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Abstract: In this paper, we considered a mathematical model describing the nonlinear susceptibles-
guided vaccination and isolation strategies, incorporating the continuously saturated treatment. In
this strategy, we find that the disease-free periodic solution can always exist, and consequently the
control reproduction number can be defined through analyzing the stability of the disease-free periodic
solution. Also, we discussed the existence and stability of the positive order-1 periodic solution from
two points of view. Initially, we investigated the transcritical and pitchfork bifurcation of the Poincaré
map with respect to key parameters, and proved the existence of a stable or an unstable positive order-1
periodic solution near the disease-free periodic solution. For another aspect, by studying the properties
of the Poincaré map, we verified the existence of the positive order-1 periodic solution in a large range
of the control parameters, especially, we verified the co-existence of finite or infinite countable different
positive order-1 periodic solutions. Furthermore, numerical simulations show that the unstable order-1
periodic solution can co-exist with the stable order-1, or order-2, or order-3 periodic solution. The
finding implies that the nonlinear susceptibles-triggered feedback control strategy can induce much
rich dynamics, which suggests us to carefully choose key parameters to ensure the stability of the
disease-free periodic solution, indicating that infectious diseases die out.

Keywords: SIR model; nonlinear state-dependent feedback control; Poincaré map; disease-free
periodic solution; transcritical and pitchfork bifurcation; positive order-k periodic solution

1. Introduction

In recent decades, the public health system is severely affected by the outbreak and re-occurrence
of infectious diseases, which also causes social turbulence and economic retrogression. Many
mathematical models are proposed and analyzed to investigate the dynamics of infectious
diseases [1–9]. Comprehensive interventions, such as vaccination, treatment and isolation, are
estimated to be effective for controlling the spread of infectious diseases [10–17], among which many
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researches studied the saturated continuous treatment related to limited medical resources [12–14].
The SIR model with continuously saturated treatment gives:

dS (t)
dt = A − βS I − δ1S ,

dI(t)
dt = βS I − δ2I − γI − εI

1+ωI ,
dR(t)

dt = γI − δ1R + εI
1+ωI ,

(1.1)

where S , I and R are the populations of susceptible, infected, and recovered, respectively. A represents
the constant recruitment rate, β is the transmission rate, γ is the recovery rate, δ1 denotes the natural
death rate, and δ2 denotes the death rate of class I including both the natural death rate and the disease-
related death rate, hence, it is reasonable to assume δ1 < δ2. The term εI

1+ωI represents the saturated
treatment. Note that the above model assumes that the recovered individuals cannot be infected again,
hence the class R doesn’t affect the dynamics of system (1.1). Therefore, one only needs to consider
the following reduced model: { dS (t)

dt = A − βS I − δ1S ,
dI(t)

dt = βS I − δ2I − γI − εI
1+ωI .

(1.2)

Impulsive differential equations, including fixed-moments and state-dependent impulsive strategies,
were widely used and have raised human’s concern. Fixed-moments impulsive models assume that
measures are carried out at fixed discrete times. Using this type of models [17–21, 33, 34, 36, 37],
researchers can investigate the existence and stability of the disease-free periodic solution. However,
these models described that control measures were implemented every fixed time without knowing
the number of infected and susceptible individuals and the prevalence of infectious diseases, which
may waste the medicine resources [17, 19, 20, 24]. Therefore, it is more reasonable to propose state-
dependent impulsive models, in which the implementation of vaccination and isolation is determined
by whether the size of infected or susceptible population reaches the threshold level. Traditional state-
dependent impulsive mathematical models [16,31,35] considered the size of infected population as an
index to trigger impulsive interventions, in which no disease-free periodic solution is feasible and this
strategy is unable to eradicate infectious diseases. Moreover, this makes it challengeable to define the
basic (or control) reproduction number for impulsive models.

Therefore, a natural consideration is whether or not the susceptibles-guided impulsive
interventions can successfully control and finally eradicate infectious diseases, and how this strategy
affects the dynamical behaviors. The novel idea comes from the control of measles infection, in which
the number of susceptible individuals (or the level of susceptibility) is higher than or exceeds a certain
level, then the vaccination will then be implemented [22, 23]. Moreover, there are some researches
investigating the effectiveness of the susceptible-triggered interventions and showing that the
susceptible-triggered interventions are promising and effective strategies [24–27]. Particularly,
studies [24, 25] have considered the susceptibles-triggered impulsive interventions on SIR models.
They assumed that the vaccination rate and isolation rate are linearly dependent on the number of
susceptible and infected individuals, respectively. However, in reality, vaccination and isolation are
often restricted by limited medical resources [28, 29], which can be expressed as saturation functions:

p1(t) =
pS (t)

h1 + S (t)
, q1(t) =

qI(t)
h2 + I(t)

,
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where p ∈ (0, 1) denotes the maximal vaccination rate of susceptible population, and q ∈ (0, 1) is
the maximal isolation rate of infected individuals. h1 and h2 denote the half-saturation constants of
susceptible and infected individuals, respectively. Therefore, based on (1.2), we propose the following
state-dependent impulsive model with susceptibles-guided comprehensive saturated interventions:

dS (t)
dt = A − βS I − δ1S ,

dI(t)
dt = βS I − δ2I − γI − εI

1+ωI ,

}
S (t) < S T ,

S (t+) =
(
1 − pS (t)

h1+S (t)

)
S (t),

I(t+) =
(
1 − qI(t)

h2+I(t)

)
I(t),

 S (t) = S T ,

(1.3)

where S T represents the threshold level of the number of susceptible individuals determining whether
to implement the impulsive control strategies or not. The main purpose of this study is to analyze the
mathematical model describing the susceptibles-guided comprehensive saturated interventions
(including impulsive vaccination and isolation, and continuous treatment), and further evaluate the
effectiveness of this strategy for controlling the spread of infectious diseases.

The rest of this paper is organized as follows. In the next section, we give some basic definitions of
the planer impulsive semi-dynamical system. In Section 3, we discuss the existence and stability of the
disease-free periodic solution. Then, in the next two sections, we investigate the dynamic behaviors
of our proposed model through discussing the existence and stability of the positive order-1 periodic
solution. Specifically, in Section 4, we study the existence and stability of the positive order-1 periodic
solutions through investigating the bifurcations near the disease-free periodic solution. In Section 5,
we define the impulsive set and phase set of the Poincaré map of our proposed model and further
discuss the positive order-1 periodic solutions in a large range of the control parameters by examining
the properties of the Poincaré map including monotoniciity, continuity, discontinuity and convexity. In
section 6, we finally give some conclusions and discussions.

2. Preliminaries and Poincaré map

We describe the generalized planer impulsive semi-dynamical system with state-dependent
feedback control as: {

dx
dt = P(x, y), dy

dt = Q(x, y), if φ(x, y) , 0,
∆x = a(x, y), ∆y = b(x, y), if φ(x, y) = 0.

(2.1)

Here (x, y) ∈ R2
+ = {(x, y) : x ≥ 0, y ≥ 0}, ∆x = x+ − x and ∆y = y+ − y. P,Q, a, b are continuous

functions from R2
+ to R. The impulsive function ψ : R2

+ → R2
+ can be defined as

ψ(x, y) = (x+, y+) = (x + a(x, y), y + b(x, y)),

and z+ = (x+, y+) is called an impulsive point of z = (x, y). In this study, we focus on the special state-
dependent impulsive model (1.3). We start with concluding the main dynamics of the ODE subsystem.

The dynamical behaviors of subsystem (1.2) have been discussed in [14], here we just recall them
briefly. Consider the region Ω = {(S , I) : S + I ≤ A

δ1
, S , I ≥ 0} as a positively invariant set of

system (1.2), and denote the basic reproduction number of system (1.2) as:

R0 =
Aβ

δ1(δ2+γ+ε) . (2.2)
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It is easy to see that system (1.2) always has a disease-free equilibrium E0 = (A/δ1, 0), which is globally
stable if there is no endemic equilibrium. The existence of the endemic equilibrium depends on the
solutions of the following equations:{

A − βS I − δ1S = 0,
βS I − δ2I − γI − εI

1+ωI = 0.

Solving above equations yields
I2 + b1I + b2 = 0,

with
b1 =

(δ2+γ)(β+ωδ1)+βε−Aβω
βω(δ2+γ) , b2 =

δ1(δ2+γ+ε)−Aβ
βω(δ2+γ) =

δ1(δ2+γ+ε)
βω(δ2+γ) (1 − R0) .

As we can see, b2 ≤ 0 holds true if and only if R0 ≥ 1.
Denote

I1 = −b1+
√

∆

2 , S 1 = A
βI1+δ1

, and

I2 = −b1−
√

∆

2 , S 2 = A
βI2+δ1

, with ∆ = b2
1 − 4b2,

and solve ∆ = 0 in terms of R0, we obtain R0 = R̃0 with

R̃0 =

A (δ2 + γ)
(
δ2 + γ +

(
ω
√

A +
√
εω

)2
)

(δ2 + γ + ε)
(
(δ2 + γ)

(
δ2+γ

ω
+ 2

(
A + ε

ω

))
+ ω

(
A − ε

ω

)2
) .

Therefore, we obtain the following results regarding the existence of the endemic equilibria.

Proposition 2.1. For subsystem (1.2):
(1) When R0 > 1, there exists a unique endemic equilibrium E1 = (S 1, I1), as shown in Figure 1;
(2) When b1 ≥ 0, subsystem (1.2) can undergo a forward bifurcation at R0 = 1, and there exists no
endemic equilibrium if R0 ≤ 1;
(3) When b1 < 0, subsystem (1.2) undergoes a backward bifurcation at R0 = 1 with a saddle-node
bifurcation happening at R0 = R̃0. Specifically, there exist two endemic equilibria E1 = (S 1, I1) and
E2 = (S 2, I2) if R̃0 < R0 < 1 while the two equilibria coincide into one endemic equilibrium when
R0 = R̃0, and there exists no endemic equilibrium if R0 < R̃0.

Next, we show the stability and bifurcation phenomenons of the endemic equilibria of subsystem
(1.2). The characteristic equation at the endemic equilibria is shown as:

λ2 + H(Ii)λ + G(Ii) = 0, i = 1, 2,

where

H(Ii) = δ1 + βIi −
εωIi

(1 + ωIi)2 , G(Ii) =
Aβ2Ii

δ1 + βIi
−

(δ1 + βIi)εωIi

(1 + ωIi)2 .

Based on the main conclusions in [14], we obtain that equilibrium E2 is always an unstable saddle
point if it exists, and we conclude the results for the stability of equilibrium E1 as follows.

Proposition 2.2. When R0 > 1 or 1 > R0 > R̃0 and b1 < 0, subsystem (1.2) can undergo a Hopf
bifurcation around equilibrium E1 at the surface H(I1) = 0. Corresponding to the Hopf bifurcation,
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subsystem (1.2) can either have a stable or an unstable limit cycle, as shown in Figure 1(C) and Figure
1(D). Moreover, the endemic equilibrium E1 of subsystem (1.2) is a stable node (Figure 1(A)) or focus
(Figure 1(B)) if H(I1) > 0, while E1 is an unstable node or focus if H(I1) < 0, and subsystem (1.2) has
at least one closed orbit in region Ω.

Therefore, from Proposition 2.2, we obtain that when R0 > 1 and H(I1) > 0, then the endemic
equilibrium E1 is stable, while when R0 > 1 and H(I1) < 0, the endemic equilibrium E1 is unstable and
there is at least one closed orbit. Particularly, if there is a unique closed orbit, it is stable as shown in
Figure 1(C). In order to address the dynamics of system (1.3), we conduct the Poincaré map. Denote
the two isolines of subsystem (1.2) as follows:

l1 : Ṡ = A − βS I − δ1S � P(S , I) = 0,
l2 : İ = βS I − δ2I − γI − εI

1+ωI � Q(S , I) = 0.

Furthermore, we define two sections as:

l3 : S S T = {(S , I)|S = S T , I ≥ 0}, l4 : S S v =
{
(S , I)|S =

(
1 − pS T

h1+S T

)
S T � S v, I ≥ 0

}
.

Thus, we can define the impulsive function ψ(S , I) as:

ψ1(S , I) =
(
1 − pS (t)

h1+S (t)

)
S (t), ψ2(S , I) =

(
1 − qI(t)

h2+I(t)

)
I(t) � w1(I).

In the current study, we set the section S S v as a Poincaré section. Choose an initial point P+
k = (S v, I+

k )
on the Poincaré section. If the orbit starting from P+

k reaches S S T at a finite time, we denote the
intersection point as Pk+1 = (S T , Ik+1), then after the impulsive intervention, the trajectory will jump
to P+

k+1 = (S v, I+
k+1) on section S S v with I+

k+1 = w1(Ik+1). Following from the existence and uniqueness
of solutions, Ik+1 is uniquely determined by I+

k , thus we can define a function g with g
(
I+
k

)
= Ik+1.

Therefore, we can define the Poincaré map PM for system (1.3) as:

PM : I+
k+1 = w1(Ik+1) = w1(g(I+

k )) � PM(I+
k ).

It is worth noting that the domain and range of Poincaré map PM, which we will give detail analyses
in Section 5, are strictly determined by the dynamical behaviors of ODE subsystem (1.2). From the
main results in Proposition 2.1 and Proposition 2.2, we can conclude the four cases of the dynamics of
subsystem (1.2) as follows:

(C1) R0 < 1 and b1 ≥ 0 or R0 < R̃0 (i.e., there is no endemic equilibrium);
(C2) R̃0 < R0 < 1 and b1 < 0 (i.e., there are two endemic equilibria);
(C3) R0 > 1 and H(I1) > 0 (i.e., there is a unique endemic equilibrium, which is globally stable);
(C4) R0 > 1 and H(I1) < 0 (i.e., there is a unique endemic equilibrium, which is unstable. Further,

there exists at least one limit cycle).
Then, in the next section, we first investigate the dynamic behaviours of system (1.3) through

discussing the existence and stability of the disease-free periodic solution.
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Figure 1. Dynamical behaviours of ODE subsystem (1.2) when R0 > 1. (A) E1 is a globally
stable node with A = 2.6, β = 1.8, ε = 5, ω = 2.9. (B) E1 is a globally stable focus with
A = 2.6, β = 1.8, ε = 5, ω = 1.2. (C) E1 is unstable and there is a stable limit cycle. Here,
A = 2, β = 1.8, ε = 5, ω = 1.2. (D) E1 is locally stable and there are two limit cycles, of
which one is stable and the other one is unstable. Here, A = 0.7, β = 2.021, ε = 5.1, ω = 10.
The other parameter values are: δ1 = 0.15, δ2 = 0.4, γ = 0.1.
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3. Existence and stability of the disease-free periodic solution of system (1.3)

Letting I(t) = 0 for all t ≥ 0, then we consider the following subsystem dS (t)
dt = A − δ1S , S (t) < S T ,

S (t+) =
(
1 − pS (t)

h1+S (t)

)
S (t), S (t) = S T .

(3.1)

Solving Eq (3.1) with initial condition S (0) = S v

(
i.e.,

(
1 − pS T

h1+S T

)
S T

)
, we obtain

S (t) =
A − (A − δ1S v) exp(−δ1t)

δ1

with period

T =
1
δ1

ln
A − δ1S v

A − δ1S T
.

This indicates that system (1.3) has a disease-free periodic solution with period T , denoted as (ξ(t), 0),
with

ξ(t) =
A−(A−δ1S v) exp(−δ1(t−(k−1)T ))

δ1
, (k − 1)T < t ≤ kT, k ∈ N. (3.2)

Then we discuss the stability of the disease-free periodic solution (ξ(t), 0). There are

a(S , I) = −
pS 2(t)

h1+S (t) , b(S , I) = −
qI2(t)

h2+I(t) , φ(S , I) = S − S T ,

(ξ(T ), η(T )) = (S T , 0), (ξ(T +), η(T +)) = (S v, 0).

Using Lemma A.1 in Appendix A, we obtain

∆1 =
P+

(
∂b
∂I

∂φ
∂S −

∂b
∂S

∂φ
∂I +

∂φ
∂S

)
+Q+

(
∂a
∂S

∂φ
∂I −

∂a
∂I

∂φ
∂S +

∂φ
∂I

)
P ∂φ
∂S +Q ∂φ

∂I
=

P+

(
1− qI(2h2+I)

(h2+I)2

)
P

=
P(ξ(T +),η(T +))

(
1− qI(2h2+I)

(h2+I)2

)
P(ξ(T ),η(T )) =

(
1 − qI(2h2+I)

(h2+I)2

)
A−δ1S v
A−δ1S T

,

and
exp

(∫ T

0

(
∂P
∂S (ξ(t), η(t)) +

∂Q
∂I (ξ(t), η(t))

)
dt

)
= exp

(∫ T

0
(−δ1 − δ2 − γ − ε + βξ(t)) dt

)
= exp

(∫ T

0

(
−δ1 − δ2 − γ − ε +

βA
δ1
−

β(A−δ1S v) exp(−δ1t)
δ1

)
dt

)
= exp

(
βA−δ1(δ1+δ2+γ+ε)

δ2
1

ln A−δ1S v
A−δ1S T

−
βpS 2

T
δ1(h1+S T )

)
=

(
A−δ1S v
A−δ1S T

) βA−δ1(δ1+δ2+γ+ε)

δ21 exp
(
−

βpS 2
T

δ1(h1+S T )

)
.

Therefore, there is

µ2 = ∆1 exp
(∫ T

0

(
∂P
∂S (ξ(t), η(t)) +

∂Q
∂I (ξ(t), η(t))

)
dt

)
=

(
1 − ∂b

∂I |I=0

) (
A−δ1S v
A−δ1S T

) βA−δ1(δ2+γ+ε)

δ21 exp
(
−

βpS 2
T

δ1(h1+S T )

)
� Rb.

(3.3)
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Note that the relationship between µ2 and 1 determines the stability of the disease-free periodic
solution, thus the Floquet multiplier µ2 can be defined as the control reproduction number of the
state-dependent impulsive model (1.3), denoted by Rb, which is crucial to study the development of
infectious diseases. From Eq (3.3), it is clear to see that A−δ1S v

A−δ1S T
> 1. Furthermore, we can verify that if

h2 > 0, then ∂b
∂I |I=0 = 0 with

Rb =

(
A − δ1S v

A − δ1S T

) βA−δ1(δ2+γ+ε)

δ21 exp
(
−

βpS 2
T

δ1(h1 + S T )

)
,

while if h2 = 0, then ∂b
∂I |I=0 = −q with

Rb = (1 − q)
(

A − δ1S v

A − δ1S T

) βA−δ1(δ2+γ+ε)

δ21 exp
(
−

βpS 2
T

δ1(h1 + S T )

)
.

For convenient, we denote

J � βA−δ1(δ2+γ+ε)
δ2

1
ln A−δ1S v

A−δ1S T
+

β(S v−S T )
δ1

=
∫ S T

S v

βs−δ2−γ−ε

A−δ1 s ds,

thus,

Rb =

{
(1 − q) ∗ exp(J), if h2 = 0,
exp(J), if h2 > 0.

(3.4)

Based on above discussions, we have the following conclusions.

Theorem 3.1. If Rb < 1 holds true, then the disease-free periodic solution of system (1.3) is locally
stable, while if Rb > 1, then the disease-free periodic solution of system (1.3) is unstable. Particularly,
for cases (C1) and (C2), inequality Rb < 1 always holds true, further, the disease-free periodic solution
is globally stable for case (C1). For cases (C3) and (C4), the disease-free periodic solution is locally
stable when S T ≤ S . Furthermore, for case (C3), the disease-free periodic solution is globally stable
when S T ≤ min{S , S 1}.

Proof We have R0 < 1 for cases (C1) and (C2), then there are βA−δ1(δ2+γ+ε)
δ2

1
< 0 and

0 <
(

A−δ1S v
A−δ1S T

) βA−δ1(δ2+γ+ε)

δ21 < 1. Therefore, Rb < 1 holds, which indicates that the disease-free periodic
solution is orbitally asymptotically stable. For the global stability, we need to prove that the
disease-free periodic solution (ξ(t), 0) is globally attractive. It follows from the definition of the
Poincaré map and the property of subsystem (1.2) that Poincaré map PM satisfies PM(I0) < I0 for
I0 ≥ 0 for case (C1). Therefore, the disease-free periodic solution (ξ(t), 0) is globally attractive for
case (C1). For cases (C3) and (C4), letting

V(s) =
βs − δ2 − γ − ε

A − δ1s
,

we obtain
dV(s)

ds =
βA−δ1(δ2+γ+ε)

(A−δ1 s)2 > 0.

Thus, V(s) is increasing for s ∈ (0, A
δ1

) and V(S ) = 0 with S =
δ2+γ+ε

β
, which means that V(s) < 0 and

J < 0 always hold for S T ≤ S < A
δ1

. Thus, when S T ≤ S , we have Rb < 1, correspondingly, the disease-
free periodic solution is locally stable for cases (C3) and (C4). In addition, when S T ≤ min{S , S 1}, we
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can similarly verify that the disease-free periodic solution (ξ(t), 0) is globally attractive for case (C3).
This completes the proof.

In the next two sections, we discuss the existence and stability of the positive order-1 periodic
solution from two points of view: through investigating the bifurcations near the disease-free periodic
solution and examining the properties of the Poincaré map including monotonicity, continuity,
discontinuity and convexity.

4. Bifurcations near the disease-free periodic solution

Based on the discussions in the last section, for case (C3) or (C4), the sign of J can vary when
S T > S , which indicates that system (1.3) may undergo bifurcations near the disease-free periodic
solution as the parameter values vary. Therefore, we can discuss the bifurcations near the disease-free
periodic solution by assuming R0 > 1 and S T > S . Consider subsystem (1.2) in the phase space, we
define a scalar differential equation { dI

dS =
Q(S ,I)
P(S ,I) � W(S , I),

I(S v) = I+
0 .

(4.1)

For system (4.1), we focus on region

Ω1 =

{
(S , I)|S > 0, I > 0, I <

A − δ1S
βS

}
,

in which function W(S , I) is continuously differentiable. Given initial condition (S 0, I0), which belongs
to the phase set on the Poincaré section, one obtains

I(S ; S 0, I0) = I0 +
∫ S

S v
W(s, I(s; S v, I0))ds.

Then, PM takes the following form:

PM(I0, α) = w1(I(S T ; S v, I0)),

where α represents a bifurcation parameter. Through some straightforward calculations, we get
∂I(S ;S v,I0)

∂I0
= exp

(∫ S

S v

∂W(s,I(s;S v,I0))
∂I ds

)
,

∂2I(S ;S v,I0)
∂I2

0
=

∂I(S ;S v,I0)
∂I0

∫ S

S v

∂2W(s,I(s;S v,I0))
∂I2

∂I(s;S v,I0)
∂I0

ds.

Denoting
∂I(S T ;S v,I0)

∂I0
=

∂g(I0;α)
∂I0

� g′(I0;α),

then, we have
∂PM
∂I0

(0, α) =
[(

1 − qI(S T ;S v,I0)(2h2+I(S T ;S v,I0))
(h2+I(S T ;S v,I0))2

)
g′(I0;α)

]∣∣∣∣
I0=0

= w′1(I(S T ; S v, 0))g′(0;α) = Rb,

∂2PM
∂I2

0
(0, α) =

[(
1 − qI(S T ;S v,I0)(2h2+I(S T ;S v,I0))

(h2+I(S T ;S v,I0))2

)
g′′(I0;α) − 2h2

2q
(h2+I(S T ;S v,I0))3 (g′(I0;α))2

]∣∣∣∣∣
I0=0

= w′1(I(S T ; S v, 0))g′′(0;α) − 2h2
2q

(h2+I(S T ;S v,0))3 (g′(0;α))2,

∂3PM
∂I3

0
(0, α) =

[(
1 − qI(S T ;S v,I0)(2h2+I(S T ;S v,I0))

(h2+I(S T ;S v,I0))2

)
g′′′(I0;α) − 6h2

2qg′(I0;α)g′′(I0;α)
(h2+I(S T ;S v,I0))3 +

6h2
2q(g′(I0;α))3

(h2+I(S T ;S v,I0))4

]∣∣∣∣∣
I0=0

= w′1(I(S T ; S v, 0))g′′′(0;α) − 6h2
2qg′(0;α)g′′(0;α)

(h2+I(S T ;S v,0))3 +
6h2

2q(g′(0;α))3

(h2+I(S T ;S v,0))4 ,
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where

g′(0;α) = exp
(∫ S T

S v

∂W(s,I(s;S v,0))
∂I ds

)
= exp

(∫ S T

S v

βs−δ2−γ−ε

A−δ1 s ds
)

=
(

A−δ1S v
A−δ1S T

) βA−δ1(δ2+γ+ε)

δ21 exp
(
β(S v−S T )

δ1

)
,

g′′(0;α) = g′(0;α)
∫ S T

S v

∂2W(s,I(s;S v,0))
∂I2

∂I(s;S v,0)
∂I0

ds = g′(0;α)
∫ S T

S v
m(s)∂I(s;S v,0)

∂I0
ds,

g′′′(0;α) = g′′(0;α)
∫ S T

S v
m(s)∂I(s;S v,0)

∂I0
ds + g′(0;α) ∂

∂I0

(∫ S T

S v
m(s)∂I(s;S v,0)

∂I0
ds

)
,

with
m(s) =

∂2W(s,I(s;S v,0))
∂I2 =

2ωε(A−δ1 s)+2βs(βs−δ2−γ−ε)
(A−δ1 s)2 ,

∂I(s;S v,0)
∂I0

=
(

A−δ1S v
A−δ1 s

) βA−δ1(δ2+γ+ε)

δ21 exp
(
β(S v−s)
δ1

)
.

Based on above calculations, we mainly focus on discussing the transcritical and pitchfork bifurcations
near the disease-free periodic solution with respect to the key parameters for h2 > 0. Note that all of
the parameters appearing in the expression of Rb can be chosen as bifurcation parameters. In what
follows, we choose control parameters, such as ε, p, S T and h1 to investigate the bifurcation near the
disease-free periodic solution and the bifurcation with respect to other parameters can be studied by
using similar method. Furthermore, the bifurcation near the disease-free periodic solution for h2 = 0
can be investigated similarly, and we study it by taking the parameter related to impulsive isolation
strategy q as an example in such case.

4.1. Bifurcation with respect to ε

In this subsection, ε is chosen as a bifurcation parameter. For h2 > 0, taking the derivative of Rb(ε)
with respect to ε yields

∂Rb(ε)
∂ε

= −
Rb(ε)
δ1
∗ ln

(
A−δ1S v
A−δ1S T

)
< 0,

which means that Rb(ε) is decreasing for ε ∈ (0,+∞). It is easy to verify that

limε→+∞ Rb(ε) = 0.

Furthermore, if

Rb(0) =

(
A − δ1S v

A − δ1S T

) βA−δ1(δ2+γ)

δ21 exp
(
−

βpS 2
T

δ1 (h1 + S T )

)
> 1,

then we have that there is a unique ε∗ ∈ (0,+∞) such that Rb(ε∗) = 1 and ∂Rb(ε∗)
∂ε

< 0 with ε∗ satisfying

(
A−δ1S v
A−δ1S T

) βA−δ1(δ2+γ+ε∗)

δ21 exp
(
−

βpS 2
T

δ1(h1+S T )

)
= 1.

Therefore, we have the main results as follows.

Proposition 4.1. Suppose h2 > 0, R0 > 1 and S T > S . If Rb(0) > 1 holds true, then there exists
a unique ε∗ ∈ (0,+∞) such that Rb(ε∗) = 1 with ∂Rb(ε∗)

∂ε
< 0. And the disease-free periodic solution

(ξ(t), 0) of system (1.3) is orbitally asymptotically stable for ε ∈ (ε∗,+∞) and unstable for ε ∈ (0, ε∗).

Next, we consider the bifurcation near the disease-free periodic solution at ε = ε∗. We have that
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PM(0, ε) = 0 always holds, further,

∂PM

∂I0
(0, ε∗) = 1,

∂2PM

∂I0∂ε
(0, ε∗) < 0,

∂2PM

∂I2
0

(0, ε∗) = g′′(0; ε∗) −
2q
h2
.

Note that if g′′(0; ε∗) , 2q
h2

, then∂2PM
∂I2

0
(0, ε∗) , 0. Furthermore, g′′(0; ε∗) > 2q

h2
indicates ∂2PM

∂I2
0

(0, ε∗) > 0,

while g′′(0; ε∗) < 2q
h2

means ∂2PM
∂I2

0
(0, ε∗) < 0. As for the special condition ∂2PM

∂I2
0

(0, ε∗) = 0(
i.e., g′′(0; ε∗) =

2q
h2

)
, we further consider the sign of ∂3PM

∂I3
0

(0, ε∗). Note that

∂3PM

∂I3
0

(0, ε∗) = g′′′(0; ε∗) −
6q(2q − 1)

h2
2

,

thus, ∂3PM
∂I3

0
(0, ε∗) , 0 when g′′′(0; ε∗) , 6q(2q−1)

h2
2

. Based on above discussions and Lemma A.2 and
Lemma A.3 presented in Appendix A, we have the following conclusions.

Theorem 4.1. Suppose h2 > 0, R0 > 1, S T > S and Rb(0) > 1. We have:
(a) If g′′(0; ε∗) > 2q

h2
holds true, then the Poinceré map PM(I0, ε) undergoes a transcritical

bifurcation at ε = ε∗. Further, an unstable positive fixed point appears when ε passes through ε = ε∗

from left to right. Correspondingly, system (1.3) has an unstable positive periodic solution for
ε ∈ (ε∗, ε∗ + ε) with ε > 0 small enough;

(b) If g′′(0; ε∗) < 2q
h2

holds true, then a stable positive fixed point appears when ε passes through
ε = ε∗ from right to left. Correspondingly, system (1.3) has a stable positive periodic solution for
ε ∈ (ε∗ − ε, ε∗) with ε > 0 small enough;

(c) If g′′(0; ε∗) =
2q
h2

and g′′′(0; ε∗) > 6q(2q−1)
h2

2
, then the Poincaré map PM(I0, ε) undergoes a pitchfork

bifurcation at ε = ε∗. Accordingly, system (1.3) has an unstable positive periodic solution for ε ∈
(ε∗, ε∗ + ε) with ε > 0 small enough;

(d) If g′′(0; ε∗) =
2q
h2

and g′′′(0; ε∗) < 6q(2q−1)
h2

2
, then PM(I0, ε) undergoes a pitchfork bifurcation at

ε = ε∗. Accordingly, system (1.3) has a stable positive periodic solution for ε ∈ (ε∗ − ε, ε∗) with ε > 0
small enough.

4.2. Bifurcation with respect to p

When h2 > 0, Rb can be written as a function with respect to parameter p, given as:

Rb(p) =

(
A − δ1S v

A − δ1S T

) βA−δ1(δ2+γ+ε)

δ21 exp
(
−

βpS 2
T

δ1(h1 + S T )

)
.

Taking the derivative of Rb(p) with respect to p, we obtain

∂Rb(p)
∂p =

Rb(p)S 2
T

(A−δ1S v)(h1+S T )

[
βS v − (δ2 + γ + ε)

]
.

It is clear that Rb(p)S 2
T

(A−δ1S v)(h1+S T ) > 0, thus the sign of ∂Rb(p)
∂p is determined by βS v − δ2 − γ − ε. Solving

∂Rb(p)
∂p = 0, we obtain a unique root, denoted by p, with

p =

(
1 +

h1

S T

) 1 − S
S T

 .
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We further assume h1S T
h1+S T

≤ S to ensure that p ∈ (0, 1). As a result, there is a unique p such that S v < S
and ∂Rb(p)

∂p < 0 for p > p, while S v > S and ∂Rb(p)
∂p > 0 for p < p, which means that Rb(p) is increasing

on the interval (0, p] and decreasing on the interval [p, 1). Furthermore,

Rb(0) = 1, Rb(p) = exp
(∫ S T

S
βs−δ2−γ−ε

A−δ1 s ds
)
> 1.

Therefore, considering the monotonicity of Rb(p), we have
(1) If p ∈ (0, p), then Rb(p) > 1 always holds, which indicates that the disease-free periodic solution
(ξ(t), 0) is unstable.
(2) If p ∈ (p, 1) and Rb(1) > 1, then Rb(p) > 1 for p ∈ (0, 1), indicating that (ξ(t), 0) is always unstable.
(3) If p ∈ (p, 1) and Rb(1) < 1, then there is a unique p∗ satisfying Rb(p∗) = 1. This means that (ξ(t), 0)
is unstable for p ∈ (p, p∗), while (ξ(t), 0) is stable for p ∈ (p∗, 1), indicating that the bifurcations could
occur at p = p∗.

Proposition 4.2. Suppose h2 > 0, R0 > 1 and S T > S . If Rb(1) > 1 holds true, then the disease-free
periodic solution (ξ(t), 0) is always unstable for p ∈ (0, 1); If Rb(1) < 1 holds, then the disease-free
periodic solution (ξ(t), 0) is unstable for p ∈ (0, p∗] and orbitally asymptotically stable for p ∈ [p∗, 1).

Based on above discussions, we next consider the bifurcations with respect to p. We have
PM(0, p) = 0 for all p ∈ (0, 1), and it is easy to see that

∂PM
∂I0

(0, p∗) = Rb(p∗) = 1, ∂2PM
∂I0∂p (0, p∗) =

∂Rb(p∗)
∂p < 0.

Moreover, there are

g′′(0; p∗) = g′(0; p∗)
∫ S T

S vp∗
m(s)∂I(s;S v,0)

∂I0
ds =

∫ S T

S vp∗
m(s)∂I(s;S v,0)

∂I0
ds,

g′′′(0; p∗) =
4q2

h2
2

+ ∂
∂I0

(∫ S T

S vp∗
m(s)∂I(s;S v,0)

∂I0
ds

)
,

(4.2)

with S vp∗ =
(
1 − p∗S T

h1+S T

)
S T . Thus,

∂2PM
∂I2

0
(0, p∗) = g′′(0; p∗) − 2q

h2
.

∂3PM
∂I3

0
(0, p∗) = g′′′(0; p∗) − 6q(2q−1)

h2
2

.
(4.3)

Based on above discussions and Lemma A.2 and Lemma A.3 presented in Appendix A, we conclude
as follows.

Theorem 4.2. Suppose h2 > 0, R0 > 1, S T > S and Rb(1) < 1. We have:
(a) If g′′(0; p∗) > 2q

h2
holds true, then the Poincaré map PM(I0, p) undergoes a transcritical

bifurcation at p∗. Moreover, an unstable positive fixed point appears when p changes through p = p∗

from left to right. Then system (1.3) accordingly has an unstable positive periodic solution if
p ∈ (p∗, p∗ + ε) with ε > 0 small enough;

(b) If g′′(0; p∗) < 2q
h2

holds true, then a stable positive fixed point of map PM(I0, p) appears when
p changes through p = p∗ from right to left. System (1.3) accordingly has a stable positive periodic
solution if p ∈ (p∗ − ε, p∗) with ε > 0 small enough;
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(c) If g′′(0; p∗) =
2q
h2

and g′′′(0; p∗) > 6q(2q−1)
h2

2
hold, then the Poincaré map PM(I0, p) undergoes

a pitchfork bifurcation at p = p∗. Correspondingly, system (1.3) has an unstable positive periodic
solution if p ∈ (p∗, p∗ + ε) with ε > 0 small enough;

(d) If g′′(0; p∗) =
2q
h2

and g′′′(0; p∗) < 6q(2q−1)
h2

2
hold, then PM(I0, p) undergoes a pitchfork bifurcation

at p = p∗. Correspondingly, system (1.3) has a stable positive periodic solution if p ∈ (p∗ − ε, p∗) with
ε > 0 small enough.

4.3. Bifurcation with respect to S T

In this subsection, we choose S T as a bifurcation parameter. When h2 > 0, we take the derivative of
Rb(S T ) with respect to S T and obtain

∂Rb(S T )
∂S T

= exp(J(S T ))∂J(S T )
∂S T

,

with ∂J(S T )
∂S T

=
βS T−(δ2+γ+ε)

A−δ1S T
−

(
1 − pS T (2h2+S T )

(h2+S T )2

)
βS v−(δ2+γ+ε)

A−δ1S v
. Denote f (x) =

βs−(δ2+γ+ε)
A−δ1 s , we have

∂J(S T )
∂S T

= f (S T ) −
(
1 −

pS T (2h2 + S T )
(h2 + S T )2

)
f (S v).

Furthermore, there is
f ′(x) =

βA−δ1(δ2+γ+ε)
(A−δ1 x)2 > 0.

Thus, f (x) is monotonically increasing with respect to x. In what follows, we discuss the sign of ∂J(S T )
∂S T

:
(1) If S v ≤ S , then f (S v) ≤ 0, which indicates that ∂J(S T )

∂S T
> 0 always holds;

(2) If S v > S , then f (S v) > 0, and one has

∂J(S T )
∂S T

> f (S v) −
(
1 −

pS T (2h2 + S T )
(h2 + S T )2

)
f (S v) =

pS T (2h2 + S T )
(h2 + S T )2 f (S v) > 0.

This means that ∂J(S T )
∂S T

> 0 holds under both conditions. Hence, ∂Rb(S T )
∂S T

> 0 holds, i.e., Rb(S T ) is
monotonically increasing with respect to S T . Denoting K � A

δ1
for convenience, then we have

Rb(S ) < 1, limS T→K− Rb(S T ) = +∞.

Thus, there is a unique S ∗T ∈ (S ,K) such that Rb(S ∗T ) = 1. Based on above discussions, we conclude
the following main results.

Proposition 4.3. Suppose h2 > 0 and R0 > 1. There is a unique S ∗T ∈ (S ,K) satisfying Rb(S ∗T ) = 1. The
disease-free periodic solution (ξ(t), 0) of system (1.3) is orbitally asymptotically stable for S T ∈ (S , S ∗T )
and unstable for S T ∈ (S ∗T ,K).

In what follows, we discuss the bifurcation near the disease-free periodic solution at S T = S ∗T .
Similarly, PM(0, S T ) = 0 holds for all S T ∈ (S ,K), and

∂PM
∂I0

(0, S ∗T ) = 1, ∂2PM
∂I0∂S T

(0, S ∗T ) > 0,
∂2PM
∂I2

0
(0, S ∗T ) = g′′(0; S ∗T ) − 2q

h2
, ∂3PM

∂I3
0

(0, S ∗T ) = g′′′(0; S ∗T ) − 6q(2q−1)
h2

2
.
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Therefore, we obtain the following results.

Theorem 4.3. Suppose h2 > 0 and R0 > 1. We have:
(a) If g′′(0; S ∗T ) > 2q

h2
holds true, then an unstable positive fixed point appears when S T goes through

S T = S ∗T from right to left. Correspondingly, system (1.3) has an unstable positive periodic solution if
S T ∈ (S ∗T − ε, S

∗
T ) with ε > 0 small enough;

(b) If g′′(0; S ∗T ) < 2q
h2

holds true, then a stable positive fixed point appears when S T goes through
S T = S ∗T from left to right. Correspondingly, system (1.3) has a stable positive periodic solution if
S T ∈ (S ∗T , S

∗
T + ε) with ε > 0 small enough.

(c) If g′′(0; S ∗T ) =
2q
h2

and g′′′(0; S ∗T ) > 6q(2q−1)
h2

2
, then system (1.3) has an unstable positive periodic

solution if S T ∈ (S ∗T − ε, S
∗
T ) with ε > 0 small enough;

(d) If g′′(0; S ∗T ) =
2q
h2

and g′′′(0; S ∗T ) < 6q(2q−1)
h2

2
hold true, then system (1.3) has a stable positive

periodic solution if S T ∈ (S ∗T , S
∗
T + ε) with ε > 0 small enough.

4.3.1. Bifurcation with respect to h1

In this subsection, we choose h1 as a bifurcation parameter and consider Rb as a function of h1,
which can help us to reveal the impact of the saturation phenomenon of state-dependent feedback
control on infectious diseases. When h2 > 0, we have Rb(h1) = exp(J(h1)). By simple calculations we
have

Rb(0) =

(
A − δ1(1 − p)S T

A − δ1S T

) βA−δ1(δ2+γ+ε)

δ21 exp
(
−
βpS T

δ1

)
, lim

h1→+∞
Rb(h1) = 1.

Moreover, taking the derivative of Rb(h1) with respect to h1 yields

∂Rb(h1)
∂h1

=
pS 2

T Rb(h1)
(A − δ1S v)(h1 + S T )2)

∗ (δ2 + γ + ε − βS v).

Solving ∂Rb(h1)
∂h1

= 0, we obtain a unique root h1 with

h1 =
S T (S − (1 − p)S T )

S T − S
.

If h1 < h1, then ∂Rb(h1)
∂h1

> 0 holds, while if h1 > h1 holds, then ∂Rb(h1)
∂h1

< 0, indicating that Rb(h1)
is increasing for h1 < h1 and decreasing for h1 > h1. If S < (1 − p)S T , then we have h1 < 0
and correspondingly, Rb(h1) is decreasing on the interval (0,+∞). Thus, Rb(h1) > 1 always holds
and the disease-free periodic solution (ξ(t), 0) is unstable and there is no bifurcation near (ξ(t), 0). If
S > (1 − p)S T , then we have h1 > 0. Therefore, Rb(h1) is increasing on the interval (0, h1] and
decreasing on the interval [h1,+∞). Under this case, when Rb(0) > 1, then Rb(h1) > 1 always holds for
h1 ∈ (0,+∞), which means that the disease-free periodic solution (ξ(t), 0) is unstable and there is no
bifurcation near (ξ(t), 0). On the other hand, when Rb(0) < 1, there is a unique h∗1 ∈ (0, h1) such that
Rb(h∗1) = 1 with ∂Rb(h∗1)

∂h1
> 0.

Therefore, we have the main conclusions as follows.

Proposition 4.4. Suppose h2 > 0, R0 > 1 and S T > S > (1 − p)S T . If Rb(0) < 1 holds, then there
exists a unique h∗1 ∈ (0, h1) satisfying Rb(h∗1) = 1 with ∂Rb(h∗1)

∂h1
> 0. Accordingly, the disease-free periodic
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solution (ξ(t), 0) of system (1.3) is orbitally asymptotically stable for h1 ∈ (0, h∗1) and unstable for
h1 ∈ (h∗1,+∞).

As for the bifurcation of the disease-free periodic solution (ξ(t), 0) at h∗1, we have PM(0, h1) = 0 for
all h1 ∈ (0,+∞), and

∂PM
∂I0

(0, h∗1) = 1, ∂2PM
∂I0∂h1

(0, h∗1) > 0,
∂2PM
∂I2

0
(0, h∗1) = g′′(0; h∗1) − 2q

h2
, ∂3PM

∂I3
0

(0, h∗1) = g′′′(0; h∗1) − 6q(2q−1)
h2

2
.

Therefore, we have the following conclusions.

Theorem 4.4. Suppose h2 > 0, R0 > 1, S T > S and Rb(0) < 1. We obtain:
(a) If g′′(0; h∗1) > 2q

h2
holds, then the Poinceré map PM(I0, h1) undergoes a transcritical bifurcation

at h1 = h∗1. Further, an unstable positive fixed point appears when h1 passes through h1 = h∗1 from right
to left. Accordingly, system (1.3) has an unstable positive periodic solution for h1 ∈ (h∗1 − ε, h

∗
1) with

ε > 0 small enough;
(b) If g′′(0; h∗1) < 2q

h2
holds, then a stable positive fixed point appears when h1 passes through h1 = h∗1

from left to right. Then, system (1.3) has a stable positive periodic solution for h1 ∈ (h∗1, h
∗
1 + ε) with

ε > 0 small enough;
(c) If g′′(0; h∗1) =

2q
h2

and g′′′(0; h∗1) , 6q(2q−1)
h2

2
holds, then the Poinceré map PM(I0, h1) undergoes a

pitchfork bifurcation at h1 = h∗1. Accordingly, system (1.3) has a positive periodic solution.

Note that the bifurcation with respect to the demographic parameters, such as the recruitment rate
A, can also be studied. Here we only give the main conclusions for the bifurcation with respect to A,
and the detailed analyses are given in Appendix B.

Theorem 4.5. Suppose h2 > 0, R0 > 1, and S T > S > S v+S T
2 . If g′′(0; A∗) , 2q

h2
holds true, then

the Poincaré map PM(I0, A) occurs with a transcritical bifurcation at A = A∗. Thus, a positive fixed
point appears when A goes through A = A∗, and correspondingly, system (1.3) has a positive periodic
solution. However, if g′′(0; A∗) =

2q
h2

and g′′′(0; A∗) , 6q(2q−1)
h2

2
hold, then the Poincaré map PM(I0, A)

undergoes a pitchfork bifurcation at A = A∗. Thus, a positive fixed point appears when A passes
through A = A∗, and accordingly, system (1.3) has a positive periodic solution.

So far we have discussed the bifurcation with respect to key parameters including ε, p, S T , h1 and
A for h2 > 0. Similarly, we can also investigate the bifurcation with these parameters for h2 = 0, and
list the main results with respect to parameter q in the following and find details in Appendix B.

Theorem 4.6. Suppose h2 = 0, R0 > 1, S T > S and J > 0. If g′′(0; q∗) , 0 holds true, then the
Poincaré map PM(I0, q) undergoes a transcritical bifurcation at q = q∗. In fact, if g′′(0; q∗) > 0 holds
true, then an unstable positive fixed point appears when q goes through q = q∗ from left to right.
Correspondingly, system (1.3) has an unstable positive periodic solution if q ∈ (q∗, q∗ + ε) with ε > 0
small enough. However, if g′′(0; q∗) < 0, then the Poincaré map PM(I0, q) has a stable positive fixed
point when p passes through q = q∗ from right to left. Correspondingly, system (1.3) has a stable
positive periodic solution if q ∈ (q∗ − ε, q∗) with ε > 0 small enough.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5551–5583.



5566

q

0 0.2 0.4 0.6 0.8 1

R
0
 a

n
d

 R
b

0

0.5

1

1.5

2

2.5

3

3.5
(A)

p

0 0.2 0.4 0.6 0.8 1

R
0
 a

n
d

 R
b

0

0.5

1

1.5

2

2.5

3
(B)

A

1 2 3 4 5

R
0
 a

n
d

 R
b

0

2

4

6

8

10

(C)

ǫ

2.5 3 3.5 4 4.5 5 5.5 6

R
0
 a

n
d

 R
b

0

2

4

6

8

10
(D)

q=q
* p=p

*

A=A
*

R
b

R
0

R
0

R
b

R
b

R
0

R
b

R
0

ǫ=ǫ
*

Figure 2. The one parameter bifurcation diagram of R0 and Rb with respect to parameters q,
p, A, ε. The baseline parameter values are A = 1.4, β = 1.2, δ1 = 0.15, δ2 = 0.3, ε = 3.5, ω =

1.2, γ = 0.1, S T = 4.5, p = 0.3, q = 0.4, h1 = 0.5, h2 = 0.

Through numerical simulation, we verify the existence of the transcritical bifurcation with respect
to some key parameters. We illustrated the relationships between R0 and Rb with respect to parameters
p, ε, A, q (shown in Figure 2) and parameter S T (shown in Figure 3(A)). We find that for all these
parameters, there exists a threshold value such that Rb = 1. This confirms the existence of the
transcritical bifurcation by choosing these parameters as bifurcation parameters. As shown in
Figure 3, the disease-free periodic solution is locally stable for S T < S ∗T and unstable for S T > S ∗T .
Correspondingly, in Figure 3(D), we choose S T = 3.6 such that S T > S ∗T , and show that the
disease-free periodic solution is unstable and all the orbits finally tend to the positive equilibrium E1.
In Figure 3(C), as we decrease the parameter value of S T to 2.8 such that S T < S ∗T , the disease-free
periodic solution becomes stable, which is bistable with the positive equilibrium E1. It follows from
Figure 3(C) that an unstable positive order-1 periodic solution appears as well via the transcritical
bifurcation. Furthermore, in Figure 3(B), by choosing S T = 1.7 such that S T < S 1, the disease-free
periodic solution becomes globally stable.

Similarly, we verified the main theoretical results and showed in Figure 4 that when the ODE
subsystem has limit cycles, system (1.3) can also undergo the transcritical bifurcation with an
unstable positive order-1 periodic solution appearing. Specifically, when there exists a unique stable
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limit cycle of subsystem (1.2) (Figure 4(A) and (B)), if we decrease the threshold value S T from
S T = 3.6 (Figure 4(B)) to S T = 3.4 (Figure 4(A)), then an unstable positive order-1 periodic solution
appears and the limit cycle of subsystem (1.2) is bistable with the disease-free periodic solution,
shown in Figure 4(A). Similar phenomenons are illustrated in Figure 4(C) and (D) when there are two
limit cycles of subsystem (1.2). Note that in Figure 4, we have chosen the threshold level relatively
large such that the impulsive line S = S T did not intersect with limit cycles. If the impulsive line
intersects with the limit cycle, the Poincaré map of the system becomes very complex [30] while the
dynamical behaviours are very rich and complicated. In Figure 5, we showed that by changing the
parameter value of p, the unstable positive order-1 periodic solution (bifurcated from the disease-free
periodic solution) can co-exist with a stable positive order-1 periodic solution (Figure 5(A)), or a
stable positive order-2 periodic solution (Figure 5(B)), or a stable positive order-3 periodic solution
(Figure 5(C)). For another aspect, the existence of order-3 periodic solution implies the existence of
the phenomenon of chaos, which is illustrated in Figure 5(D).
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Figure 3. (A) Bifurcation diagram of Rb with respect to S T . (B) Phase portraits of system
(1.3) when S T < S 1 with S T = 1.7. (C) Phase portraits of system (1.3) when S 1 < S T < S ∗T
with S T = 2.8. (D) Phase portraits of system (1.3) when S T > S ∗T with S T = 3.6. The other
parameter values are: A = 2.4, β = 1.8, δ1 = 0.15, δ2 = 0.4, ε = 5, ω = 1.2, γ = 0.1, p =

0.3, q = 0.015, h1 = 0.1, h2 = 1.
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Figure 4. Phase portraits of system (1.3) when ODE subsystem (1.2) has limit cycle. The
control parameter values are: p = 0.3, q = 0.015, h1 = 0.1, h2 = 1 with S T = 3.4 in (A),
S T = 3.6 in (B), S T = 2.65 in (C) and S T = 3.3 in (D). The other parameter values of (A-B)
and (C-D) are fixed as the same as those in Figure 1(C) and Figure 1(D), respectively.

5. Properties of the Poincaré map PM

5.1. Impulsive set and phase set of the Poincaré map

In order to further discuss the existence and stability of the positive order-1 periodic solution of
system (1.3), we initially define the impulsive set and phase set of the Poincaré map for various cases.
For case (C1), the disease-free equilibrium E0

(
A
δ1
, 0

)
is globally asymptotically stable. As shown in

Figure 6(A), depending on the properties of the vector fields of subsystem (1.2), it is easily verified
that there is an orbit Γ1 tangent to S S v at point QS v =

(
S v, IS v

)
with IS v = A−δ1S v

βS v
. The intersection point

of Γ1 to S S T can be denoted as

Q∗ = (S T , I∗) =
(
S T , I

(
S T ; S v, IS v

))
.

Then the impulsive set is
M1 = {(S , I)|S = S T , I ∈ [0, I∗]},
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Figure 5. (A-C) Phase portraits of system (1.3) with p = 0.045 in (A), p = 0.062 in (B) and
p = 0.1 in (C). (D) Bifurcation diagram of the positive order-k periodic solution with respect
to p. The other control parameter values are S T = 2.29, q = 0.05, h1 = 0.1, h2 = 1, and the
rest parameter value are the same as those in Figure 1(D).

and the phase set can be defined as:

N1 = {(S +, I+)|S + = S v, I+ ∈ [0,w1(I∗)]}.

For case (C2), due to the complex trajectories of subsystem (1.2), we cannot determine the exact
domains of the impulsive set and phase set. Under scenario (C3), there exists a unique endemic
equilibrium E1(S 1, I1) which is globally stable. In what follows, we consider ∆ < 0 implying E1 is a
focus. If S T < S 1 holds, denoted as case (C31), we can define the definitions of impulsive set and
phase set of system (1.3) as M1 and N1, respectively, which is similar to case (C1).

When S T > S 1, there is an orbit Γ2 tangent to section S S T at point QS T = (S T , IS T ) with IS T = A−δ1S T
βS T

and Γ2 intersects with line l1 at point L(S l, Il), as shown in Figure 6(B-C). Then we consider the
following two subcases:

(C32) S v < S l and (C33) S v ≥ S l.

For subcase (C32), the impulsive set and phase set are M1 and N1, respectively, through similar methods
used for case (C1). Note that for (C33), the orbit Γ2 intersects with line l4 at two points B1(S v, Ib1) and
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B2(S v, Ib2) with Ib1 < Ib2 , shown in Figure 6(C). Moreover, the orbit Γ2 will reach line l4 at QS v =

(S v, IS v) with I(S T ; S v, IS v) = IS T . This indicates that any solution of system (1.3) with initial value
(S v, I+

0 ), where I+
0 ∈ (0, IS v), will reach l4 in a finite time. Thus, we can define the impulsive set and the

phase set of system (1.3) as:

M2 =
{
(S , I)|S = S T , I ∈ [0, IS T ]

}
,

and

N2 =
{
(S +, I+)|S = S v, I+ ∈ [0,w1(IS T )] ∩ [0, Ib1]

}
.

For case (C4), there exists at least one limit cycle. Assuming that E1 is an unstable focus and there
is a unique stable limit cycle of subsystem (1.2), shown in Figure 1(C), then we discuss the impulsive
set and the phase set for the Poincaré map PM of system (1.3). In this circumstance, the limit cycle
intersects with line l1 at two points T1(S t1 , It1) and T2(S t2 , It2) with S t1 < S t2 . Depending on the positions
between S T , S 1 and S t2 , we consider three subcases as follows:

(C41) S T ≤ S 1, (C42) S 1 < S T < S t2 , and (C43) S T ≥ S t2 .

When (C41) holds true, by using similar methods for case (C1), it is clear that the impulsive set and the
phase set are M1 and N1, respectively. When S 1 < S T < S t2 (i.e., subcase (C42)), we consider:

(Ca
42) S v ≤ S t1 , (Cb

42) S t1 < S v < S 1, and (Cc
42) S 1 ≤ S v < S T .

If S v ≤ S t1 (i.e., (Ca
42)) holds, the impulsive set and the phase set can also be defined as M1 and N1,

respectively. For subcase (Cb
42), there are two possible cases depending on whether orbit Γ2 crosses

line l4 before it is tangents to line l3 at point QS T . If Γ2 crosses line l4 before it is tangents to line l3 and
Γ2 intersects with line l4 at two points γ1(S γ1 , Iγ1) and γ2(S γ2 , Iγ2) with Iγ1 < Iγ2 , denoted as case Cb1

42,
the impulsive set is defined as M2 and the phase set is

N3 =
{
(S +, I+)|S = S v, I+ ∈ [0,w1(IS T )]

}
.

However, if Γ2 crosses line l4 after it is tangents to line l3, denoted as case Cb2
42, then the impulsive set

and the phase set are M1 and N1, respectively.
For subcase (Cc

42), the impulsive set and the phase set can be similarly defined as those for subcase
(Cb

42) with M2 and N3, respectively.
When S T ≥ S t2 (i.e., (C43)), depending on the position between S v and S t1 , we consider the following
two subcases:

(Ca
43) S v < S t1 and (Cb

43) S v ≥ S t1 .

Under scenario (Ca
43), the impulsive set and the phase set are defined as M1 and N1, respectively.

However, for subcase (Cb
43), the limit cycle intersects with line l4 at two points C1(S c1 , Ic1) and

C2(S c2 , Ic2) with Ic1 < Ic2 and it is clear that the impulsive set and the phase set are M2 and N3,
respectively.
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Figure 6. The illustration of the domain of the Poincaré map for the case (C1), (C32) and
(C33), respectively. (A) A = 0.5, p = 0.8, S T = 1; (B) A = 2.6, p = 0.8, S T = 2.2;(C)
A = 2.6, p = 0.6, S T = 2.2. The other parameter values are β = 1.8, δ1 = 0.15, δ2 = 0.4, ε =

5, ω = 1.2, γ = 0.1, q = 0.01, h1 = 1, h2 = 0.5.

5.2. Properties of the Poincaré map PM

In this subsection, based on above discussions of the impulsive set and the phase set of the Poincaré
map, we further discuss the existence and stability of the positive order-1 periodic solution of system
(1.3) through analyzing the properties of the Poincaré map. As we mentioned above, based on various
ODE dynamical behaviors, the definition of PM, especially for the domain and the range of it, could be
various. Thus, we also consider the properties of the Poincaré map in different cases of the dynamics
of the ODE subsystem. Due to the complex trajectories of subsystem (1.2) for case (C2), we cannot
determine the exact domains of the impulsive set and the phase set, indicating that it is difficult to study
the properties of the Poincaré map for case (C2). Therefore, we focus on investigating the properties
of the Poincaré map for cases (C1), (C3) and (C4). For case (C1), we have the following results.

Theorem 5.1. For case (C1), the Poincaré map PM of system (1.3) satisfies the following properties.
(1) The domain and range of PM are [0,+∞) and [0,w1(I∗)], respectively. PM is increasing on [0, IS v]
and decreasing on [IS v ,+∞);
(2) PM is continuously differentiable on its domain and convex on [0, IS v] provided that ∂2PM(I0)

∂I2
0

> 0 for
all I0 ∈ [0, IS v];
(3) There exists no positive fixed point for PM.

Proof (1) The vector field of system (1.3) without impulsive strategies implies that the domain of PM

is [0,+∞). For any I+
k1, I

+
k2 ∈ [0, IS v] with I+

k1 < I+
k2, it is clear that g(I+

k1) < g(I+
k2), and consequently,

PM(I+
k1) < PM(I+

k2). For any I+
k1, I

+
k2 ∈ [IS v ,+∞) with I+

k1 < I+
k2, the orbits initiating from (S v, I+

k1) and
(S v, I+

k2) will cross line l4 before they hit line l3. Denoting the vertical coordinates of the two orbits
intersecting with line l4 as I+

q1 and I+
q2, we note that I+

q1 > I+
q2. Similarly, we have g(I+

q1) > g(I+
q2) and

PM(I+
k1) = PM(I+

q1) > PM(I+
q2) = PM(I+

k2). Therefore, PM is increasing on the interval [0, IS v] and
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decreasing on the interval [IS v ,+∞). Meanwhile, The range of PM is [0,PM(IS v)] (i.e., [0,w1(I∗)]).
(2) It follows from (4.1) that

∂W(S ,I)
∂I =

(A−δ1S )
(
βS−δ2−γ−

ε

(1+ωI)2

)
(A−βS I−δ1S )2 ,

∂2W(S ,I)
∂I2 =

(A−δ1S )
(
εω(A−βS I−δ2S )

(1+ωI)3
+2βS

(
βS−δ2−γ−

ε

(1+ωI)2

))
(A−βS I−δ1S )3 .

According to the theorem of Cauchy and Lipschitz with parameters on the scalar differential equation,
we obtain

∂I(s,I0)
∂I0

= exp
(∫ s

S v

∂
∂I W(z, I(z, I0))dz

)
> 0,

and
∂2I(s,I0)
∂I2

0
=

∂I(s,I0)
∂I0

exp
∫ s

S v

∂2

∂I2 W(z, I(z, I0))∂I(z,I0)
∂I0

dz.

Following from the definition of function PM(I0) = I(S T , I0)
(
1 − qI(S T ,I0)

h2+I(S T ,I0)

)
, we have

∂PM(I0)
∂I0

=
∂I(S T ,I0)

∂I0

(
1 − qI(S T ,I0)(2h2+I(S T ,I0))

(h2+I(S T ,I0))2

)
,

and
∂2PM(I0)

∂I2
0

=
∂2I(S T ,I0)

∂I2
0

(
1 − qI(S T ,I0)(2h2+I(S T ,I0))

(h2+I(S T ,I0))2

)
+

(
∂I(S T ,I0)

∂I0

)2 2qh2
2

(h2+I(S T ,I0))3 .

Based on above discussions, we conclude that ∂PM(I0)
∂I0

> 0 while the sign of ∂2PM(I0)
∂I2

0
is not determined.

Therefore, if ∂2PM(I0)
∂I2

0
> 0 holds true on the interval [0, IS v], PM is convex on the interval [0, IS v].

(3) Note that dI
dt < 0 always holds due to the assumption that S T < A

δ1
. Therefore, for any initial

point (S v, I0) on line l4, there is g(I0) < I0. Furthermore, there is PM(I0) = w1(g(I0)). Thus, we have
PM(I0) < I0 for I0 ∈ [0,+∞). This means that there is no positive fixed point for the Poincaré map PM.
This completes the proof.

According to the third property in Theorem 5.1, we obtain that there is no positive order-1 periodic
solution of system (1.3) for case (C1). Furthermore, it is clear that for case (C31), the properties are the
same as those shown in Theorem 5.1. Correspondingly, there exists no positive order-1 periodic
solution of system (1.3) for case (C31). In what follows, we initially investigate the existence and
stability of the positive order-1 periodic solutions under case (C32). Similar to the properties proposed
in Theorem 5.1, we can conclude that the domain and range of PM are [0,+∞] and [0,w1(I∗)],
respectively, and PM is increasing on the interval [0, IS v] and decreasing on the interval [IS v ,+∞).
Furthermore, PM is convex on [0, IS v] provided that ∂2PM(I0)

∂I2
0

> 0 for all I0 ∈ [0, IS v]. It is easy to see
that I∗ < IS T and IS T < IS v . Thus, the relationship between I∗ and IS v is PM(IS v) = w1(I∗) < I∗ < IS v .
Combining with ∂2PM(I0)

∂I2
0

> 0 for all I0 ∈ [0, IS v], we have that PM(I0) < I0 holds for all I0 ∈ [0, IS v] and
there is no positive fixed point of PM. Accordingly, there is no positive order-1 periodic solution of
system (1.3). Therefore, we have the following conclusion:

Theorem 5.2. For case (C31), there is no fixed point of the Poincaré map, hence no positive order-1
periodic solution is feasible for system (1.3). For case (C32), if ∂

2PM(I0)
∂I2

0
> 0 holds true for all I0 ∈ [0, IS v],

there exists no positive periodic solution of system (1.3), shown in Figure 7(A).

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5551–5583.



5573

I
k

+

0 0.5 1 1.5 2

P
M

(I
k+
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(A)

I
k

+

0 0.5 1 1.5 2

P
M

(I
k+
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(B)

I
k

+

0 0.5 1 1.5 2

P
M

(I
k+
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(C)

I=I
b

1

I=I
b

2
I=I

b
1

Fixed

Point

I=I
b

2

Figure 7. (A) Poincaré map of system (1.3) for the case (C32) with p = 0.8. The dashed line
represents PM(I+

k ) = I+
k and the black curve denotes PM(I+

k ). (B-C) Poincaré map of system
(1.3) for the case (C33) with p = 0.6 in (B) and p = 0.08 in (C). The other parameter values
are A = 2.6, β = 1.8, δ1 = 0.15, δ2 = 0.4, ε = 5, ω = 1.2, γ = 0.1, S T = 2.2, q = 0.01, h1 = 1,
h2 = 0.5.

As for case (C33), we get the main properties of the Poinceré map PM as follows.

Theorem 5.3. For case (C33), we obtain the following results of the Poinceré map PM:
(1) The domain and range of the Poinceré map PM are [0, Ib1] ∪ [Ib2,+∞) and [0, ω1(IS T )], respectively;
(2) PM is continuous on the two intervals [0, Ib1] and [Ib2 ,+∞). Moreover, it is increasing on the
interval [0, Ib1] and decreasing on the interval [Ib2 ,+∞);
(3) Suppose ∂2PM(I0)

∂I2
0

> 0 holds true for all I0 ∈ [0, Ib1]. If PM(Ib1) < Ib1 , then there is no positive
fixed point of PM, shown in Figure 7 (B). Accordingly, there is no positive order-1 periodic solution of
system (1.3). If PM(Ib1) > Ib1 holds, there exists a unique fixed points belonging to [0, Ib1], shown in
Figure 7 (C). Then, system (1.3) has a unique positive order-1 periodic solution.
Proof The methods of the proof of properties (1) and (2) are similar to the proof of Theorem 5.1.
Thus, in the following we focus on proving the existence of the positive order-1 periodic solution in
property (3). We know that if ∂2PM(I0)

∂I2
0

> 0 for all I0 ∈ [0, Ib1], then PM is convex on the interval
[0, Ib1]. Then there must be an interval (0, δ] ∈ [0, Ib1] such that PM(I0) < I0 for all I0 ∈ (0, δ]. When
PM(Ib1) < Ib1 holds, it is clear that PM(I0) < I0 for I0 ∈ [0, Ib1]. Therefore, there is no fixed point
belonging to [0, Ib1]. Moreover, as a result of Ib2 > Il > IS T , we have PM(Ib2) < PM(Ib1) < IS T < Ib2 .
Then PM(I0) < PM(Ib2) < Ib2 < I0 for all I0 ∈ (Ib2 ,+∞). Thus, there exists no fixed point belonging
to [Ib2 ,+∞]. Then we conclude that there exists no positive fixed point of PM and there is no positive
order-1 periodic solution of system (1.3). However, if PM(Ib1) > Ib1 holds, there is a unique fixed point
I ∈ (δ, Ib1) satisfying PM(I) = I due to the continuity and convexity of PM. As mentioned above, there
is no fixed point on the interval [Ib2 ,+∞]. Therefore, there exists a unique fixed point I ∈ (δ, Ib1) of PM.
Correspondingly, system (1.3) has a unique positive order-1 periodic solution. The proof is completed.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5551–5583.



5574

Remark 1. Note that if ∂2PM(I0)
∂I2

0
> 0 for all I0 ∈ [0, Ib1] and PM(Ib1) > Ib1 hold, then 0 < ∂PM(I0)

∂I0
< 1

holds true on the interval [0, I]. Therefore, we obtain |µ2| < 1. According to the properties of the
Poinceré map PM, the unique positive order-1 periodic solution of system (1.3) is unstable, which
matches the conclusions shown in the study of the bifurcations near the disease-free periodic solution
of system (1.3).

When there is a unique stable limit cycle of subsystem (1.2), we mainly consider the most
complicated subcase, i.e., case (Cc

42). Although the domain of the Poinceré map PM is [0,+∞) for
case (Cc

42), the continuity and monotonicity of PM can be much more complex. Therefore, we further
discuss the properties of PM for case (Cc

42) in more details. When orbit Γ2 intersects with line l4 (i.e.,
the line S = S v) at a unique point P(S v, Ip) before it is tangents to line l3 (i.e., the line S = S T ), shown
in Figure 8 (A), we have the following conculsions.

Theorem 5.4. For case (Cc
42), if there exists a unique discontinuous point P, then the Poinceré map PM

satisfies the following properties:
(1) The domain and range of the Poinceré map PM are [0,∞) and [0,w1(IS T )], respectively;
(2) PM is continuous on the intervals [0, Ip], (Ip, IS v] and [IS v ,+∞). Moreover, it is increasing on the
intervals [0, Ip] and (Ip, IS v] and decreasing on the interval [IS v ,+∞);
(3) Suppose ∂2PM(I0)

∂I2
0

> 0 holds true for all I0 ∈ [0, Ip]. If PM(Ip) < Ip, then there is no positive fixed
point of PM and no positive periodic solution of system (1.3). If PM(Ip) > Ip holds, then there may
exist one or two positive fixed points, shown in Figure 8 (B-C). Accordingly, system (1.3) has one or
two positive order-1 periodic solutions.

Proof The first two results can be similarly proved as before. As for the existence of the positive
periodic solution of system (1.3), we give the proof as follows. When ∂2PM(I0)

∂I2
0

> 0 for all I0 ∈ [0, Ip]
and PM(Ip) < Ip, we have PM(I0) < I0 for I0 ∈ [0, Ip]. In addition, it is clear that PM(I0) < I0 for
I0 ∈ (Ip,+∞). Therefore, there is no positive fixed point of PM. However, if PM(Ip) > Ip, there is
a unique positive fixed point I1 ∈ (0, Ip). Moreover, if there exists δ > 0 small enough such that
PM(Ip + δ) > Ip + δ, combining with PM(IS v) < IS T < IS v and the monotonicity of PM, we obtain
that there is another fixed point I2 ∈ (Ip, IS v). Due to the monotonically decrease of PM on the interval
[IS v ,+∞), we have that PM(I0) < I0 for all I0 ∈ [IS v ,+∞). Thus, there are two positive fixed points
of PM and two positive periodic solutions of system (1.3). On the contrary, when there exists no
δ satisfying PM(Ip + δ) > Ip + δ, if ∂2PM(I0)

∂I2
0

> 0 holds for all I0 ∈ (Ip, IS v], then PM(I0) < I0 for
I0 ∈ (IS v ,+∞). Then there is only one positive fixed point of PM and a unique positive periodic
solution of system (1.3). This completes the proof.

Next, we consider the case that orbit Γ2 intersects with line l4 at three points P1(S v, Ip1), P2(S v, Ip2)
and P3(S v, Ip3) before it is tangents to line l3 with Ip1 < Ip3 < Ip2 , shown in Figure 8 (A). Therefore, the
domain of PM can be divided into:

[0, Ip1], (Ip1 , Ip3], (Ip3 , IS v], [IS V , Ip2), [Ip2 ,+∞).

Based on above discussions, we have the main conclusions as follows.
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Theorem 5.5. For case (Cc
42), if there are three discontinuous points P1, P2 and P3, then the Poinceré

map PM satisfies the following properties:
(1) The domain and range of the Poinceré map PM are [0,∞) and [0,w1(IS T )], respectively;
(2) PM is continuous on the five intervals [0, Ip1], (Ip1 , Ip3], (Ip3 , IS v], [IS V , Ip2) and [Ip2 ,+∞). Moreover,
it is increasing on the intervals [0, Ip1], (Ip1 , Ip3] and (Ip3 , IS v] and decreasing on the intervals [IS V , Ip2)
and [Ip2 ,+∞);
(3) Suppose ∂2PM(I0)

∂I2
0

> 0 holds true for all I0 ∈ [0, Ip1]. If PM(Ip1) < Ip1 , then there exists no positive
fixed point of PM and no positive periodic solution of system (1.3). If PM(Ip1) > Ip1 holds, there may
exist one, two or three positive fixed points of PM, shown in Figure 8 (D-F). Correspondingly, there
may be one, two or three positive order-1 periodic solutions of system (1.3).

The properties given by Theorem 5.5 can be similarly proved by using the methods in Theorem 5.4,
and we omit the details. For convenience, we just considered two conditions for (Cc

42) (i.e., there is
one discontinuous point P or three discontinuous points P1, P2 and P3) to discuss the existence of
the positive periodic solution of system (1.3). It is worth noting that for case (Cc

42), before orbit Γ2

reaches line S = S T , it may intersect with line S = S v 2n + 1 times, and n is increasing as S v tend
to the equilibrium E1. Thus, the number of discontinuous points could be infinitely countable, which
indicates that system (1.3) may exist an infinite number of positive order-1 periodic solutions.

Note that the properties of the Poincaré map for other subcases of case (C4) can be discussed
similarly. Specifically, we can obtain the increasing and decreasing intervals through using the same
methods mentioned in above theorems. Moreover, as for the existence of the positive order-1 periodic
solution, it can be verified that there may be no positive order-1 periodic solution, which is similar to
the results shown in Theorem 5.1 and there may be a finite number of the positive order-1 periodic
solutions which is similar to the results shown in Theorem 5.4 and Theorem 5.5, and we give the main
properties of the Poincaré map for other subcases of case (C4) in Table 1.

Table 1. Properties of the Poinceré map PM for the subcases of case (C4).

Cases Domain and range of PM Monotonicity of PM The number of PPS of system (1.3)

C41 [0,+∞) and [0,w1(I∗)] PM increases on [0, IS v ] and decreases on [IS v ,+∞) No PPS

Ca
42 [0,+∞) and [0,w1(I∗)] PM increases on [0, IS v ] and decreases on [IS v ,+∞) No PPS

Cb1
42 [0,+∞) and [0,w1(IS T )] PM increases on [0, Iγ1 ] and (Iγ1 , IS v ] and decreases on [IS v , Iγ2 ) and [Iγ2 ,+∞) At most four PPSs

Cb2
42 [0,+∞) and [0,w1(IS T )] PM increases on [0, IS v ] and decreases on [IS v ,+∞) Zero or two PPSs

Ca
43 [0,+∞) and [0,w1(I∗)] PM increases on [0, IS v ] and decreases on [IS v ,+∞) Zero or two PPSs

Cb
43 [0, Ic1 ] ∪ [Ic2 ,+∞) and [0,w1(IS T )] PM increases on [0, Ic1 ] and decreases on [Ic2 ,+∞) At most one PPS

Note: ’PPS’ represents ’ The positive order-1 periodic solution’.

6. Conclusions and discussions

Many mathematical models have assumed that there is a threshold level of the infected population
determining the implementation of control methods. Unfortunately, under this assumption, no
disease-free periodic solution is feasible or the control reproduction number of the state-dependent
impulsive model cannot be defined. Thus, recent studies [24, 25] proposed mathematical models with
susceptibles-guided linear impulsive control. In the current study, considering the limitation of
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Figure 8. (A) The illustration of the domain of the Poincaré map for the case (Cc
42) with one

discontinuous point P on the line S = S v1 or three discontinuous points P1, P2 and P3 on
the line S = S v2 . (B-C) Poincaré map of system (1.3) with one discontinuous point for the
case (Cc

42). (D-F) Poincaré map of system (1.3) with three discontinuous points for the case
(Cc

42). (A) q = 0.05, p = 0.02 for the line S = S v1 and p = 0.06 for the line S = S v2; (B)
p = 0.025, q = 0.13; (C) p = 0.025, q = 0.05; (D) p = 0.03, q = 0.13; (E) p = 0.03, q = 0.07;
(F) p = 0.03, q = 0.05. The other parameter values are A = 2, β = 1.8, δ1 = 0.15, δ2 = 0.4,
ε = 5, ω = 1.2, γ = 0.1, S T = 3.245, h1 = 0.01, h2 = 0.01.
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resources, we introduced the comprehensive saturated control strategies (including saturated
impulsive vaccination and isolation, and saturated continuous treatment), and proposed a
state-dependent impulsive model with comprehensive saturation interventions.

We first briefly concluded the main dynamics of the ODE subsystem. Based on the dynamics of
the ODE subsystem, we investigated the dynamical behaviours of system (1.3). We find that under the
susceptibles-guided impulsive control strategy, there always exists the disease-free periodic solution.
Further, by discussing the stability of the disease-free periodic solution, we defined the control
reproduction number Rb of the state-dependent feedback control system, that is, the disease-free
periodic solution is locally stable when Rb is less than 1 and unstable otherwise.

Furthermore, we studied the existence and stability of the positive order-1 periodic solution
through analyzing the bifurcation phenomenon near the disease-free periodic solution and discussing
the properties of the Poincaré map. We proved that the system can undergo the transcritical
bifurcation and the pitchfork bifurcation with respect to the key parameters, including the control
parameters such as the maximal vaccination rate p, the threshold level S T and the parameter ε related
to saturated continuous treatment. Accordingly, it can be shown that by changing key parameter
values, a stable or an unstable positive order-1 periodic solution can bifurcate from the disease-free
periodic solution. On the other hand, based on the complexity of the definitions of the domain of the
Poincaré map for different cases, there will be a finite number of discontinuous points or an infinitely
countable number of discontinuous points for the Poincaré map. Consequently, there may exist
multiple positive order-1 periodic solution of system (1.3). Comparing with the analysis of the linear
susceptibles-guided impulsive control strategy in [25], our current model considered both continuous
saturated treatment and nonlinear impulsive interventions, and we investigated the existence of finite
or infinite countable positive order-1 periodic solutions through studying the properties of the
Poincaré map. Moreover, through discussing the bifurcations near the disease-free periodic solution
with respect to the half-saturation constant of susceptible individuals h1, we concluded that the
disease-free periodic solution is stable when h1 < h∗1. This implies that the saturation phenomenon of
the impulsive control strategy greatly influences the spread of infectious diseases, and large
half-saturation constant of susceptibles induces diseases eradication less likely.

Comparing with the model with continuous treatment (i.e., the ODE subsystem (1.2)), we proved
that the disease-free periodic solution is stable provided that S T ≤ S̄ even if R0 > 1 for
subsystem (1.2), implying that the susceptibles-guided impulsive strategy can eradicate infectious
diseases successfully with choosing proper threshold level of susceptible population even if R0 > 1 for
subsystem (1.2). Moreover, comparing with the modeling approaches of the infected
individuals-triggered impulsive control, there always exists the disease-free periodic solution,
especially, we can also define the control reproduction number for our state-dependent impulsive
model. Therefore, for our proposed model, it is essential to emphasize that the susceptibles-triggered
impulsive intervention strategy leads to interesting biological implications, which is helpful to design
an optimal treatment strategy. It follows from Figures 2 and 3(A) that selecting proper parameter
values plays a crucial effect on controlling infectious diseases. As shown in Figure 2(A), (B) and (D),
Rb decreases with respect to q, A and ε, which means that enhancing the maximal isolation rate or the
continuous treatment is always beneficial to the control of infectious diseases. In addition, large
recruitment rate is also helpful to eradicate infectious diseases. As for another key parameter p, we
find that when the chosen value of p is large enough, increasing p results in the decrease of Rb,
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however, for a quite low level of p, Rb increases with respect to p, shown in Figure 2(B), which means
that enhancing maximal vaccination rate may be a disadvantage of controlling infectious disease.
These results indicate that it is important to choose proper maximal vaccination rate and we should
choose relatively large vaccination rate in order to avoid this kind of paradoxical effects. Meanwhile,
it is revealed that relatively large threshold level S T is not beneficial to eradicate infectious diseases,
shown in Figure 3(A). Another interesting result shown in Figure 3 reveals that if we choose a
properly small threshold value S T , infectious diseases can be eventually eradicated, which plays a
significant role in mitigating the spread of infectious diseases. Therefore, we should take account of
these key parameters in order to develop effective and optimal susceptibles-triggered impulsive
control strategies.
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Appendix A

The following lemma shows the local stability of an order-k periodic solution.

Lemma A.1 The order-k periodic solution (x, y) = (ξ(t), η(t)) with period T of (1.3) is orbitally
asymptotically stable if the Floquet multiplier µ2 satisfies |µ2| < 1, where

µ2 =

q∏
k=1

∆k exp
[∫ T

0

(
∂P
∂x

(ξ(t), η(t)) +
∂Q
∂y

(ξ(t), η(t))
)

dt
]
,

with

∆k =
P+

(
∂b
∂y

∂φ

∂x −
∂b
∂x

∂φ

∂y +
∂φ

∂x

)
+ Q+

(
∂a
∂y

∂φ

∂y −
∂a
∂y

∂φ

∂x +
∂φ

∂y

)
P∂φ

∂x + Q∂φ

∂y

,

and P,Q, ∂a
∂x ,

∂a
∂y ,

∂b
∂x ,

∂b
∂y ,

∂φ

∂x ,
∂φ

∂y are calculated at the point (ξ(τk), η(τk)), and P+ = P(ξ(τ+
k ), η(τ+

k )),Q+ =

Q(ξ(τ+
k ), η(τ+

k )) with τk(k ∈ N) denoting the time of the k-th jump. Here, φ(x, y) is a sufficiently smooth
function such that gradφ(x, y) , 0.

Then, we give two lemmas of the transcritical bifurcation and the pitchfork bifurcation of the
discrete one-parameter family of maps [32].

Lemma A.2 (Transcritical bifurcation). Let G : U × I → R define a one-parameter family of maps,
where G is Cr with r ≥ 2, and U, I are open intervals of the real line containing 0. Assume

(1) G(0, α) = 0 f or all α; (2) ∂G
∂x (0, 0) = 1;

(3) ∂2G
∂x∂α (0, 0) > 0; (4) ∂2G

∂x2 (0, 0) > 0.
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Then there are α1 < 0 < α2 and ζ > 0 such that
(1) If α1 < α < 0, then Gα has two fixed points, 0 and x1α > 0 in (−ζ, ζ). The origin is asymptotically
stable, while the other fixed point is unstable.
(2) If 0 < α < α2, then Gα has two fixed points, 0 and x1α < 0 in (−ζ, ζ). The origin is unstable, while
the other fixed point is asymptotically stable.
Similarly, note that making the change of parameter α→ −α, we can handle ∂2G

∂x2 (0, 0) < 0.

Lemma A.3 (Supercritical pitchfork bifurcation). Let G : U × I → R define a one-parameter family of
maps as in Lemma A.2, except that G is Cr with r ≥ 3, ∂2G

∂x2 (0, 0) = 0 and ∂3G
∂x3 (0, 0) < 0. Then there are

α1 < 0 < α2 and ζ > 0 such that
(1) If α1 < α ≤ 0, then Gα has a unique fixed point, x = 0. And it is asymptotically stable.
(2) If 0 < α < α2, then Gα has three fixed points, 0 and x1α < 0 < x2α in (−ζ, ζ). The origin is unstable,
while the other two fixed points are asymptotically stable.
Note that the for the case ∂3G

∂x3 (0, 0) > 0, we can make the change of parameter α→ −α, which is called
the subcritical pitchfork bifurcation.

Appendix B

(A) The bifurcation near the disease-free periodic solution with respect to A for h2 > 0.
Firstly, we investigate the existence of A∗ ∈ (δ1S T ,+∞) such that Rb(A∗) = 1. There are

limA→δ1S +
T

Rb(A) = +∞, limA→+∞ Rb(A) = limA→+∞ exp(J(A)) = 1. (6.1)

Taking the derivative of Rb(A) with respect to A, one obtains

∂Rb(A)
∂A = Rb(A)∂J(A)

∂A ,

with
∂J(A)
∂A =

β

δ2
1

(
ln A−δ1S v

A−δ1S T
+

δ1(A−δ1S )(S v−S T )
(A−δ1S v)(A−δ1S T )

)
.

Denoting W1(A) = ln A−δ1S v
A−δ1S T

+
δ1(A−δ1S )(S v−S T )
(A−δ1S v)(A−δ1S T ) and taking the derivative of W1(A) with respect to A, we

get
∂W1(A)
∂A =

δ2
1(S v−S T )

(A−δ1S v)2(A−δ1S T )2

(
(2S − S v − S T )A + δ1(2S vS T − S (S v + S T ))

)
.

Note that if 2S = S v + S T , we have

∂W1(A)
∂A =

δ3
1(S v−S T )

(A−δ1S v)2(A−δ1S T )2

(
2S vS T −

(S v+S T )2)
2

)
.

As a result of 4S vS T < (S v + S T )2, then ∂W1(A)
∂A > 0. This indicates that W1(A) is monotonically

increasing for A ∈ (δ1S T ,+∞). Combining with limA→+∞W1(A) = 0, we yield ∂J(A)
∂A < 0 holds for

all A ∈ (δ1S T ,+∞), i.e., ∂Rb(A)
∂A < 0, which means that Rb(A) is monotonically decreasing. Therefore,

Rb(A) > 1 for all A ∈ (δ1S T ,+∞). Under this situation, the disease-free periodic solution is unstable
and no bifurcation occurs with respect to parameter A.
However, if 2S , S v + S T , we denote

W2(A) = (2S − S v − S T )A + δ1(2S vS T − S (S v + S T )) � a1A + a2.
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Then, we have

a1 > 0⇔ S >
S v + S T

2
, a2 > 0⇔ S <

2S vS T

S v + S T
.

Moreover, there is a unique A = −a2
a1

such that W2(A) = 0. In what follows, we focus on discussing the
bifurcation related to parameter A by considering the following cases:
(1) If a1 > 0, it is clear that a2 < 0 holds, thus, A > 0. Then we consider two subcases as follows:

(a) If A ≤ δ1S T , we obtain W2(A) > 0, i.e., ∂W1(A)
∂A < 0 holds for all A ∈ (δ1S T ,+∞). Thus, W1(A)

is monotonically decreasing on the interval (δ1S T ,+∞) and limA→+∞W1(A) = 0, which indicates that
W1(A) > 0 for all A ∈ (δ1S T ,+∞). Therefore, Rb(A) is monotonically increasing on the interval
(δ1S T ,+∞). However, this result contradicts equations (6.1), indicating that A > δ1S T always holds.

(b) In the following, we consider the condition A > δ1S T . Under this scenario, we have W2(A) < 0
for A ∈ (δ1S T , A) and W2(A) > 0 for A ∈ (A,+∞). Therefore, ∂W1(A)

∂A > 0 for A ∈ (δ1S T , A) and
∂W1(A)
∂A < 0 for A ∈ (A,+∞), which means that W1(A) is monotonically increasing on the interval

(δ1S T , A) and monotonically decreasing on the interval (A,+∞). According to limA→+∞W1(A) = 0,
we have W1(A) > 0 for all A ∈ (A,+∞), and consequently, Rb(A) is monotonically increasing on the
interval (A,+∞). It is easy to verify that there is a unique A′ ∈ (δ1S T , A) satisfying W1(A′) = 0.
In fact, if W1(A) > 0 always holds for A ∈ (δ1S T , A), then Rb(A) is monotonically increasing on
the interval (δ1S T ,+∞), which contradicts equations (6.1). Thus, W1(A) < 0 for A ∈ (δ1S T , A′) and
W1(A) > 0 for A ∈ (A′,+∞). Correspondingly, Rb(A) is monotonically decreasing on the interval
(δ1S T , A′) and increasing on the interval (A′,+∞). According to equations (6.1), there must be a
unique A∗ ∈ (δ1S T , A′) such that Rb(A∗) = 1 with ∂Rb(A∗)

∂A < 0.
(2) If a1 < 0 and a2 > 0, we have A > 0. Then we consider the following subcases:

(a) If A ≤ δ1S T , then we have W2(A) < 0, i.e., ∂W1(A)
∂A > 0 holds for all A ∈ (δ1S T ,+∞). Therefore,

W1(A) is monotonically increasing on the interval (δ1S T ,+∞) with limA→+∞W1(A) = 0, which
indicates that W1(A) < 0 holds true for all A ∈ (δ1S T ,+∞). Correspondingly, Rb(A) is monotonically
decreasing on the interval (δ1S T ,+∞). According to limA→+∞ Rb(A) = 1, we have Rb(A) > 1 is true for
A ∈ (δ1S T ,+∞). These results show that the disease-free periodic solution is unstable and there is no
bifurcation near the disease-free periodic solution.

(b) If A > δ1S T , we have W2(A) > 0 for A ∈ (δ1S T , A) and W2(A) < 0 for A ∈ (A,+∞).
Consequently, W1(A) is monotonically decreasing on the interval (δ1S T , A) and monotonically
increasing on the interval (A,+∞). According to limA→∞W1(A) = 0, we have that W1(A) < 0 for all
A ∈ (A,+∞) and Rb(A) is monotonically decreasing on the interval (A,+∞). As for A ∈ (δ1S T , A), if
there exists a A′′ such that W1(A′′) = 0, then W1(A) > 0 for A ∈ (δ1S T , A′′) and W1(A) < 0 for
A ∈ (A′′,+∞), which contradicts Eq (6.1). Therefore, W1(A) < 0 holds for A ∈ (δ1S T ,+∞) and Rb(A)
is monotonically decreasing on the interval (δ1S T ,+∞). Similar to above discussions for subcase (a),
we know that Rb(A) > 1 always holds true. Therefore, the disease-free periodic solution is unstable
and there is no bifurcation near the disease-free periodic solution.
(3) If a1 < 0 and a2 < 0, then we have A < 0. Under this scenario, W2(A) < 0, i.e., ∂W1(A)

∂A > 0 holds for
all A ∈ (δ1S T ,+∞). Therefore, W1(A) is monotonically increasing on the interval (δ1S T ,+∞) with
limA→+∞W1(A) = 0. Therefore, W1(A) < 0 always holds. Accordingly, Rb(A) is monotonically
decreasing on the interval (δ1S T ,+∞). Combining with equations (6.1), we have that Rb(A) > 1 holds
true for A ∈ (δ1S T ,+∞), meaning that the disease-free periodic solution is unstable and there is no
bifurcation near the disease-free periodic solution. Based on above discussions, we have conclusions
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as follows.

Proposition B.1 Assume R0 > 1. If S T > S > S v+S T
2 holds, then there exists a unique A∗ ∈ (δ1S T , A′)

satisfying Rb(A∗) = 1 with ∂Rb(A∗)
∂A < 0. And the disease-free periodic solution (ξ(t), 0) of system (1.3) is

orbitally asymptotically stable when A ∈ (A∗,+∞) and unstable when A ∈ (δ1S T , A∗).

As for the bifurcation of the disease-free periodic solution at A∗, we have that PM(0, A) = 0 always
holds for A ∈ (δ1S T ,+∞), and

∂PM
∂I0

(0, A∗) = 1, ∂2PM
∂I0∂A (0, A∗) < 0,

∂2PM
∂I2

0
(0, A∗) = g′′(0; A∗) − 2q

h2
, ∂3PM

∂I3
0

(0, A∗) = g′′′(0; A∗) − 6q(2q−1)
h2

2
.

Therefore, we can conclude the main results for the bifurcation near the disease-free periodic solution
with respect to A in Theorem 4.5.

(B) The bifurcation near the disease-free periodic solution with respect to q for h2 = 0.
When h2 = 0, the bifurcation near the disease-free periodic solution can be similarly studied. It

is clear that Rb(q) = (1 − q) exp(J) when h2 = 0. Thus, q can be chosen as a bifurcation parameter.
It is easily obtained that Rb(1) = 0. When J > 0 holds, then there is a unique q∗ ∈ (0, 1) such that
Rb(q∗) = 1 with q∗ = 1 − exp(−J), which is equal to ∂PM

∂I0
(0, q∗) = 1. Note that PM(0, q) = 0 always

holds, and ∂2PM
∂I0∂q (0, q∗) = − exp(J) < 0. Moreover, there is

∂2PM
∂I2

0
(0, q∗) = (1 − q∗)g′′(0; q∗).

Therefore, we can obtain the conclusions given in Theorem 4.6.
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