity of epidemiological characteristics of infectious diseases [8]. In recent years, several mathe-
matical modeling studies have reported on the transmission of brucellosis [3, 9–19]. However, these
earlier models have mainly focused on the spread of brucellosis between sheep and human through
using the dynamic model. Only Li et al [3] proposed a deterministic multi-group model to study the
brucellosis transmission among sheep (which the flock of sheep were divided into basic ewes and other
sheep). However, they only gave the global stability of disease-free equilibrium and the existence the
endemic equilibrium, but the uniqueness and global stability of the endemic equilibrium were not
shown when the basic reproduction number is larger than 1. Multi-group model is a class of highly
heterogenous models with complex interactions among distinct groups, and the difficulty of global
dynamics of multi-group models lies in establishing uniqueness and global stability of endemic equi-
librium when basic reproduction number is larger than one [20]. In this paper, we want to study the
global dynamic behavior of multi-group type model for the transmission of brucellosis among sheep
which are absent from previous papers [3]. We prove the uniqueness of positive endemic equilibrium
through using proof by contradiction, and the global stability of endemic equilibrium by using Lya-
punov function. Especially, we give the specific coefficients of global Lyapunov function, and show
the calculation method of these specific coefficients. By running numerical simulations for the cases
with the basic reproduction number to demonstrate the global stability of the equilibria and the unique
endemic equilibrium, respectively. By some sensitivity analysis of the basic reproduction number on
parameters, we find that vaccination rate of sheep and seropositive detection rate of recessive infected
sheep are very important factor for brucellosis.

This paper is organized as follows. In Section 2, we present the dynamical model. And the mathe-
matical analysis including the uniqueness and global stability of positive endemic equilibrium will be
given in Section 3. In Section 4, some numerical simulations are given on the global stability of the
equilibria and the unique endemic equilibrium. Section 5 gives a discussion about main results.

2. The dynamic model

In previous paper [3], we proposed a multi-group model with cross infection between sheep and
human. In this model, S o(t), Eo(t), Io(t),Vo(t) and S f (t), E f (t), I f (t),V f (t) represent susceptible, reces-
sive infected, quarantined seropositive infected, vaccinated other sheep and basic ewes, respectively.
W(t) denotes the quantity of sheep brucella in the environment. S h(t), Ih(t),Yh(t) represent susceptible
individuals, acute infections, chronic infections, respectively. There are some assumptions on the dy-
namical transmission of brucellosis among sheep and from sheep to humans, which are demonstrated in
the flowchart (See Figure 1). The following ordinary differential equations can describe a multi-group
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brucellosis model with Figure 1:

dS o
dt = Ao − (βooEo + βo f E f + βoW)S o + λoVo − (γo + do)S o,

dEo
dt = (βooEo + βo f E f + βoW)S o − (co + do)Eo,

dIo
dt = coEo − (αo + do)Io,
dVo
dt = γoS o − (λo + do)Vo,

dS f

dt = A f − (β f f E f + β f oEo + β f W)S f + λ f V f − (γ f + d f )S f ,
dE f

dt = (β f f E f + β f oEo + β f W)S f − (c f + d f )E f ,
dI f

dt = c f E f − (α f + d f )I f ,
dV f

dt = γ f S f − (λ f + d f )V f ,
dW
dt = ko(Eo + Io) + k f (E f + I f ) − (δ + nτ)W,

dS h
dt = Ah − (βhoEo + βh f E f + βhW)S h − dhS h + pIh,

dIh
dt = (βhoEo + βh f E f + βhW)S h − (m + dh + p)Ih,
dYh
dt = mIh − dhYh.

(2.1)

Because the last three equations are independent of the first nine equations, we can only consider
the first nine equations. Rewrite system (2.1) for general form into the following model:

dS i
dt = Ai − (di + γi)S i + λiVi −

2∑
j=1
βi jS iE j − βiS iW,

dEi
dt =

2∑
j=1
βi jS iE j + βiS iW − (di + ci)Ei,

dIi
dt = ciEi − (di + αi)Ii,

dVi
dt = γiS i − (λi + di)Vi,

dW
dt =

2∑
i=1

ki(Ei + Ii) − δW.

i = 1, 2. (2.2)

Adding the first four equations of (2.2) gives

d(S i + Ei + Ii + Vi)
dt

≤ Ai − di(S i + Ei + Ii + Vi),

which implies that lim
t→∞

sup(S i + Ei + Ii + Vi) ≤ Ai
di

. It follows from the last equation of (2.2) that

lim
t→∞

sup W ≤

2∑
i=1

kiAi
di

δ
. Hence, the feasible region

X = {(S 1, E1, I1,V1, S 2, E2, I2,V2,W)|0 ≤ S i + Ei + Ii + Vi ≤
Ai

di
, 0 ≤ W ≤

2∑
i=1

kiAi
di

δ
, i = 1, 2.}

is positively invariant with respect to model (2.2). Model (2.2) always admits the disease-free equi-
librium P0 = (S 0

i , 0, 0,V
0
i , 0)i = 1, 2 in X, where S 0

i =
Ai(λi+di)

di(di+λi+γi)
,V0

i =
Aiγi

di(di+λi+γi)
, and P0 is the unique

equilibrium that lies on the boundary of X.
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Figure 1. Transmission diagram, where g(S o) = (βooEo +βo f E f +βoW)S o, g(S f ) = (β f f E f +

β f oEo + β f W)S f and g(S h) = (βhoEo + βh f E f + βhW)S h, respectively [3].

2.1. The basic reproduction number

According to the definition of Rc in [21–23] and the calculation of Ro in our previous paper [3], we
can obtain the basic reproduction number of model (2.2) is

R0 = ρ(FV−1) =
A11 + A22 +

√
(A11 − A22)2 + 4A12A21

2
,

where

A11 =
S 0

1

d1 + c1
(β11 +

β1k1(d1 + α1 + c1)
δ(d1 + α1)

), A12 =
S 0

1

d2 + c2
(β12 +

β1k2(d2 + α2 + c2)
δ(d2 + α2)

),

A21 =
S 0

2

d1 + c1
(β21 +

β2k1(d1 + α1 + c1)
δ(d1 + α1)

), A22 =
S 0

2

d2 + c2
(β22 +

β2k2(d2 + α2 + c2)
δ(d2 + α2)

),

S 0
1 =

A1(d1 + λ1)
d1(d1 + λ1 + γ1)

, S 0
2 =

A2(λ2 + d2)
d2(λ2 + d2 + γ2)

.
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3. Mathematical analysis

In our previous paper [3], for the global stability of disease-free equilibrium and the existence of
the positive endemic equilibrium of system (2.2), we have following theorems.

Theorem 3.1. If R0 ≤ 1, the disease-free equilibrium P0 of system (2.2) is globally asymptotically
stable in the region X.

Theorem 3.2. If R0 > 1, then system (2.2) admits at least one (componentwise) positive equilibrium,
and there is a positive constant ε such that every solution (S i(t), Ei(t), Ii(t),W(t)) of system (2.2) with
(S i(0), Ei(0), Ii(0),W(0)) ∈ Rn

+× Int R2n+1
+ satisfies

min{lim inf
t→∞

Ei(t), lim inf
t→∞

Ii(t), lim inf
t→∞

W(t)} ≥ ε, i = 1, 2, ..., n.

If R0 > 1, then it follows from Theorem 3.2 that system (2.2) is uniformly persistent, together with
the uniform boundedness of solutions of (2.2) in the interior of X, which implies that (2.2) admits at
least one endemic equilibrium in the interior of X.

3.1. The uniqueness of positive endemic equilibrium

Let P∗ = (S ∗i , E
∗
i , I
∗
i ,V

∗
i ,W

∗), i = 1, 2 be a positive equilibrium of system (2.2), we will show its
uniqueness in the interior of the feasible region X.

Theorem 3.3. System (2.2) only exists a unique positive endemic equilibrium in the region X when
R0 > 1.

Proof. For the positive equilibrium P∗ of system (2.2), we have the following equations:

Ai − (di + γi)S ∗i + λiV∗i −
2∑

j=1
βi jS ∗i E∗j − βiS ∗i W∗ = 0,

2∑
j=1
βi jS ∗i E∗j + βiS ∗i W∗ − (di + ci)E∗i = 0,

ciE∗i − (di + αi)I∗i = 0,
γiS ∗i − (λi + di)V∗i = 0,
2∑

i=1
ki(E∗i + I∗i ) − δW∗ = 0.

i = 1, 2.

It is easy to obtain that

V∗i =
γiS ∗i

di + λi
, di(S ∗i + V∗i ) = Ai − (di + ci)E∗i , I

∗
i =

ci

di + αi
E∗i ,W

∗ =

2∑
i=1

ki(ci+di+αi)
di+αi

E∗i

δ
,

S ∗i
2∑

j=1

βi jE∗j + βiS ∗i

2∑
i=1

ki(ci+di+αi)
di+αi

E∗i

δ
= (di + ci)E∗i , i = 1, 2.
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Hence, the positive equilibrium of system (2.2) is equivalent to the following system

Mi(Ai − niE∗i )
2∑

j=1

ξi jE∗j − niE∗i = 0, i = 1, 2. (3.1)

where

Mi =
di + λi

di(di + λi + γi)
, ξi j = βi j + βi

k j(c j + d j + α j)
δ(d j + α j)

, ni = di + ci.

Firstly, we prove that E∗ = e, e = (e1, e2) is the only positive solution of system (3.1). Assume that
E∗ = e and E∗ = k are two positive solutions of system (3.1), both nonzero. If e , k, then ei , ki for
some i (i=1,2). Assume without loss of generality that e1 > k1, and moreover that e1/k1 ≥ ei/ki for all
i (i=1,2). Since e and k are positive solutions of system (3.1), we substitute them into (3.1). It is easy
to obtain

M1(A1 − n1e1)
2∑

j=1

ξ1 je j − n1e1 = M1(A1 − n1k1)
2∑

j=1

ξ1 jk j − n1k1 = 0,

so

M1(A1 − n1e1)
2∑

j=1

ξ1 je j
k1

e1
− n1k1 = M1(A1 − n1k1)

2∑
j=1

ξ1 jk j − n1k1 = 0,

M1(A1 − n1e1)
2∑

j=1

ξ1 je j
k1

e1
= M1(A1 − n1k1)

2∑
j=1

ξ1 jk j.

But (ei/e1)k1 ≤ ki and M1(A1 − n1e1) < M1(A1 − n1k1); thus from the above equalities we get

M1(A1 − n1e1)
2∑

j=1

ξ1 je j
k1

e1
≤ M1(A1 − n1e1)

2∑
j=1

ξ1 jk j < M1(A1 − n1k1)
2∑

j=1

ξ1 jk j.

This is a contradiction, so there is only one positive solution Ei = e of system (3.1). So when R0 > 1,
system (2.2) only exists a positive equilibrium P∗. �

3.2. The global stability of positive endemic equilibrium

In this section, we will show the global asymptotic stability of endemic equilibrium P∗ of system
(2.2) in the interior of the feasible region X.

Theorem 3.4. Suppose that matrix [βi j]1≤i, j≤2 is irreducible. Then the endemic equilibrium P∗ of system
(2.2) is globally asymptotically stable in the region X when R0 > 1.

Proof. Let Li1 = S i − S ∗i − S ∗i ln S i
S ∗i

+ Vi − V∗i − V∗i ln Vi
V∗i

+ Ei − E∗i − E∗i ln Ei
E∗i

, Li2 = Ii − I∗i − I∗i ln Ii
I∗i

and
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L3 = W −W∗ −W∗ ln W
W∗ . For i = 1, 2, differentiating and using the equilibrium equations give

dLi1

dt
=

(
1 −

S ∗i
S i

)
S
′

i +

(
1 −

V∗i
Vi

)
V
′

i +

(
1 −

E∗i
Ei

)
E
′

i

=

(
1 −

S ∗i
S i

) Ai − (di + γi)S i + λiVi −

2∑
j=1

βi jS iE j − βiS iW


+

(
1 −

V∗i
Vi

)
(γiS i − (λi + di)Vi) +

(
1 −

E∗i
Ei

)  2∑
j=1

βi jS iE j + βiS iW − (di + ci)Ei


=

(
1 −

S ∗i
S i

) (di + γi)(S ∗i − S i) + λi(Vi − V∗i ) −
2∑

j=1

βi j(S iE j − S ∗i E∗j)


−

(
1 −

S ∗i
S i

)
βi(S iW − S ∗i W∗) + γiS ∗i

(
1 −

V∗i
Vi

) (
S i

S ∗i
−

Vi

V∗i

)
+

(
1 −

E∗i
Ei

)  2∑
j=1

βi j

(
S iE j − S ∗i E∗j

Ei

E∗i

)
+ βi

(
S iW − S ∗i W∗ Ei

E∗i

)
=diS ∗i

(
2 −

S ∗i
S i
−

S i

S ∗i

)
+ λiV∗i

(
2 −

S ∗i Vi

S iV∗i
−

S iV∗i
S ∗i Vi

)
+ diV∗i

(
3 −

S ∗i
S i
−

Vi

V∗i
−

S iV∗i
S ∗i Vi

)
+

2∑
j=1

βi jS ∗i E∗j

(1 − S ∗i
S i

)  S iE j

S ∗i E∗j
− 1

 +

(
1 −

E∗i
Ei

)  S iE j

S ∗i E∗j
−

Ei

E∗i


+ βiS ∗i W∗

((
1 −

S ∗i
S i

) (
S iW
S ∗i W∗

− 1
)

+

(
1 −

E∗i
Ei

) (
S iW
S ∗i W∗

−
Ei

E∗i

))
≤

2∑
j=1

βi jS ∗i E∗j

2 − S ∗i
S i
−

Ei

E∗i
+

E j

E∗j
−

S iE jE∗i
S ∗i E∗j Ei

 + βiS ∗i W∗

(
2 −

S ∗i
S i
−

Ei

E∗i
+

W
W∗
−

S iWE∗i
S ∗i W∗Ei

)
.

Using the inequality 1 − a ≤ − ln a, a > 0, one can obtain that

2 −
S ∗i
S i
−

Ei

E∗i
+

E j

E∗j
−

S iE jE∗i
S ∗i E∗j Ei

≤
E j

E∗j
−

Ei

E∗i
− ln

S ∗i
S i
− ln

S iE jE∗i
S ∗i E∗j Ei

=
E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i
,

2 −
S ∗i
S i
−

Ei

E∗i
+

W
W∗
−

S iWE∗i
S ∗i W∗Ei

≤
W
W∗
−

Ei

E∗i
− ln

S ∗i
S i
− ln

S iWE∗i
S ∗i W∗Ei

=
W
W∗
− ln

W
W∗

+ ln
Ei

E∗i
−

Ei

E∗i
.

Hence, we have

dLi1

dt
≤

2∑
j=1

βi jS ∗i E∗j

2 − S ∗i
S i
−

Ei

E∗i
+

E j

E∗j
−

S iE jE∗i
S ∗i E∗j Ei

 + βiS ∗i W∗

(
2 −

S ∗i
S i
−

Ei

E∗i
+

W
W∗
−

S iWE∗i
S ∗i W∗Ei

)

≤

2∑
j=1

βi jS ∗i E∗j

E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i

 + βiS ∗i W∗

(
W
W∗
− ln

W
W∗

+ ln
Ei

E∗i
−

Ei

E∗i

)
.
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Similarly, we can obtain

dLi2

dt
=

(
1 −

I∗i
Ii

)
I
′

i =

(
1 −

I∗i
Ii

)
(ciEi − (di + αi)Ii) =

(
1 −

I∗i
Ii

) (
ciEi − ciE∗i

Ii

I∗i

)
= ciE∗i

(
1 +

Ei

E∗i
−

Ii

I∗i
−

EiI∗i
E∗i Ii

)
≤ ciE∗i

(
Ei

E∗i
− ln

Ei

E∗i
+ ln

Ii

I∗i
−

Ii

I∗i

)
.

dL3

dt
=

(
1 −

W∗

W

)
W
′

=

(
1 −

W∗

W

)  2∑
j=1

(kiEi + miIi) − δW


=

(
1 −

W∗

W

)  2∑
j=1

(kiEi + miIi) −
2∑

j=1

(kiE∗i + miI∗i )
W
W∗


≤

2∑
i=1

kiE∗i

(
Ei

E∗i
− ln

Ei

E∗i
+ ln

W
W∗
−

W
W∗

)
+

2∑
i=1

miI∗i

(
Ii

I∗i
− ln

Ii

I∗i
+ ln

W
W∗
−

W
W∗

)
.

Define the Lyapunov function

L =

2∑
i=1

υi (ai1Li1 + ai2Li2 + ai3L3) .

It follows that

dL
dt

=

2∑
i=1

υi

(
ai1L

′

i1 + ai2L
′

i2 + ai3L
′

3

)
≤

2∑
i=1

υi(ai1

2∑
j=1

βi jS ∗i E∗j

E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i


+ ai1βiS ∗i W∗

(
W
W∗
− ln

W
W∗

+ ln
Ei

E∗i
−

Ei

E∗i

)
+ ai2ciE∗i

(
Ei

E∗i
− ln

Ei

E∗i
+ ln

Ii

I∗i
−

Ii

I∗i

)
+ ai3

2∑
i=1

kiE∗i

(
Ei

E∗i
− ln

Ei

E∗i
+ ln

W
W∗
−

W
W∗

)
+ ai3

2∑
i=1

miI∗i

(
Ii

I∗i
− ln

Ii

I∗i
+ ln

W
W∗
−

W
W∗

)
).

Considering the following equations
(
ai1βiS ∗i W∗ − ai3

2∑
i=1

(kiE∗i + miI∗i )
) (

W
W∗ − ln W

W∗

)
= 0,(

ai3

2∑
i=1

miI∗i − ai2ciE∗i

) (
Ii
I∗i
− ln Ii

I∗i

)
= 0.

We have

ai2 =

2∑
i=1

miI∗i

ciE∗i
ai3, ai3 =

βiS ∗i W∗

2∑
i=1

(kiE∗i + miI∗i )
ai1.
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and ai1βiS ∗i W∗ − ai2ciE∗i − ai3

2∑
i=1

kiE∗i

 (ln Ei

E∗i
−

Ei

E∗i

)
= 0

Let ai2 = 1 and take the equation ai2 and ai3 into the equation dL
dt , we can obtain

dL
dt

=

2∑
i=1

υi

L
′

i1 +
βiS ∗i W∗

2∑
i=1

(kiE∗i + miI∗i )


2∑

i=1
miI∗i

ciE∗i
L
′

i2 + L
′

3




≤

2∑
i=1

υi

 2∑
j=1

βi jS ∗i E∗j

E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i


=

2∑
i, j=1

υiβi jS ∗i E∗j

E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i


Due to matrix [βi j]1≤i, j≤2 is irreducible, hence we can calculate υ1 = β21S ∗2E∗1, υ2 = β12S ∗1E∗2 such

that
2∑

i, j=1

υiβi jS ∗i E∗j

E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i

 = 0.

The equality L
′

= 0 holds only for S i = S ∗i , Ei = E∗i , Ii = I∗i , i = 1, 2 and W = W∗. Hence, one can
obtain that the largest invariant subset where L

′

= 0 is the singleton P∗ using the same argument as
in [24]. By LaSalle’s Invariance Principle [25], P∗ is globally asymptotically stable in the region X
when R0 > 1. �

Remark 3.1. In this model, the host populations are divided into 2 homogeneous groups. If the host
populations have n groups, we can extend our Lyapunov function into the following equation:

L =

n∑
i=1

υi

Li1 +
βiS ∗i W∗

n∑
i=1

(kiE∗i + miI∗i )


n∑

i=1
miI∗i

ciE∗i
Li2 + L3




Furthermore we can obtain that

dL
dt

=

n∑
i=1

υi

L
′

i1 +
βiS ∗i W∗

n∑
i=1

(kiE∗i + miI∗i )


n∑

i=1
miI∗i

ciE∗i
L
′

i2 + L
′

3




≤

n∑
i, j=1

υiβi jS ∗i E∗j

E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i


Hence, if the matrix [βi j]1≤i, j≤n is irreducible, and according to the methods and conclusions in [24, 26,
27], there exist constants υi > 0, i = 1, 2, ..., n such that

n∑
i, j=1

υiβi jS ∗i E∗j

E j

E∗j
− ln

E j

E∗j
+ ln

Ei

E∗i
−

Ei

E∗i

 = 0.
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4. Numerical simulations

In an epidemic model, the basic reproduction number R0 is calculated and shown to be a thresh-
old for the dynamics of the disease. Taking parameter values δ = 3.6, A1 = 1976000, d1 = 0.6, λ1 =

0.4, A2 = 1680000, d2 = 0.4, λ2 = 0.4, α2 = 12, α1 = 12, β1 = 1.0 × 10−8, β11 = 1.8 × 10−7, β2 =

1.0 × 10−8, β22 = 2.1 × 10−7, k1 = 15, k2 = 15, γ1 = 0.316 × 0.82, γ2 = 0.316 × 0.82, c1 = 0.15, c2 =

0.15, β12 = β21 = 1.35 × 10−7 in paper [3], we run numerical simulations with system (2.2) for R0 > 1
(see Figure 2) andR0 < 1 (see Figure 3) to demonstrate the conclusions in Theorem 3.4 and Theorem
3.1.
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Figure 2. Numerical simulations for R0 = 1.9789 > 1 with different initial values. (a) The
infectious cases with group 1. (b) The infectious cases with group 2.
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Figure 3. Numerical simulations for R0 = 0.8330 < 1 with different initial values, where
γ1 = 1 × 0.82, γ2 = 0.316 × 0.82, c1 = 0.3, c2 = 0.3, β12 = β21 = 0. (a) The infectious cases
with group 1. (b) The infectious cases with group 2.

4.1. Uncertainty and sensitivity analysis

In order to evaluate the influence for infectious individuals over time with the key parameters (such
as the efficient vaccination rate γ1, γ2, the seropositive detection rate c1, c2, and the transmission rate
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β1, β11, β2, β22, β12, β21). We explored these parameter space by performing an uncertainty analysis
using a Latin hypercube sampling (LHS) method and sensitivity analysis using partial rank correlation
coefficients (PRCCs) with 1000 samples [28]. In the absence of available data on the distribution
functions, we chose a normal distribution for all selected input parameters with the same values in
paper [3], and tested for significant PRCCs for these parameters of system (2.2). PRCC indexes can
be calculated for multiple time points and plotted versus time, and this can allow us to assess whether
significance of one parameter occur over an entire time interval during the progression of the model
dynamics.
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Figure 4. Sensitivity analysis. (a) and (c) Plots of output (1000 runs) of system
(2.2) for I1 and I2. (b) and (d) PRCCs of system (2.2) for I1 and I2 with parameters
γ1, γ2, c1, c2, β1, β11, β2, β22, β12, β21.

Figure 4 show the plots of 1000 runs output and PRCCs plotted for selected parameters with respect
to the number of infected individuals in group 1 and 2 for system (2.2). Figure 4 (b) and (d) show that
the effects of parameters γ1, γ2, c1, c2, β1, β11, β2, β22, β12, β21 change with respect to I1 and I2 over time.
In the early time, these selected parameters with PRCCS have obvious change, and finally they remain
constant. In Figure 4 (b), the efficient vaccination rate γ1, γ2 and the seropositive detection rate of
group 2 c2 are negatively correlated with PRCCs for I1, and the other parameters are positively corre-
lated with PRCCs for I1. But In Figure 4 (d), the seropositive detection rate of group 2 c2 is positively
correlated with PRCCs and the seropositive detection rate of group 1 c1 is negatively correlated with
PRCCs, other parameters have the same correlation with PRCCs for I1. From Figure 4, we can see the
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efficient vaccination rate γ1, γ2 have the strong negatively correlated PRCCs (black solid and dotted
lines) for I1 and I2, and the seropositive detection rate has the strong positively correlated with PRCCs
for infected individuals. Hence, one can conclude that the vaccination and the seropositive detection
of infected individuals are the effective control measures.

To find better control strategies for brucellosis infection, we perform some sensitivity analysis of
the basic reproduction number R0 in terms of the efficient vaccination rate (γ1, γ2) and the seropositive
detection rate (c1, c2). We show the combined influence of parameters on R0 in Figure 5. Figure 5(a)
depicts the influence of sheep efficient vaccination rate γ1, γ2 on R0. Though vaccinating susceptible
sheep is an effective measure to decrease R0, R0 cannot become less than one even if the vaccination
rate of all sheep is 100% (which is the efficient vaccination rate γ1 = 0.82, γ2 = 0.82 in Figure 5(a),
under this circumstances R0 = 1.3207). Figure 5(b) indicates the influence of seropositive detection
rate c1, c2 on R0, which shows to increase seropositive detection rate of recessive infected sheep can
makeR0 less than one, which means under the current control measures, increase seropositive detection
rate of recessive infected sheep can control the brucellosis. Hence, we can conclude that combining the
strategy of vaccination and detection is more effective than vaccination and detection alone to control
brucellosis.
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Figure 5. The combined influence of parameters on R0. (a) R0 in terms of γ1 and γ2. (b) R0

in terms of c1 and c2. Other parameters are the same values in paper [3].

5. Conclusion and discussion

In this paper, in order to show the uniqueness and global stability of the endemic equilibrium for
brucellosis transmission model with common environmental contamination, the multi-group model in
paper [3] is chosen as our research objectives. Firstly, we show the basic reproduction number R0

of the model (2.2). Then, we obtain the uniqueness of positive endemic equilibrium through using
proof by contradiction when R0 > 1. Finally, the proof of global asymptotical stability of the endemic
equilibrium when R0 > 1 is shown by using Lyapunov function. Especially, we give the specific co-
efficients of global Lyapunov function, and show the calculation method of these specific coefficients.
Numerical analysis also show that the global asymptotic behavior of system (2.2) is completely deter-
mined by the size of the basic reproduction number R0, that is, the disease free equilibrium is globally
asymptotically stable if R0 < 1 while an endemic equilibrium exists uniquely and is globally stable
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if R0 > 1. With the uncertainty and sensitivity analysis of infected individuals for selected parame-
ters γ1, γ2, c1, c2, β1, β11, β2, β22, β12, β21 using LHS/PRCC method, one can conclude that the efficient
vaccination rate γ1, γ2 have the strong negatively correlated PRCCs (black solid and dotted lines in
Figure 4), and the seropositive detection rate has the strong positively correlated with PRCCs for in-
fected individuals. By some sensitivity analysis of the basic reproduction number R0 on parameters,
we find that vaccination rate of sheep and seropositive detection rate of recessive infected sheep are
very important factor for brucellosis.

Acknowledgments

The project is funded by the National Natural Science Foundation of China under Grants
(11801398, 11671241, 11601292) and Natural Science Foundation of Shan’Xi Province Grant No.
201801D221024.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1 M. J. Corbel, Brucellosis: an overview, Emerg. Infect. Dis., 3(1997), 213–221.

2 G. Pappas, N. Akritidis, M. Bosilkovski, et al., Brucellosis, N. Engl. J. Med., 352(2005), 2325–
2536.

3 M. T. Li, G. Q. Sun, J. Zhang, et al., Transmission dynamics and control for a Brucellosis Model
in Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11(2014), 1115–1137.

4 M. L. Boschiroli, V. Foulongne and D. O’Callaghan, Brucellosis: a worldwide zoonosis, Curr.
Opin. Microbiol., 4(2001), 58–64.

5 G. Pappas, P. Papadimitriou, N. Akritidis, et al., The new global map of human brucellosis, Lancet
Infect. Dis., 6(2006), 91–99.

6 M. P. Franco, M. Mulder, R. H. Gilman, et al., Human brucellosis, Lancet Infect. Dis., 7(2007),
775–786.

7 M. N. Seleem, S. M. Boyle and N. Sriranganathan, Brucellosis: A re-emerging zoonosis, Vet.
Microbiol., 140 (2010), 392–398.

8 H. Heesterbeek, R. M. Anderson, V. Andreasen, et al., Modeling infectious disease dynamics in
the complex landscape of global health, Science, 6227 (2015), aaa4339.

9 M. T. Li, G. Q. Sun, J. Zhang, et al., Transmission dynamics of a multi-group brucellosis model
with mixed cross infection in public farm, Appl. Math. Comput., 237(2014), 582–594.

10 G. G. Jorge and N. Raul, Analysis of a model of bovine brucellosis using singular perturbations,
J. Math. Biol., 33(1994), 211–223.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5836-5850



5849

11 J. Zinsstag, F. Roth, D. Orkhon, et al., A model of animalChuman brucellosis transmission in
Mongolia, Prev. Vet. Med., 69(2005), 77–95.

12 B. Alnseba, B. Chahrazed and M. Pierre, A model for ovine brucellosis incorporating direct and
indirect transmission, J. Biol. Dyn., 4(2010), 2–11.

13 Q. Hou, X. D. Sun, J. Zhang, et al., Modeling the transmission dynamics of brucellosis in Inner
Mongolia Autonomous Region, China, Math. Biosci., 242(2013), 51–58.

14 Q. Hou, X. D. Sun, Y. M. Wang, et al., Global properties of a general dynamic model for animal
diseases: A case study of brucellosis and tuberculosis transmission, J. Math. Anal. Appl., 414
(2014), 424–433.

15 W. Beauvais, I. Musallam and J. Guitian, Vaccination control programs for multiple livestock host
species: An age-stratified, seasonal transmission model for brucellosis control in endemic settings,
Paras. Vector, 9(2016), 55.

16 P. Lou, L. Wang, X. Zhang, et al., Modelling Seasonal Brucellosis Epidemics in Bayingolin
Mongol Autonomous Prefecture of Xinjiang, China, 2010-2014, BioMed Res. Int., 2016(2016),
5103718.

17 D. O. Montiel, M. Bruce, K. Frankena, et al., Financial analysis of brucellosis control for small-
scale goat farming in the Bajio region, Mexico, Prev. Vet. Med., 118(2015), 247–259.

18 L. Yang, Z. W. Bi, Z. Q. Kou, et al., Time-series analysis on human brucellosis during 2004-2013
in Shandong province, China, Zoonoses Public Health, 62(2015), 228–235.

19 M. T. Li, G. Q. Sun, W. Y. Zhang, et al., Model-based evaluation of strategies to control brucellosis
in China, Int. J. Env. Res. Pub. He., 14(2017), 295.

20 M. T. Li, Z. Jin, G. Q. Sun, et al., Modeling direct and indirect disease transmission using multi-
group model, J. Math. Anal. Appl., 446(2017), 1292–1309.

21 O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of
the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J.
Math. Biol., 28(1990), 365–382.

22 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission, Math. Biosci., 180(2002), 29–48.

23 O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices
for compartmental epidemic models, J. R. Soc. Interface, 7(2010), 873–885.

24 M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on
networks, J. Diff. Equat., 248(2010), 1–20.

25 J. P. Lasalle, The stability of dynamical dystems, in: Regional Conference Series in Applied
Mathematics, SIAM, Philadelphia, 1976.

26 M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic
models, Canad. Appl. Math. Quart., 14(2006), 259–284.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5836-5850



5850

27 H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global lyapunov
functions, Proc. Amer. Math. Soc., 136(2008), 2793–2802.

28 S. Marino, I. B. Hogue, C. J. Ray, et al., A methodology for performing global uncertainty and
sensitivity analysis in systems biology, J. Theoret. Biol., 254(2008), 178–196.

c© 2019 the authors, licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5836-5850

http://creativecommons.org/licenses/by/4.0

	Introduction
	The dynamic model
	The basic reproduction number

	Mathematical analysis
	The uniqueness of positive endemic equilibrium
	The global stability of positive endemic equilibrium

	Numerical simulations
	Uncertainty and sensitivity analysis

	Conclusion and discussion

