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Abstract: It is usually of great importance to identify modal parameters for dynamic analysis and 

vibration control of civil structures. Unlike the cases in many other fields such as mechanical 

engineering where the input excitation of a dynamic system may be well quantified, those in civil 

engineering are commonly characterized by unknown external forces. During the last two decades, 

stochastic subspace identification (SSI) method has been developed as an advanced modal 

identification technique which is driven by output-only records. This method combines the theory of 

system identification, linear algebra (e.g., singular value decomposition) and statistics. Through 

matrix calculation, the so-called system matrix can be identified, from which the modal parameters 

can be determined. The SSI method can identify not only the natural frequencies but also the modal 

shapes and damping ratios associated with multiple modes of the system simultaneously, making it 

of particular efficiency. In this study, main steps involved in the modal identification process via the 

covariance-driven SSI method are introduced first. A case study is then presented to demonstrate the 

accuracy and efficiency of this method, through comparing the corresponding results with those via 

an alternative method. The effects of noise contaminated in output signals on identification results 

are stressed. Special attention is also paid to how to determine the mode order accurately. 

Keywords: modal identification; stochastic subspace identification; civil structure; covariance 

driven; output only; operational modal analysis 

 

1. Introduction  

Modal analysis aims to identify the modal parameters of a dynamic system that include natural 
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frequency, damping ratio and modal shape. It usually involves as an essential part for studying 

structural dynamics, and provides prerequisite information for a wide branch of researches, such as 

assessment of dynamic responses, damage identification, vibration control and optimal design of 

dynamic structures.  

The pioneering works on modal identification can be traced back to the 1930s, with the majority 

conducted in the fields of mechanical engineering and aerospace engineering. Since the mid-1970s, 

investigations have been extended gradually to other fields. In recent years, due to the fast 

development of large-scale civil structures, modal analysis has been also received increasing 

concerns in civil engineering. Unlike the cases in mechanical/aerospace engineering where both the 

input (i.e., excitation) and output (response) information of the dynamic system is often available, 

those in civil engineering are usually characterized by an absence of input records. Consequently, the 

modal identification problems cannot be solved via the traditional transform-function-based methods 

which rely on both the input and output information. For example, it would be considerably costly 

and/or difficult for high-rise buildings and large-span bridges to be excited by artificial devices with 

a controllable pattern. For such cases, one may have to identify the modal parameters under a 

working condition, with the dynamic system subjected to ambient excitation (e.g., wind load or 

traffic load). This is usually termed as Operational Modal Analysis (OMA). 

Many OMA techniques have been developed. Clarkson et al. proposed a method by using cross 

function for lightly damped structures subjected to random excitation [1]. Akaike established the 

so-called auto-regressive (AR) model for modal identification of white-noise excited systems [2]. In 

1973, Ibrahim proposed a time-domain method by using structural response information. Later, 

Ibrahim and his cooperators modified the above method and developed the famous ITD method [3]. 

In 1973, Cole proposed the Random Decrement Technique (RDT) [4]. This method was further 

studied by Ibrahim et al. so that it becomes more meaningful from a mathematical viewpoint. In 

1993, Bendat et al. used the Peak Picking (PP) method [5,6] to determine the natural frequencies of a 

dynamic system. This method, however, tends to lose efficiency for cases with dense modes. Later, 

Brincker put forward the Frequency Domain Decomposition (FDD) method [7] which may be 

regarded as a modified version of the PP method. This method decomposes the response spectrum 

matrix into a set of single-degree-of-freedom power spectra by singular value decomposition (SVD), 

and then identifies the modal parameters of the system via the PP method. In 1995, James and Carne 

proposed the Natural Excitation Technology (NExT) method by using correlation function of output 

signal, and applied this method to identify the natural frequencies and damping ratios of steam 

turbine blades at a working state [8,9]. In 1998, Huang documented an Empirical Modal 

Decomposition (EMD) method, which forms the key step of the so-called Hilbert-Huang-Transform 

(HHT) [10]. The HHT method was soon used to deal with modal identification problems by peers [11,12]. 

Besides the above deterministic modal identification methods, techniques have been also developed 

in a Bayesian framework to quantify the uncertainty of estimation results. The Bayesian modal 

identification method was first documented by Beck and Katafygiotis [13], and further developed 

and applied in many following studies [14,15]. 

This study utilizes the Stochastic Subspace Identification (SSI) method which was firstly 

presented by Overschee and Moor in 1991. The SSI method identifies modal parameters from the 

so-called state space matrix based on either input-and-output records or output-only records. It 

involves a number of robust numerical techniques, such as QR decomposition, SVD and least-square 

fitting, which are of great importance for reducing computational amount and for suppressing noise 
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contaminated in both the datasets and the system model. The SSI method is currently acknowledged 

as one of the most advanced modal identification methods [16–18]. It overcomes some typical 

shortcomings associated with a frequency domain method, such as inadequacy for identification of 

closely-spaced modes and insufficient resolution in the frequency domain. More attractively, this 

method is able to identify modal frequencies, mode shapes and damping ratios of multiple modes of 

the system simultaneously, which makes it of pretty efficiency. Thus, it has been adopted widely for 

modal analysis since its debut [19–24]. 

It should be noted that responses of a dynamic system subjected to ambient excitation are 

commonly characterized by small amplitude and high level of noise. Although great achievements 

have been made for modal analysis based on output-only records via the above mentioned OMA 

techniques, continuous efforts are still needed to improve the estimation performances, including 

accuracy, stability and efficiency, of these methods. In this study, main steps involved in the modal 

identification process via the covariance-driven SSI method are introduced first. A case study is then 

presented to demonstrate the accuracy and efficiency of this method, through comparing the 

corresponding results with those via an alternative method. The effects of noise contaminated in 

output signals on identification results are stressed. Special attention is also paid to how to determine 

the mode order accurately. 

2. State-space model of dynamic systems 

2.1. Continuous-time form 

The dynamics of a multi-degree-of-freedom (MDOF) system can be expressed by: 

1( ) ( ) ( ) ( )MU t DU t KU t f t          (1) 

in which, 1 1

1, ,
n nM D K 

 respectively stand for the mass, damping and stiffness matrices;

1 1( ) nU t  is the displacement vector at time instant t; 1 1

1( )= ( )
nf t H u t 


 
denotes the external 

excitation which can be factorized in a matrix 1( ) mu t   and a matrix 1

1

n m
H


 , with ( )u t  

describing the m inputs in time and 
1H  describing the inputs in space, respectively. 

For practical convenience, the above equation is conventionally converted into the state-space 

form [25,26]. Let’s denote ( ) ( ) ( )
T

x t U t U t     as the state-space vector of the dynamic system, 

Equation (1) can be then rewritten as: 

     c cx t A x t B u t          (2) 

where, 

javascript:;
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1 1 1

1 1

0 0
= =c c

I
A B

M K M D M H  

   
   
    

       (3) 

in which, 1 12 2n n

cA


  is the state matrix, 12n m

cB 
  is the input matrix. Note that the dimension of 

the state-space vector equals to the number of independent variables required to describe the system. 

On the other hand, as the output of dynamic systems is generally measured in terms of 

acceleration, velocity and displacement, the output vector can be expressed as: 

( ) ( ) ( ) ( )a v dy t C U t C U t C U t          (4) 

where, 
1( ) ly t   denotes the output, and 1, ,

l n

a v dC C C 
 are the outputs matrices for 

acceleration, velocity and displacement, respectively.  

Substituting (1) into (4) gives: 

1 1 1

1 1( ) ( ) ( ) ( ) ( ) ( )v a d a ay t C C M C U t C C M K U t C M H u t           (5) 

or: 

( ) ( ) ( )c cy t C x t D u t          (6) 

with 

1 1

1

1

1

c d a v a

c a

C C C M K C C M D

D C M H

 



    


       (7) 

where, 1l n

cC


 is the output matrix, and l m

cD  is the direct transmission matrix. 

Eqs 2 and 6 collectively refer to the state-space model of the continuous-time system. In reality, 

however, as the output signals of studied systems are usually provided in a discrete-time form, the 

state-space model of the continuous-time system needs to be converted into the corresponding 

discrete form. 

2.2.  Discrete-time form 

The integration form of Eq 2 can be readily derived as follows:  

   
0

0 0( ) exp ( ) ( ) exp ( ) ( )
t

c c c
t

x t A t t x t A t B u d           (8) 

in which, t0 denotes the initial time. 

Let ( 1)t k t   , 0t k t  , =t   , with k being a non-negative integer, and denote the state 
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vector ( )x k at time k t as ( ) ( )x k x k t  . By assuming that ( )u   remains as unchanged within 

each sampling interval t , Eq 8 turns to be: 

  ' '

1
0

exp ( exp( ) )
t

k c k c c kx A t x A d B u 


           (9) 

Thus, Eqs 2 and 6 can be rewritten as the discrete form: 

1k k kx Ax Bu             (10) 

k k kuy Cx D            (11) 

in which, =exp( )cA A t is termed as the state matrix of the discrete-time system, and 
' '

0
( exp( ) )

t

c cB A d B 


=  is termed as the input matrix. 

2.3.  Stochastic state-space model 

Under real conditions, there are always external disturbances, modeling errors and measurement 

errors of the instrument. They are often referred to as noise. An overview of the linear time-invariant 

stochastic system is depicted in Figure 1. Denoting the noise caused by external environment as wk 

and the one caused by measurement errors as vk, and assuming that wk and vk are of mutually 

irrelative zero-mean white noise processes, one has: 

 

Figure 1. An overview of the linear time-invariant stochastic system. 

 p T T

q q pqT
p

w Q S
E w v

v S R


    
    

     

       (12) 

,T T T

p q p q p qQ E w w S E w v R E v v            ，       (13) 

where, E is a mathematical expectation operator, subscripts “p” and “q” represent two time instants, 

pq  is the Kronecker delta function whose value Equals to one for q= p and to zero for q≠ p, 

respectively. 
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To take into account the noise effects, the discrete-time form of the state-space model can be 

expressed as: 

1k k k kx Ax Bu w             (14) 

k k k ky Cx Du v            (15) 

In the field of civil engineering, because it is usually difficult to quantify the external excitations 

through measurements, and more importantly, the external forces (e.g., wind load) commonly feature 

stochastic characteristics, for practical convenience, the input item uk in Eqs 14 and 15 are 

conventionally regarded as a zero-mean white-noise process. Therefore, the last two items in the 

right-hand side of Eqs 14 and 15 can be respectively merged into a single zero-mean white-noise 

process: 

1k k kx Ax w            (16) 

k k ky Cx v           (17) 

where, for description convenience, the merged white-noise processes are expressed as the same 

form of the noise items wk and vk. 

2.4.  Properties of stochastic state-space model 

The SSI method is developed on the basis of the stochastic state-space model, in which the 

modal parameters of a dynamic system are determined via the state matrix A and the output matrix C. 

This section specifies the derivation process of the above two matrices by using output-only 

measurements. 

Because both wk and vk belong to zero-mean white-noise processes, it is straightforward that

[ ] 0k kE w x  , [ ] 0k kE v x  . 

Denoting the auto-covariance matrix of the sate vector as = T

k kE x x    and the covariance 

matrix between the state vector and output vector as +1= T

k kE x yG    , it can be deduced that: 

  
T T

k k k kE Ax w Ax w A A Q       
 

      (18) 

  
T T

k k k kE Ax w Cx v A C SG       
 

      (19) 

Similarly, the auto-covariance matrix of the output vector, i.e., 0 , is expressed as: 
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  0 =
TT T

k k k k k kE y y E Cx v Cx v C C R           
     (20) 

Meanwhile, it can be deduced from Eq 17 that: 

1 2

1 2 1

i i i

k i k k k k i k ix A x A w A w Aw w 

                 (21) 

Therefore, 

   1= = =
TT i

i k i k k i k i k kE y y E Cx v Cx v CA G

  
       

     (22) 

Eqs 18–20 and 22 establish a close-form relationship between the output covariance and the 

state matrix A and output matrix C. Thus, the stochastic model can be identified. 

3. Modal identification via covariance-driven SSI method 

This section introduces the basic theory of the covariance-driven SSI method. There are two 

basic steps involved in the covariance-driven SSI method: (1) to obtain the system matrix via SVD 

from the covariance matrix of output vector; (2) to identify the modal parameters of studied system 

from the system matrix.  

Details of the methodology are shown in Figure 2. This method starts with constructing the 

so-called Hankel matrix from the output data. Through projection operations, the Hankel matrix can 

be used to obtain the Toeplitz matrix which contains sufficient information for determining the 

system matrix (i.e., A and C). Another attractive merit by using the Toeplitz matrix lies in that it can 

reduce the amount of analytical data significantly while maintaining the original information of the 

signal. Then the system matrix can be recognized via SVD manipulation. Finally, the modal 

parameters of the structure can be identified via eigenvalue decomposition. 

 

Figure 2. Flowchart of covariance-driven SSI method. 

3.1.  Hankel matrix 

The Hankel matrix plays an important role in the SSI method [17,27]. It can be constructed 

from the output data directly. Define the output Hankel matrix as: 
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0 1 1

2 1 3

1 2 0/ 1
0/2 1

1 1 /2 1

1 2

2 1 2 2 2

( )
1 1 1 1

=

j

i i i j

i i i j pi
i

i i i j i i f

i i i j

i i i j

H

y y y

y y y

y y y YY

y y y
Y

j j j jY Y

y y y

y y y



   

   


   

  

  

 
 
 
 
 

      
 

 
 
 
 
  

   (23) 

in which, the Hankel matrix Y0/2i-1 is a matrix consisting of “2i” block rows and j columns, with each 

row composed of l sub-rows, l being the number of output channels ( 1l

ky  ). Note that i and j are 

two key parameters involved in the SSI method which can influence the identification results 

markedly. This will be discussed in details in the case study section. Basically, to guarantee that the 

recognition algorithm is statistically meaningful, it is theoretically required that j should be infinitely 

large. In reality, however, the above requirement can be only roughly satisfied since the output 

signals are always finite in length. In Eq 23, Y0/2i-1 is divided into two parts: “the past” and “the 

future”, which are denoted as Yp (past), Yf (future) respectively. Both Yp and Yf consist of i block rows. 

The value of i can be determined somewhat artificially, given that it should be no less than the 

maximum computational mode-order of the system [12]. On the other hand, for computational 

efficiency, i should not be too large [28]. 

3.2.  Output covariance matrix 

Define the output covariance as [ ]T

i k i kE y y  . By assuming that the output data belongs to 

an ergodic process, i  can be estimated via the associated estimator ˆ
i : 

1

0

1ˆ
j

T

i k i k

k

y y
j







             (24) 

By using Eq 23, the Toeplitz matrix Tl/i can be readily obtained as follows: 

1 1

/

1 2

2 1 2 2

i i

i i

f

i i i

T

l i pT Y Y





 

   
 
  

 
 
 
   

         (25) 

Using the Toeplitz matrix of covariance sequence can reduce the computational amount during 

the modal analysis significantly, and thus improve the efficiency. It can be seen that after the above 

manipulation, the output data is changed from an original form of the Hankel matrix with a 

dimension of 2li × j to that of the Toeplitz matrix whose dimension is only li × li. 



5717 

Mathematical Biosciences and Engineering  Volume 16, Issue 5, 5709–5728. 

3.3.  Toeplitz matrix decomposition 

Substituting Eq 22 into Eq 25 leads to: 

1 2

1

2 2 2 3 1

/

i i

i i

f

i i

T

p

i

l i

CA G CA G CG

CA G CA G CAG

CA G CA G CA

T Y Y

G

 



  

 
 
 
 
 
 

        (26) 

which can be equally written as: 

 1

1/

1

= i

i i

i

i

C

CA
A AG G

CA

T 



 
 
    
 
 
 

       (27) 

with: 

 1
T

i

i C CA CA           (28) 

 1i

i A G AG G          (29) 

where, 
i ,

i  respectively represent the so-called extended observable matrix and the inversely 

extended controllable matrix. 

Through SVD manipulation, the Toeplitz matrix can be decomposed as follows: 

  1 1

1/ 1 2 1 1 1

2

0
=

0 0

T

T T

i T

S V
T USV U U U S V

V

  
    

   
      (30) 

1 1 2 1[ ] 0i n nS diag                 (31) 

where, U and V are orthogonal matrix with 12

1 1,
li n

U V


 , while S is a diagonal matrix 1 12 2

1

n nS 
 , 

with the number of nonzero elements indexing the rank of the matrix, or the computational order of 

the studied dynamic system. 

Reforming Eq 30 as follows: 

1/2 1 1/2

1/ 1 1 1 1 1 1 1( )( )T T

iT U S V U S T T S V         (32) 

in which, T is a non-singular matrix with an order equal to n. Particularly, one can use the unit matrix 

I instead of T. 

Replacing T with I in the above equation, and comparing this equation with Eq 27, one has: 
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1/2

1 1i U S            (33) 

1/2

1 1

T

i S V            (34) 

Based on Eqs 30 and 32–34, T2/i+1 can be deduced: 

1 2

2 1 3

2 2 1 1

2/ 1i

i i

i i

i

i

i i

iT A









 

   
 
  
 
 
 
  

 





     

 

 

(35) 

It is clear that T2/i+1 can be calculated directly based on the output records. Substituting Eqs 

33–34 into the above equation results in: 

1/2 1/2

1 1 2/ 1 1 1

T

iA S U T V S 

         (36) 

From Eqs 28–29, the matrix C is a sub-matrix, or the first l rows, of 
i ; while the matrix G is 

the last l columns of 
i . Thus, both of the matrices A and C can be determined. 

3.4.  Modal parameters 

On obtaining the state matrix A and output matrix C, the modal parameters of the dynamic 

system can be identified according to the following analysis. 

Through eigenvalue decomposition, A can be reformed as: 

1A            (37) 

where, is a diagonal matrix which contains complex eigenvalues of the system, and Ф is a matrix 

composed of eigenvectors. 

From Eq 10, the state matrix of discrete-time system A correlates with the one of the 

continuous-time system Ac via the following relationship: 

cA t
A e


           (38) 

According to Eqs 37–38, it is clear that: 

1
1c c c c tt

c cA e e
                 (39) 

in which, ,c c   are the counterparts of   and Ф for the continuous-time system. 

Based on the above equation, the relationship of eigenvalues between the continuous-time 
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system and the discrete-time system can be deduced: 

ci t

i e
 

           (40) 

On the other hand, the eigenvalues of matrix Ac correlate with the natural frequency i and 

damping ratio
i  of the system via: 

2, 1ci ci i i i ij                (41) 

The values of fi and 
i  can be then computed as follows: 

2 2

2

i i

i

a b
f




           (42) 

2 2

i
i

i i

a

a b






          (43) 

where, a and b are the real part and imaginary part of the eigenvalue: 

,ci ci i ia jb              (44) 

The mode shape of the system is: 

=C             (45) 

So far, all the modal parameters of natural frequencies, damping ratios and mode shapes 

associated with multiple modes of the system can be determined. 

3.5. Determine system order via stability diagram method 

A crucial step involved in the modal analysis via the SSI method lies in the determination of 

computational order of the system n. This parameter should be pre-assigned before identifying the 

modal parameters from the system matrices. 

Some methods exist for determining the value of this parameter. Theoretically, it can be 

determined as the number of non-zero singular values of the Toeplitz matrix (refer to Eq 31). To take 

into account the noise effect in practice, it may be determined as the number of the first several 

descending singular values after which a distinct jump of the amplitude of singular values appears. 

Unfortunately, the above method tends to lose efficacy for the cases of ambient-excited civil 

structures, since the associated output records are usually contaminated with much more severe 

noise. 

In reference to the above problem, Reynders et al. studied the uncertainty bounds of modal 

parameters identified via the SSI method, and proposed the stability diagram method [29]. The basic 
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ideal of this technique is that the true modes correspond to more stable values of modal parameters 

than those of false modes which are usually caused by noise. Thus, one can estimate modal 

parameters via the SSI method for multiple times, with the computational order for each time varying 

at an acceptable interval within a certain range. Then, the identified values of a nominal modal 

parameter can be plotted against the computational order. Statistically, the false modes can only be 

identified occasionally, while the true modes should exist more stably. Therefore, a reasonable 

computational order can be recognized according to the above stability diagram where only the 

stable (or true) modes exist in the estimation results. 

Figure 3 shows the flowchart of using the stability diagram method to recognize the mode order. 

One can compare the estimation results of each modal parameter for any two computational times 

that are associated with two adjacent computational mode orders. If the difference between the two 

kinds of results is less than a critical level, the identified modal parameters can be regarded as stable. 

For the natural frequency f, the above critical level may be treated as the frequency resolution. 

For example, if a critical level of 0.01 Hz is adopted to judge the stability of identified natural 

frequency, and the difference of f between two adjacent computational mode orders is less than 0.01 

Hz, then 0.01 Hz is the frequency resolution of identified f results. 

Compared to f, the damping ratio   becomes more sensitive to noise effects. Thus, the 

identified damping values for different computational times may vary significantly from one another. 

It is, therefore, less reasonable to set the critical level in an absolute form. Instead, a relative form 

can be adopted: 

-
0.05

 


           (46) 

where,   is the average of identified damping ratios, and 0.05 is the critical level in the relative 

form. 

 

Figure 3. Flowchart of the stability diagram method. 
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For the mode shape, the similarity between two mode shape vectors{ } and{ }  can be 

quantified according to the Modal Assurance Criterion (MAC) [30]: 

2

{ } ,{ }
({ },{ })

({ } ,{ })({ } ,{ })

T

T T
MAC

 
 

   
       (47) 

For MAC = 1.0, it means that the two mode shape vectors are identical, while for MAC = 0, it 

means that the two vectors are completely different. Conventionally, the mode shape can be 

considered as acceptably consistent for MAC > 0.8–0.9. 

4. Alternative modal identification method 

In this study, an alternative modal identification method is also exploited for comparison 

purpose. This method is actually a combination of power spectral analysis and the Random 

Decrement Technique (RDT). Two specific methods are utilized to estimate the Power Spectral 

Density (PSD): the Welch method and the Yule-Walker method. One may resort to [31–33] for 

details about these methods. Based on the PSD estimation results, the natural frequencies can be 

identified by using the PP method, given that the modes are not closely spaced in the frequency 

domain. The single degree of freedom (SDOF) response component can be then separated from the 

output signal through filtering. The mode shape for each separated mode can be further determined 

via the cross-spectrum method based on SDOF responses at varied test points, or simply, by 

comparing the RMS (i.e., root mean square) values of the SDOF responses at different test points 

(refer to as RMS method, hereafter) [34]. 

The RDT method is a widely adopted time-domain technique to investigate the 

amplitude-dependence of natural frequency and damping ratio [35–37]. This method starts with the 

idea that the total response of a single degree of freedom (SDOF) dynamical system is superimposed 

by three components which are respectively associated with an initial displacement x0, an initial 

velocity 
0x , and the external input 

force at time instant t: 

0 0 ( )T x x F tx x x x            (48) 

Compose a signature as: 

ˆ ˆ( ; ) {sgn[ ( )] ( ) ( ) , ( ) 0}a x E x t x t x t x x t    
     

(49) 

where, sgn represents the sign operation, { }E x C is the conditional expectation under the triggering 

condition C, is the length of each sample involved in the signature, with x̂  being the initial 

amplitude of the sample.  

By assuming that the external load can be treated as a zero-mean white noise process, it is clear 

that both the velocity-related and force-related response components tend to vanish in the signature, 
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leaving only the x0-related component. By choosing different levels of displacement threshold x̂ , a 

series of signatures can be calculated. The damping ratio   can be then determined by fitting the 

envelope of each signature: 

0ˆ ˆ= [sgn( ) ]a E x x e
  

( )         (50) 

where, the radian natural frequency 
0  can be estimated through PSD analysis from the output 

signal. 

Note that although the RDT method is developed based on the displacement output records, this 

method can be practically operated on acceleration signals as well [38]. 

5. Case study 

A case study is presented in this section to demonstrate the model identification process via the 

SSI method. As shown in Figure 4a, the studied civil structure is a pedestrian bridge. The experiment 

was conducted under weak wind conditions, and consequently, the structure should be mainly 

subjected to vehicle-induced environmental excitation. Six tri-axial wireless accelerometers (Product 

model: JM3873) were utilized and fixed at different positions above the bridge deck. All the 

accelerometers had been calibrated and synchronized carefully before test. The experiment lasted for 

1 hour. During the experiment, acceleration responses of the bridge at each testing point were first 

low-pass filtered and then sampled respectively at 32 Hz and 64 Hz. Figure 5 shows the time history 

of collected acceleration response at point No. 3 (Figure 4b). 

The PSD of the acceleration response of the test bridge is first studied. The block length 

involved in the Welch method is set as 2
13 

= 8192 so that a frequency resolution no rougher than 0.01 Hz 

can be achieved. The order of the Yule-Walker method is taken as 500. Figure 6 shows the results for 

the vertical response from sensors No. 3 and No. 4 (Figure 4). As can be seen, the two kinds of 

results show good agreement, which indicates the effectiveness of both methods. There are four 

distinct peaks identified in the range below 10 Hz, i.e., 2.06 Hz, 3.12 Hz, 6.81 Hz, and 8.11 Hz. 

These peaks should correspond to the first four modes of the bridge. 

 

 

Figure 4. Tested pedestrian bridge (a) and location of adopted accelerometers (b). 

(a) 

(b) 
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Figure 5. Time history of acceleration response at one test point from the bridge. 

  

Figure 6. Comparison of PSD results estimated via two methods. 

Figure 7 shows the some typical results of the damping ratio estimated via the RDT method. It 

is clear that the random decrement signature can be well regarded as a free decay curve of a damped 

SDOF system. The estimated damping ratios at the two test points for the 2
nd

 mode under the 

concerned amplitude condition (i.e., ~2 mm/s
2
) are consistently equal to 0.52%. 

Figure 8 shows the stability diagram obtained via the SSI method which is overlaid by the PSD 

estimation results. During the modal analysis process, three values of the block line number i 

involved in the Hankel Matrix are considered, i.e., 50, 75, and 100; while the computational mode 

order n is set to range from 2 to 100. The critical levels for natural frequency, damping ratio (in a 

relative form) and mode shape (i.e., MAC) are set as 0.01, 0.05 and 0.95, respectively.  

 

Figure 7. Two typical RD signatures with fitting results (N is the sample number). 
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Figure 8. Stability diagram (markers) obtained via SSI method overlaid by PSD result 

(red curve)—(a), (b), and (c) correspond to the stability diagrams associated with i = 50, 

75, 100; (d) is a zoom-in view of (c).(‘▽’ for a pole with stable frequency; ‘+’ for a pole 

with stable frequency, damping ratio; ‘○’ for a pole with stable frequency, damping ratio 

and mode shape). 

Through comparison, it is seen that the modal identification results via the stability diagram 

method agree basically well with those obtained through PSD analysis, if the order of the system 

matrix involved in the SSI method is set in a range of 8–18, or equally the computational mode order 

is set in a range of 4–9. The results also demonstrate that the stability diagram method fails to 

provide accurate modal identification results when the values of i are too small. On the other hand, if 

i is set as a too large value, the obtained results would be contaminated with some false modes. It 

should be noted that the first mode component occupies only a considerably low proportion in the 

total response for this study. Due to the severe noise effects, the stable poles associated with this 

mode cannot be well identified via the stability diagram method. 

Table 1 lists the modal parameters for the first four modes of the pedestrian bridge identified via 

both the covariance-driven SSI method and the alternative method, while Figure 9 compares the 

mode shapes determined via the above two methods. Basically, the two kinds of results agree well 

with each other, which demonstrates the effectiveness of both kinds of methods. Note that the SSI 

method can provide identification results of natural frequency, damping ratio and mode shape for 

multiple modes simultaneously. Thus, it is much more efficient than the alternative method which 

focuses either on one modal parameter or on a single mode. 

 

(a) (b) 

(c) (d) 
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Table 1. Information of identified vertical modes of pedestrian bridge. 

 Modes 
1

st
 mode

 
2

nd 
mode

 
3

rd
 mode

 
4

th 
mode 

East West East West East West East West 

f (Hz) 

RDT 2.03 2.05 3.12 3.12 6.81 6.81 8.14 8.15 

SSI 2.03 2.01 3.11 3.11 6.82 6.82 8.17 8.19 

Diff. (%) 0 1.07 0.32 0.32 0.15 0.15 0.37 0.49 

 (%) 

RDT 2.89 2.64 0.52 0.52 0.15 0.15 0.44 0.41 

SSI 2.59 2.84 0.57 0.55 0.15 0.14 0.36 0.42 

Diff. (%) 10.4 7.04 9.62 5.77 0 6.67 0.18 2.38 

Note: Diff. = (RDT-SSI)/RDT. 

 

Figure 9. The first three mode shapes of the vertical direction. 

6. Conclusion 

During the last decades, the SSI method has been developed as an advanced modal 

identification technique which is driven by output-only records. In this study, main steps involved in 

the modal identification process via the covariance-driven SSI method are introduced first. A case 

study on a real bridge is presented to illustrate the applicability of this method. The natural 

frequencies, damping ratios and mode shapes identified with the SSI method are found to agree well 

with the results obtained via an alternative method. 

There are some overwhelming advantages of the SSI method compared to other traditional 

modal identification methods. Typically, the SSI method can identify not only the natural frequencies 

but also the modal shapes and damping ratios associated with multiple modes of the system 

simultaneously, making it of particular efficiency. Meanwhile, since the SSI method uses a series of 

powerful mathematical tools (SVD, QR decomposition, etc.), it possesses attractively good 

anti-noise ability. Moreover, the SSI method is able to work effectively for cases with closely spaced 

modes. These merits facilitate the SSI method to be exploited widely in dealing with OMA problems. 

It is stressed that great attention should be needed for determining the computational mode 

order when one uses the SSI method for modal analysis. It is found in this study that when the energy 

contained in a SDOF response component is too limited, the SSI method may fail to work effectively 

due to the severe noise effects. Thus, continuous efforts are required to improve the working 
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performance of the SSI method for such cases. 
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