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Abstract: Traditional visual secret sharing (VSS) encodes the original secret image into n shares, and
each share is of equal importance. However, in some scenarios, we need to make a difference between
the participants according to the levels of their importance. Therefore, the capability of each share
to recover the original secret image will be different. In this paper, we proposed a weighted (k, n)-
threshold random grid VSS(RG-VSS) with multiple decrytions and lossless recovery. When we get
k or more shares for decryption, we will recover different levels of the original image because of the
different weights of the shares. More importantly, the secret information can be recovered by OR and
XOR operations in our scheme. When we get all the n shares and using the XOR operation to recover
the image, we can recover the secret information losslessly. The experimental results and analyses
show that our scheme outperforms the related schemes.
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1. Introduction

With the rapid development of information security technology [1–6], visual secret sharing (VSS)
technology has also developed rapidly. Traditional visual secret sharing [7, 8] encodes the secret
information into different shares, then distributes the shares to the participants. And we can stack the
shares to decode the secret of VSS. The decryption does not need any cryptographic knowledge on
computational devices.

In 1995, Naor and Shamir [7] first proposed the threshold-based VSS [8–15] to encode the secret
images. In their scheme, a binary secret image is encoded into n noise-like shadow images, and each
shadow image is also called a share. And each share is distributed to one of the participants. Only
when any k or more participants stack their shares together can recover the secret information
visually. However, when less than k participants will not decode any information. Then some
researchers have applied VSS to many different fields such as authentication [16], information hiding,
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digital watermarking [17] and so on [18]. The advantage of VSS by [7] is simple recovery, because
the decryption is only based on stacking without any cryptographic computation and computational
devices. But, the scheme also has some disadvantage of pixel expansion, codebook design.

Some researchers proposed different VSS approaches to solve the problem of pixel expansion.
Such as, Ito, et al. [19] selected a column from codebook with equally likely possibility and proposed
the probabilistic VSS. Later Yang, et al. [10] presented the different thresholds probabilistic VSS.
Soon Cimato, et al. [11] further proposed the generalization probabilistic VSS.

Random grid (RG) is a kind of image encoding method proposed by Kafri and Keren [20]. Their
scheme could produce two noise-like shares by randomly selecting the pixel values. The method
successfully solved the two problems of the conventional VSS scheme: The pixel expansion problem
and codebook design. So the method got people’s attention. But, the RG-VSS could only realize a
(2, 2)-threshold. Soon, many scholars proposed their schemes to extend the work of Kafri and Keren’s
scheme. And they have developed the (n, n)-threshold and (k, n)-threshold RG-VSS. However, in
RG-VSS, when we use OR-based VSS (OVSS), the background of the recovery image will become
darker. When we use RG XOR-based VSS (XVSS) [12, 21] can improve the visual quality of the
recovery image, so as to solve the problem of darker background caused by RG-based OVSS [22].
However, only when we have the lightweight device that can perform XOR operation, we can use the
device to recover the image through XVSS. Generally speaking, RG-VSS with multiple
decryptions [22, 23] can realize OVSS and XVSS, which can be applied in wider applications.

In traditional VSS, the secret images can be recovered by a certain number of shares. Moreover,
each share has the same capability to recover the secret images, and does not differ.

Hou, et al. [24] implemented a (2, n)-threshold VSS with different priority weights that has no pixel
expansion. Their scheme assigned different priority weights to the shares according to the importance
of the participants. Hence, each share will have their own priority, which means that we can reveal
different amount of secret information when stacking different shares with the same number of shares.
In such a way, when we get the shares with higher weights, we can get more messages of the secret
image, and in a similar way, when we get the shares with lower weights, we will get less messages of
the secret image. Although, the scheme presented by Hou, et al. implemented the different priority of
the shares, the shares with different weights have the different average light transmission, which means
that the shadow images of different weights will be different in color visually. So we can easily know
which share is important. Yang, et al. [25] presented improved scheme of Hou, et al. ’s scheme. In
their scheme, each share has the same average light transmission, so the shares can’t be distinguished
visually. However, the scheme needs a codebook to generate the shares. Fan, et al. [26] proposed
a priority RG-VSS for threshold access structures, in which the shares have the same average light
transmission and do not need the codebook.

Unfortunately all the schemes above can not losslessly recover the secret image with multiple
decryptions. In our previous work [9], we have realized RG-VSS with the abilities of or and xor
lossless recovery. In [9], the shares have the same weight which means the share images have the
same importance. However, in some applications we need to give different participants different
levels of importance. This need us to give different share images with different weights and this is just
the work of this paper.

The contribution of our proposed scheme is as follow. In this paper, we propose a weighted
(k, n) RG-VSS. And our approach has two advantages. First, our scheme has two kinds of decryption
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capabilities, which means we can use both OVSS and XVSS to recover the secret images. So it can be
applied in wider applications. Second, our scheme is able to recover the secret images losslessly with
XVSS. Therefore, our approach has the features of multiple decryptions and lossless recovery.

In our proposed scheme, a binary original image is generated into n shares, and each share has
its own weight according to the level of the importance. First, we assign the weight according to
the corresponding probability, and randomly select k positions from the n positions of the n shares.
Second, we use the (k, k)-threshold RG-VSS to get the k pixel values to fill in the positions we selected
previously. Third, the remaining (n − k) positions will be assigned white (0) value [27]. In such a
way, we get all the n pixel values on the corresponding positions in the n shares according to the
weight of each share. And our scheme has the following features: We can recover the secret image by
stacking. Meanwhile, if we have a lightweight device with XOR operation, we can recover the secret
image losslessly when we get all the n shares. In addition to this, our scheme does not need codebook
design and have no pixel expansion due to RG. And the effectiveness of our scheme will be given by
experimental results and analyses.

The rest of the paper is organized as follows. In section 2 , we will introduce the basic concepts for
our proposed scheme. In Section 3, we will propose our scheme in more details. In section 4, we will
analyse the performance of our proposed scheme. In section 5 , we will provide experimental results.
Finally, in section 6 , we will conclude this paper.

2. Preliminaries

In order to understand our method more conveniently. First, some definitions about our proposed
scheme will be introduced. Also the notations used in our paper will be given in Table 1.

Table 1. Notations used in the paper.

Notations Descriptions
0(resp. 1) A white(resp. black) pixel
⊗ Stacking (OR) operation
⊕ Boolean XOR operation
S The binary secret image
S C1, S C2, · · · S Cn Shadow images generated by VSS schemes
t Number of collecting shares in the recovery phase
S C{⊗(⊕),i1 ,i2 ,···it} Stacked (XOR-ed) result by shares S Ci1 , S Ci2 , · · · S Cit
α{⊗(⊕),i1 ,i2 ,···it} Contrast of the revealed secret image from shares S Ci1 , S Ci2 , · · · S Cit by stacking (XOR) recovery
S (0) ( resp. S (1) ) The area of all the white (resp. black) pixels in S
S C [S (0)] (resp. S C [S (1)] ) The corresponding area of all the white (resp. black) pixels in image SC
Prob (x) the probability when any event x occurs

In our proposed scheme, we employ the random pixels to generate the shares, therefore the
definitions used in our paper related to RG-based VSS will be presented as follows:

Definition 1 (Average light transmission). For each pixel s in the binary image S , which size is M × N,
the light transmission of each transparent (resp. opaque) pixel is defined as T (s) = 1 (resp. T (s) = 0).
So, the average light transmission of S can be defined as

T (S ) =

∑M
i=1

∑N
j=1 T (S (i, j))

M × N
(2.1)
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Definition 2 (Contrast). The contrast is used to evaluated to the visual quality of the reconstructed
image S ′ corresponding to the original image S . And the contrast is defined as follows:

α =
T (S ′ [S (0)]) − T (S ′ [S (1)])

1 + T (S ′ [S (1)])
(2.2)

We can use the contrast to evaluate the visual quality of the recovered image. So the value of
contrast is large, the reconstructed image will have better quality for human eyes to recognize.

Definition 3 (Visually recognizable). The reconstructed image S ′ can be recognized as the
corresponding original image S , if α > 0 when S ′ is reconstructed from the shares.

Definition 4 (Security). When S ′ is reconstructed from the shares, we can identify the scheme proposed
is secure if α = 0 , because it means that we can recognize no information of S through S ′ [7].

The generation and reconstruction phases of the original (2, 2) RG-based VSS can be described as
follow:

Step 1: Randomly generate the S C1.
Step 2: Compute the S C2 as in Eq (2.3).
Reconstruction: S ′ = S C1 ⊗ S C2 as in Eq (2.4). If the selected pixel s = S (i, j) of S is 1, the

reconstruction result S C1 ⊗ S C2 = 1 will always be black. If the selected pixel is 0, the reconstruction
result S C1 ⊗ S C2 = S C1(i, j) ⊗ S C1(i, j) will have half chance to be white or black since the pixels
of S C1 are generated randomly.

S C2(i, j) =
{

S C1(i, j) i f S (i, j) = 0
S C1(i, j) i f S (i, j) = 1

(2.3)

S ′(i, j) =S C1(i, j) ⊗ S C2(i, j)

=

{
S C1(i, j) ⊗ S C1(i, j) i f S 1(i, j) = 0
S C1(i, j) ⊗ S C1(i, j) = 1 i f S 1(i, j) = 1

(2.4)

We can derive that Eq (2.3) is equal to sc2 = sc1 ⊕ s or s = sc1 ⊕ sc2. Because if s = 0 ⇒
sc2 = sc1 ⊕ 0 ⇒ sc2 = sc1, and if s = 1 ⇒ sc2 = sc1 ⊕ 1 ⇒ sc2 = sc1. And it can be extended
to s = sc1 ⊕ sc2 ⊕ · · · ⊕ sck. In a word, we will apply the XOR operation in the reconstruction. And
when we get all the n shares together, we even can recover the original secret image losslessly.

3. The proposed scheme

In this section, we will propose a weighed (k, n) -threshold scheme, which has the abilities of
multiple decryptions and lossless recovery. In the scheme, the secret image will be shared into n
different weighted shares. And the important participants can have the shares of priority weight so
that they will have more information. When we stack t ≥ k shares, the information in the secret
image will be recovered with different weights, according to the priority weights and the number of the
shares. Therefore, the shares being stacked with higher weights can recover more information of the
original image. Conversely, the shares being stacked with lower weights will reveal less information
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of the original image. And the secret image recovery of our proposed scheme can also be XOR, so the
scheme has the abilities of multiple decryptions. When we using XOR operation to recover the secret
image with all the shares, we even can recover the secret image losslessly.

We can know the share construction of our proposed scheme in Figure 1. And the scheme will be
introduced as follows:

The proposed (k, n)-threshold weighted scheme will generate n shares with the size of M × N .
When we get t shares (t ≥ k), the binary original image S can be reconstructed. Before we encode
the pixels, we should initialize the priority weight of each share wi, i = 1, 2, . . . , n− 1, n, and

∑n
i=1 wi =

1. The weight wi corresponding to each share is defined related to the level of importance of the
participant. And the shares with higher weight will recover more information. The weight value of
each share wi has no impact on the implement of our scheme. Successively, we should encode the pixel
s(i, j) in the secret image. First, we use the (k, k)-threshold RG-VSS to generate k pixel values bi ,
i = 1, 2, . . . , k − 1, k. The (k, k)-threshold algorithmic steps are described in Algorithm 1.

Algorithm 1: (k, k) RG-based VSS
Input: A M × N binary secret image S , the threshold parameters (k, k)
Output: k shadow images S C1, S C2, · · · S Ck

Step 1: For each position (i, j) ∈ {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N} , repeat Steps 2–4.
Step 2: Random generate k bits b1, b2, · · · bk

Step 3: If S (i, j) = b1 ⊕ b2 ⊕ · · · ⊕ bk, then retain the bits. Else randomly reverse one bit.
Step 4: Randomly rearrange the final k bits b1, b2, · · · , bk to S C1(i, j), S C2(i, j), · · · , S Ck(i, j).
Step 5: Output the k shadow images S C1, S C2, · · · S Ck.

The possibility of each pixel’s value distribution in the n shares is according to the priority weight.
First, we set the probability intervals according to the weights, and the sum of probability intervals is 1.
Then we use random number to generate a random value for an interval of [0, 1]. The random number
falling within which interval means that the position of the pixel is selected. Repeat the operation until
we select k positions of the n shares. The share with higher weight will be selected more times, so it
will have more valid values.

In general, the share with higher priority weight is more likely to reconstruct the original image. On
the contrary, the share with lower priority weight is less likely to recover the original image. Therefore,
a set of pixels pi, i = 1, 2, . . . , k, is selected according to the wi. And the unselected (n − k) can be
assigned as 0 values. Finally, the values on the positions according to the original image of n shares
are generated. So the (k, n)-threshold weighted algorithmic steps are described in Algorithm 2.

We can use OR and XOR operation to recover the secret image in our proposed scheme. In other
word, our proposed scheme has the abilities of multiple decryptions. And we even can losslessly
recover the original image using the XOR operation device when we get all the shares.

4. Performance analyses

In this section, we will theoretically analyze the performances of the security and the visual quality
of our proposed scheme. When we apply stacking or XOR decryption by Theorem 1, we would prove
that our proposed scheme is a valid (k, n)-threshold weighted RG-VSS. And in order to prove the
theorem 1, some Lemmas will be given.
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Figure 1. Shares generation architecture of the proposed scheme.

Algorithm 2: (k, n) weighted VSS with multiple decryptions and lossless recovery
Input: A M × N binary secret image S , the threshold parameters (k, n) , and the weighted values
W = {w1,w2, · · ·wn}.
Output: n shadow images S C1, S C2, · · · S Cn

Step 1: Gain its basis W sections according to its weighted values. For each position (i, j) ∈ {(i, j)|1 ≤
i ≤ M, 1 ≤ j ≤ N} , repeat Steps 2–4
Step 2: From {1, 2, · · · n}, select one set w = {w1,w2, · · ·wk} ∈ W according to their weights, and the
last n − k number of all the n participants is denoted as { j1, j2, · · · jn−k} = {1, 2, · · · , n}\ {i1, i2, · · · ik}.
Step 3: For the input secret bit s = S (i, j) and {i1, i2, · · · ik}, compute bi1 , bi2 · · · , bik using (k, k) RG-
based VSS in Algorithm 1 and orderly arrange them to S Ci1(i, j), S Ci2(i, j) · · · , S Cik(i, j).
Step 4: Set all the last n − k bits, i. e., b j1 , b j2 · · · , b jn−k , to be 0, and arrange them to
S C j1(i, j), S C j2(i, j) · · · , S C jn−k(i, j) directly.
Step 5: Output the n shadow images S C1, S C2, · · · S Cn.
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In order to without losing of generality about the following analysis in this section, we will assume
that b1, b2, · · · bk−1, bk are generated according to the pixel s = S (i, j) of the original image and
the b1, b2, · · · bk−1, bk bits are respectively arranged to sc1, sc2, · · · , sck by Step 3, the other bits
(bk+1, bk+2, · · · bn) will be assigned 0 by Step 4.

Lemma 1. s = sc1 ⊕ sc2 ⊕ · · · ⊕ sck.

Proof. Obviously, we can derive Eq (4.1) from Eq (2.3).

sc2 = sc1 ⊕ s ⇒ s = sc1 ⊕ sc2 (4.1)

Because if s = 0 ⇒ sc2 = sc1 ⊕ 0 ⇒ sc2 = sc1 , or if s = 1 ⇒ sc2 = sc1 ⊕ 1 ⇒ sc2 = sc1 .
And, sc1 and sc2 are both random, so, T (sc1) = T (sc2) = 1/2. In the same way, the approach can be
extended to

s = sc1 ⊕ sc2 ⊕ · · · ⊕ sck (4.2)

Besides, Prob (bi = 0) = 1/2 since bi is randomly generated, where i = 1, 2, . . . , k − 1, k. So it is
easy to get T (sc1) = T (sc2) · · · = T (sck) = 1/2.

�

Lemma 2. Each share generated from the (k, n)-threshold scheme will not reveal any clue about the
original image: T (S Ci [S (0)]) = T (S Ci [S (1)]), where i = 1, 2, . . . , n − 1, n.

Proof. According to Lemma 1 and Step 4, we can know that the generated pixel b j, where j = k +
1, k + 2, . . . , n, is independent of the original pixel S (i, j). Therefore, Prob

(
b j = 0

)
= 1 is obtained.

Obviously we can get T (S Ci [S (0)]) = T (S Ci [S (1)]) by Definition 1. So, we prove the Lemma.
�

Lemma 3. In our proposed scheme,
If s = 0, T

(
b{⊗1,2,···k−1,k}

)
= T

(
b{⊗1,2,···k−2,k−1}

)
= (1/2)k−1.

If s = 1, T
(
b{⊗1,2,···k−1,k}

)
= 0.

Proof. According to Lemma 1, we can know that the bits b1, b2, · · · bk−1 are independent from each
other and the original image s. But bk is dependent on b1 ⊕ b2 ⊕ · · · bk−1 and the original image s.

Therefore,

T
(
b{⊗1,2,···k−2,k−1}[0]

)
= (1/2)k−1 ,

T
(
b{⊗1,2,···k−2,k−1} [1]

)
= (1/2)k−1 (4.3)

So if s = 0, we can prove Eq (4.4).

T
(
b{⊗1,2,···k−1,k}

)
= T

(
b{⊗1,2,···k−2,k−1}

)
= (1/2)k−1 (4.4)

Because if the bit bk = 0, then
b{⊗1,2,···k−1,k} [0] = b{⊗1,2,···k−2,k−1} [0] sets up.
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Else if bk = 1, then bk is the same as one of b1, b2, · · · bk−1. If not, it means that every bit of
b1, b2, · · · bk−1 is complementary to bk ⇒ b1 = b2 · · · = bk−1 = 0⇒ s = 0⊕0 · · ·⊕0⊕1 = 1, k ∈ 2Z+−1
in conflict with s = 0.

Therefore, bk is the same as one of b1, b2, · · · bk−1. Because of commutative law of OR(⊗) operation,
b ⊗ b = b for any bit b , then we can get
b{⊗1,2,···k−1,k} [0] = b{⊗1,2,···k−2,k−1} [0].

Hence, if s = 0⇒ b{⊗1,2,···k−1,k} [0] = b{⊗1,2,···k−2,k−1} [0]. In consequence, Eq (4.4) is set up.
Similarly, if s = 1, we can prove that at least one of b1, b2, · · · bk is the same as 1. If not, every bit of

b1, b2, · · · bk is the same as 0⇒ b1 = b2 · · · = bk = 0⇒ s = 0 ⊕ 0 · · · ⊕ 0 ⊕ 0 = 0 in conflict with s = 1.
In consequence, at least one of b1, b2, · · · bk is the same as 1, so that b{⊗1,2,···k−1,k} = 1.

Hence, we can get
T

(
b{⊗1,2,···k−1,k}

)
= 0 (4.5)

�

Lemma 4. The stacking (XOR-ed ) operation result by any t < k pixels will not reveal the secret:
T

(
b{⊗(⊕),i1,i2,···it} [(0)]

)
= T

(
b{⊗(⊕),i1,i2,···it} [(1)]

)
, while by any t ≥ k pixels will reveal the secret:

T
(
b{⊗(⊕),i1,i2,···it} [(0)]

)
> T

(
b{⊗(⊕),i1,i2,···it} [(1)]

)
.

Proof. Let us assume that the t pixels bq1 , bq2 , · · · bqt is a subset of b1, b2, · · · bn−1, bn, so we can consider
t = t1+ t2. the t1 pixels bq1 , bq2 , · · · bqt1

are from b1, b2, · · · bk−1, bk introduced by Step 3, and the t2 pixels
bqt1+1 , bqt1+2 , · · · bqt1+t2

are picked up from bk+1, bk+2, · · · bn generated by Step 4.
Because bk+1 = 0, bk+2 = 0, · · · bn = 0, so b{⊗(⊕),q1,q2,···qt} = b{⊗(⊕),q1,q2,···qt1}

.
When t < k, it means t1 < k and t2 = 0. According to Lemma 1, T (b1) = T (b2) · · · T (bk) = 1/2. As

a result, T (b{⊗(⊕),q1,q2,···qt}) = T (b{⊗(⊕),q1,q2,···qt1}
) no matter s = 0 or s = 1, the secret cannot be revealed.

When t ≥ k, we should consider two cases : Case 1: t1 < k and case 2: t1 = k.
For case 1, we can get

T (b{⊗(⊕),q1,q2,···qt}) = T (b{⊗(⊕),q1,q2,···qt1}
) no matter s = 1 or s = 0.

For case 2, according to Lemma 3, T
(
b{⊗1,2,···k−1,k}[0]

)
> T

(
b{⊗1,2,···k−1,k}[1]

)
= 0.

Besides, by Lemma 1, we can get b{⊕1,2,···k−1,k}[0] = 0 and b{⊕1,2,···k−1,k}[1] = 1.
So T

(
b{⊕1,2,···k−1,k}[0]

)
= 1 > T

(
b{⊕1,2,···k−1,k}[1]

)
= 0.

In a word, when t ≥ k we can get T
(
b{⊗(⊕)1,2,···k−1,k}[0]

)
> T

(
b{⊗(⊕)1,2,···k−1,k}[1]

)
. �

Theorem 1. For the (k, n)-threshold weighted RG-VSS, the proposed scheme in the paper is a valid
construction. Because it satisfies the following conditions:

1) For each share reveals no information about the original image:
T (S Ci [S (0)]) = T (S Ci [S (1)]), where i = 1, 2, . . . , n − 1, n

2) For the stacking (XOR-ed) operation result by shares t < k cannot reveal the secret:
T

(
S C{⊗(⊕), j1, j2,··· jq} [S (0)]

)
= T

(
S C{⊗(⊕), j1, j2,··· jq} [S (1)]

)
.

3) The stacking (XOR-ed) operation result by shares t ≥ k visually discloses the secret:
T

(
S C{⊗(⊕),i1,i2,···iq} [S (0)]

)
> T

(
S C{⊗(⊕),i1,i2,···iq} [S (1)]

)
.

Proof. According to Lemma 2, the first condition above is satisfied. According to Lemma 4, the second
and third conditions above are satisfied.

�
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5. Experimental results and analyses

In this section, we will present the experimental results and the analyses to show the effectiveness
of our proposed scheme. In the experiments, the original binary secret image is showed in Figure 2a.
And all the size of images is 512 × 512. The secret image is the standard image of Lena whose pixel
values are distributed uniformly and the size of the image has no impact on this experiment. The size
of 512 × 512 is the normal size in our experiments. As the compared schemes also use the same size
images, which is convenient for comparison. For convenience to compare with other schemes, we set
the threshold of our scheme is (2, 4), and the weight of each share is w = {0.1, 0.2, 0.3, 0.4}.

5.1. Experimental results

The experimental results of our proposed scheme for (2, 4)-threshold weighted RG-VSS are
presented in Figures 2 and 3, where the basis w = {0.1, 0.2, 0.3, 0.4} is applied in Figure 2 by OR
decryption and Figure 3 by XOR decryption.

In Figure 2 with the basis w = {0.1, 0.2, 0.3, 0.4}, the original binary secret image and the generated
shares are all shown in Figure 2a–e, respectively. We can see that the generated shares are all noise-like,
and the shares with lower weight in the basis w have more white(0) pixels than others.

When we employ the OR decryption, the results by any two or more shares are shown in Figure 2f–
p. And the results clearly show that the visual quality of recovered image using the same number of
the shares is different. The shares with higher weight will recover more information, and better visual
quality will be shown when we get more shares. But the visual quality is dependent on the sum of the
weights. For example, Figure 2l is obtained by stacking share 1, share 2 and share 3, with the weight
of 0. 6. However, its visual quality is not good as Figure 2k, which is stacked by share 3 and share 4
with the weight of 0. 7.

When we employ the XOR decryption, the recovery secret images with any two or more together
are shown in Figure 3f–p, the results is similar to the OR decryption results. Besides, we can see that
the image visual quality is better than OR decryption. And we even can lossless recover the secret
image when we collect all the shares together.

We can get the conclusions according to the results above:

1. Each share can not reveal any information of the secret image.
2. The visual quality of the reconstructed secret image is progressive when more shares are selected.
3. The weighted RG-VSS with multiple decryptions and lossless recovery is realized in our scheme.

5.2. Comparisons with related schemes

5.2.1. Contrast comparison

Table 2 shows the comparison of contrast between our proposed scheme and the related schemes
with the basis w = {0.1, 0.2, 0.3, 0.4} of (2, 4)-threshold. As the schemes presented by Hou, et al. [24]
and Yang, et al. [25] are both the (2, n)-threshold VSS schemes, and the schmemes presented by Fan,
et al. [26] and ourself are both the (k, n)-threshold VSS schemes. Therefore, in our experiment, we set
the parameters of the threshold of (k, n) to be (2, 4), as shown in Table 2.
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(a) Secret image1 (b) S C1 (c) S C2 (d) S C3

(e) S C4 (f) S C{⊗,1,2} (g) S C{⊗,1,3} (h) S C{⊗,1,4}

(i) S C{⊗,2,3} (j) S C{⊗,2,4} (k) S C{⊗,3,4} (l) S C{⊗,1,2,3}

(m) S C{⊗,1,2,4} (n) S C{⊗,1,3,4} (o) S C{⊗,2,3,4} (p) S C{⊗,1,2,3,4}

Figure 2. Experimental result of our proposed scheme for w = {0.1, 0.2, 0.3, 0.4} with OR
decryption.
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(a) Secret image1 (b) S C1 (c) S C2 (d) S C3

(e) S C4 (f) S C{⊗,1,2} (g) S C{⊗,1,3} (h) S C{⊗,1,4}

(i) S C{⊗,2,3} (j) S C{⊗,2,4} (k) S C{⊗,3,4} (l) S C{⊗,1,2,3}

(m) S C{⊗,1,2,4} (n) S C{⊗,1,3,4} (o) S C{⊗,2,3,4} (p) S C{⊗,1,2,3,4}

Figure 3. Experimental result of our proposed scheme for w = {0.1, 0.2, 0.3, 0.4} with XOR
decryption.
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Based on Table 2, we can get the following conclusions:

1. The contrast of our proposed scheme is similar to others for OVSS.
2. Our scheme has two decryptions with OR and XOR.
3. If we get n shares, the recovery of our proposed scheme can be lossless for XVSS.

Table 2. Contrast comparison between our scheme and the related schemes with basis w =
{0.1, 0.2, 0.3, 0.4}.

Number of shares Our OR Our XOR Hou, et al. [24] Yang, et al. [25] Fan, et al. [26]

{1, 2} 0.0152 0.0289 0.0327 0.1096 0.1105
{1, 3} 0.0237 0.0478 0.0723 0.1531 0.1526
{1, 4} 0.0348 0.0478 0.1105 0.1985 0.1993
{2, 3} 0.0566 0.1107 0.1115 0.1986 0.1981
{2, 4} 0.0829 0.1647 0.1526 0.2491 0.2486
{3, 4} 0.1381 0.2777 0.2022 0.3045 0.3021
{1, 2, 3} 0.1056 0.2089 0.2496 0.2485 0.2488
{1, 2, 4} 0.1499 0.2995 0.3018 0.3040 0.3038
{1, 3, 4} 0.2276 0.4574 0.3654 0.3642 0.3623
{2, 3, 4} 0.3444 0.6875 0.4296 0.4278 0.4263
{1, 2, 3, 4} 0.5003 1.0 0.6665 0.4996 0.4988

5.2.2. Feature comparison

Table 3 shows the main features and the comparison of our proposed scheme with the related
schemes. There are many indicators used to evaluate secret image sharing scheme. In this paper, only
relevant features to the research branch of weighted secret image sharing are selected to evaluate the
algorithm. The features shown in Table 3 are the main features that can reflect the pros and cons of
the related schemes. The schemes of (k, n)-threshold are more scalable than other schemes of
(2, n)-threshold. Also, the schemes with two decryptions of OR and XOR are more widely used than
other schemes. Obviously, the schemes with no pixel expansion consume less storage space than
other schemes. Similarly, the codebook design is complex. And in the schemes with lossless ability,
the secret information can be losslessly recovered. The last weighted feature presents whether the
share images of each scheme have different weights.

From Table 3, we can know that our proposed scheme has some advantages than the competitive
schemes, such as: Multiple decryptions(OVSS and XVSS), lossless recovery and so on.

6. Conclusion

In this paper, we proposed a (k, n) weighted RG-VSS scheme with multiple decryptions and lossless
recovery. Our scheme shares the secret image into n shares with the same size of the original image
and has no pixel expansion. And our scheme also does not need a codebook to assist generating the
shares. Besides, in our scheme, each share has its own weight according to the level of importance
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of the participants who are holding them. When we get k or more shares stacked for decryption, we
will recover different levels of messages from the original image because of the different weights of the
stacked shares. Generally speaking, the decryption with higher weight shares can get more information
about the original image, and the decryption with lower weight shares will get less information on the
original image. In our scheme, the secret image can be recovered by OR and XOR operations. If we
have a lightweight device with the ability to calculate XOR. When we get all the n shares using the
XOR operation to recover the image, we can recover the secret image losslessly. And the experimental
results and analyses reveal that our scheme outperforms the related schemes. However, we can see that
our scheme has the limitation that the shares with different weights will have different average light
transmission. So the next work of our scheme is to solve the problem that the shares don’t have the
same average light transmission.

Table 3. Feature comparison with relative schemes.

Scheme Threshold Recovering measure No pixel expansion No codebook design Lossless weighted
Shamir, et al. [7] (k, n) OR

√ √
× ×

Wu, et al. [28] (k, n) OR
√ √

× ×

Yan, et al. [27] (k, n) OR/XOR
√ √ √

×

Hou, et al. [24] (2, n) OR
√

× ×
√

Yang, et al. [10] (2, n) OR
√

× ×
√

Fan, et al. [26] (k, n) OR
√ √

×
√

Our (k, n) OR/XOR
√ √ √ √
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