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Abstract: To date, an innovative strategy to control dengue is to release Wolbachia-infected male
mosquitoes into wild areas to sterilize wild female mosquito vectors by cytoplasmic incompatibility
(CI). To investigate the efficacy of Wolbachia in blocking dengue virus transmission, we develop a
deterministic mathematical model of human and mosquito populations in which one dengue serotype
circulates. The delay differential equation model captures the respective extrinsic and intrinsic incu-
bation periods (EIP and IIP) in the mosquito and human, as well as the maturation delay between
mating and emergence of adult mosquitoes, which have received relatively little attention. We analyze
the existence and stability of disease-free equilibria, and obtain a sufficient and necessary condition
on the existence of the disease-endemic equilibrium. We also determine two threshold values of the
release ratio θ, denoted by θ∗1 and θ∗2 with θ∗1 > θ∗2. When θ > θ∗1, the mosquito population will be erad-
icated eventually. When θ∗2 < θ < θ∗1, a complete mosquito eradication becomes impossible, but virus
eradication is ensured at the meantime. When θ < θ∗2, the disease-endemic equilibrium emerges that
allows dengue virus to circulate between humans and mosquitoes. We carry out sensitivity analysis
of the threshold values in terms of the model parameters, and simulate several possible control strate-
gies with different release ratios, which confirm the public awareness that reducing mosquito bites and
killing adult mosquitoes are the most effective strategy to control the epidemic. Our model provides
new insights on the effectiveness of Wolbachia in reducing dengue at a population level.
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1. Introduction

Dengue is a viral disease transmitted mainly by Aedes mosquitoes, including Aedes aegypti and
Aedes albopictus. Infected human beings carrying dengue viruses may get high fever, headaches, and
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skin rash, which may progress to dengue shock syndrome or dengue hemorrhagic fever. The annually
reported dengue cases increased sharply from 2.2 million in 2010 to 3.2 million in 2015 [1]. More
than 500,000 people with severe dengue are hospitalized annually, and the case fatality percentage
is about 2.5%. Due to the lack of commercially available vaccines for dengue control, traditional
methods have been focused on vector control by heavy applications of insecticides and environmental
management [2]. However, these programs have not prevented the spread of these diseases due to the
rapid development of insecticide resistance [3] and the continual creation of ubiquitous breeding sites.

An innovational mosquito control method utilizes Wolbachia, an intracellular bacterium present in
about 60% of insect species [4], including some mosquitoes. Wolbachia can induce cytoplasmic incom-
patibility (CI) in mosquitoes, which results in early embryonic death from matings between Wolbachia-
infected males and females that are either uninfected or harbor a different Wolbachia strain [5, 6]. In
the world’s largest “mosquito factory” located in Guangzhou, China, 20 million Wolbachia-infected
males are produced each week. These mosquitoes have been released in several urban and suburb
areas since 2015, and killed more than 95% mosquitoes on the Shazai island [7]. Motivated by the suc-
cess and the challenge in field trials, the study on the complex Wolbachia spread dynamics has become
a hot research topic. Various mathematical models have been developed, including models of ordi-
nary differential equations [8–10], delay differential equations [9, 11–13], impulsive differential equa-
tions [14], stochastic equations [15], and reaction-diffusion equations [16]. These models are mainly
devoted to analyzing the threshold dynamics for population replacement with Wolbachia-infected fe-
male mosquitoes or CI-driven population suppression, which only included mosquito population into
the models. However, it is usually a formidable task for complete population replacement or eradi-
cation in large-scale field trials, and we can only concede mosquito replacement/eradication to virus
eradication by restricting the mosquito densities below the epidemic risk threshold.

To assess the efficacy of blocking dengue virus transmission by Wolbachia, a deterministic math-
ematical model of human and mosquito populations interfered by the circulation of a single dengue
serotype was developed in the framework of SIER model [17]. This important study has inspired fur-
ther development of compartmental models to analyze the transmission dynamics of dengue [18–22].
In this paper, we extend their efforts by incorporating the Wolbachia-infected male mosquito release
into a compartmental model, where the infected males are maintained at a fixed ratio to the adult
female mosquito population. We divide the mosquito population into three compartments: suscepti-
ble, exposed and infectious, and divide the human population into four compartments: susceptible,
exposed, infectious and recovered. In particular, we include the respective extrinsic and intrinsic incu-
bation periods (EIP and IIP) in the mosquito and human populations in our model. These periods have
been shown to be crucial in clinical diagnosis, outbreak investigation, and dengue control [23], but have
received relatively little attention [9, 18]. Further, the release of Wolbachia-infected male mosquitoes
is not effective immediately in sterilizing wild females due to the maturation delay between mating and
emergence of adults [24]. To characterize the effect of EIP, IIP and the maturation delay on dengue
transmission, we introduce three delays into our model.

The model treats IIP in humans, EIP in mosquitoes, and the maturation delay as three delays.
We aim to find the threshold values of the release ratio for mosquito or virus eradication under the
proportional release policy. By analyzing the existence and stability of disease-free equilibria, we
obtain the sufficient and necessary condition on the existence of the disease-endemic equilibrium. Two
threshold values of the release ratio θ, denoted by θ∗1 and θ∗2 with θ∗1 > θ∗2 are explicitly expressed.
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When θ > θ∗1, the mosquito population will be eradicated eventually. If it fails for mosquito eradication
but θ∗2 < θ < θ∗1, virus eradication is ensured together with the persistence of susceptible mosquitoes.
When θ < θ∗2, the disease-endemic equilibrium emerges that allows dengue virus to circulate between
humans and mosquitoes through mosquito bites. Sensitivity analysis of the threshold values in terms of
the model parameters, and numerical simulations on several possible control strategies with different
release ratios confirm the public awareness that reducing mosquito bites and killing adult mosquitoes
are the most effective strategy to control the epidemic. Our model will provide new insights on the
effectiveness of Wolbachia in reducing dengue at a population level.

2. Model formulation

We divide adult mosquitoes into subgroups of susceptible (S M), exposed (EM) and infectious (IM).
Let NM = S M + EM + IM be the total number of mosquitoes. The human population is divided into
four subpopulations: susceptible (S H), exposed (infected but not infectious, EH), infectious (IH), and
recovered (RH). The total number of humans is denoted by NH = S H + EH + IH + RH. Without the
bothering of the dengue virus, i.e., EM = IM = EH = IH = RH = 0, we assume that mosquito and
human populations follow the logistic growth [25] satisfying

dNH

dt
= rHNH(t)

(
1 −

NH(t)
κH

)
− µHNH(t),

dNM

dt
= rMNM(t)

(
1 −

NM(t)
κM

)
− µMNM(t),

where rH and µH are respectively the birth rate and the death rate of humans, and κH is a constant which
leads the human carrying capacity to [(rH − µH)/rH]κH. Similarly, we set rM, µM, and κM as the birth
rate, the death rate, and the carrying capacity parameter for mosquitoes. The prevalence of dengue
virus disrupts the dynamics of humans and mosquitoes, which are split into S H, EH, IH, RH and S M,
EM, IM, respectively.

Dengue viruses can be transmitted from infectious mosquitoes to susceptible humans through bites.
Let b be the average daily biting rate per female mosquito, and βMH be the fraction of transmission from
mosquitoes to humans. Then, susceptible humans acquire the infection at the rate [bβMHIM(S H/NH)],
and we have

dS H

dt
= rHNH(t)

(
1 −

NH(t)
κH

)
− bβMHIM(t)

S H(t)
NH(t)

− µHS H(t). (2.1)

Let τH be the intrinsic incubation period (IIP) in humans between infection and the onset of infectious-
ness. IIP is an important determinant of dengue transmission dynamics, which varies from 3 to 14
days. Exposed humans become infectious at the rate

[e−µHτH bβMHIM(t − τH)(S H(t − τH)/NH(t − τH))].

With further assumption that infected but not infectious humans have the same death rate as that of
susceptible humans, EH follows

dEH

dt
= bβMHIM(t)

S H(t)
NH(t)

− e−µHτH bβMHIM(t − τH)
S H(t − τH)
NH(t − τH)

− µHEH(t). (2.2)
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Let γ be the recovery rate of humans. Then for IH and RH, we arrive at

dIH

dt
= e−µHτH bβMHIM(t − τH)

S H(t − τH)
NH(t − τH)

− (γ + µH)IH(t), (2.3)

dRH

dt
= γIH(t) − µHRH(t), (2.4)

where we disregard the negligible dengue mortality in humans [26] and set an identical mortality rate
for humans.

With the release of Wolbachia-infected male mosquitoes, denoted by R(t) at time t, the birth rate of
mosquitoes is reduced from rM to

rM(1 − Probability of complete CI occurrence).

Under random mating and equal sex determination, the probability of CI occurrence at time t is the pro-
portion of Wolbachia-infected male mosquitoes among all male mosquitoes, i.e., R(t)/(R(t) + NM(t)).
However, there is a delay between the release of Wolbachia-infected males and the reduction of the
wild mosquitoes which is caused by the maturation delay between mating and emergence of adult
mosquitoes [24], denoted by τe. Hence, the number of susceptible mosquitoes that survive the matura-
tion period is

rMe−µMτe

[
1 −

R(t − τe)
NM(t − τe) + R(t − τe)

]
· NM(t − τe)

(
1 −

NM(t − τe)
κM

)
.

The susceptible mosquitoes become exposed at a rate of [bβHMS M(IH/NH)], where βHM is the fraction
of virus transmission from infectious humans to susceptible mosquitoes through blood meals. Taking
these considerations into account, we have

dS M

dt
= rMe−µMτe NM(t−τe)

(
1−

NM(t − τe)
κM

)
·

NM(t − τe)
NM(t − τe) + R(t − τe)

−bβHMS M(t)
IH(t)
NH(t)

−µMS M(t). (2.5)

Exposed mosquitoes spend the extrinsic incubation period (EIP), denoted by τM, which is the vi-
ral incubation period between the time when a female mosquito takes a viraemia blood meal from an
infectious human and the time when that mosquito becomes infectious [27], typically 8∼12 days.
EIP has been frequently recognized as a crucial component of dengue virus transmission dynam-
ics [23]. In view of this point, the rate that exposed mosquitoes become infectious per unit time is
[e−µMτM bβHMS M(t − τM)(IH(t − τM)/NH(t − τM))]. Then the whole set of equations in our model ends
with

dEM

dt
= bβHMS M(t)

IH(t)
NH(t)

− e−µMτM bβHMS M(t − τM)
IH(t − τM)
NH(t − τM)

− µMEM(t), (2.6)

dIM

dt
= e−µMτM bβHMS M(t − τM)

IH(t − τM)
NH(t − τM)

− µMIM(t) (2.7)

for exposed and infectious mosquitoes, respectively.
Our purpose is to find the threshold values in terms of the release ratio for mosquito or virus erad-

ication under the proportional release policy, where the Wolbachia-infected male mosquitoes is main-
tained in a fixed proportion to the adult female mosquito population, i.e.,

R(t) = θNM(t). (2.8)
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The explicit expressions of the threshold values are obtained as follows:

θ∗1 =
rMe−µMτe

µM
− 1, θ∗2 =

rMe−µMτe

µM
− 1 −

rMe−µMτeκH(rH − µH)(γ + µH)
rHκMb2βMHβHMe−µHτH−µMτM

with θ∗1 > θ
∗
2. We get the following theorem.

Theorem 1. If θ > θ∗1, then eradication of mosquitoes occurs. If θ∗2 < θ < θ∗1, then eradication of virus
occurs. If θ < θ∗2, then there exists a unique disease-endemic equilibrium of system (2.1)-(2.7).

The proof of Theorem 1 is embodied in the analysis of the existence and stability of equilibrium
points of system (2.1)-(2.7) in the following two sections, and we omit it here.

3. Existence of equilibria

To determine the steady-state solutions of system (2.1)-(2.7), we set the right sides of (2.1)-(2.7) to
zero and ignore the time lags to arrive at

rHNH

(
1 −

NH

κH

)
− bβMHIM

S H

NH
− µHS H = 0, (3.1a)

bβMHIM
S H

NH
− e−µHτH bβMHIM

S H

NH
− µHEH = 0, (3.1b)

e−µHτH bβMHIM
S H

NH
− (γ + µH)IH = 0, (3.1c)

γIH − µHRH = 0, (3.1d)

rMe−µMτe NM

(
1 −

NM

κM

)
·

1
1 + θ

− bβHMS M
IH

NH
− µMS M = 0, (3.1e)

bβHMS M
IH

NH
− e−µMτM bβHMS M

IH

NH
− µMEM = 0, (3.1f)

e−µMτM bβHMS M
IH

NH
− µMIM = 0. (3.1g)

Adding (3.1a) to (3.1d) together, we have

rHNH

(
1 −

NH

κH

)
= µHNH,

which yields
NH = 0 or NH = κH

(
1 −

µH

rH

)
:= N∗H, (3.2)

provided that µH < rH holds. Similarly, adding (3.1e) to (3.1g) together, we have

rMe−µMτe NM

(
1 −

NM

κM

)
·

1
1 + θ

= µMNM,

which leads to
NM = 0 or NM = κM

[
1 −

µM(1 + θ)eµMτe

rM

]
:= N∗M. (3.3)

Define the net reproductive numbers for humans and mosquitoes respectively by

RH
0 :=

rH

µH
, RM

0 :=
rM

µM(1 + θ)eµMτe
.
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Theorem 2. Assume that
RH

0 > 1 and RM
0 > 1. (3.4)

Besides the zero equilibrium, system (2.1)-(2.7) admits two disease-free equilibrium points

E∗01 := (N∗H, 0, 0, 0, 0, 0, 0), E∗02 := (N∗H, 0, 0, 0,N
∗
M, 0, 0).

Remark 1. The equilibrium point E∗01 corresponds to mosquito eradication as well as the infectious-
free state for humans. The equilibrium point E∗02 biologically corresponds to the coexistence of
mosquitoes and humans, without the infection of dengue virus, which more closely fits the actual situ-
ation. In the following discussion, we always assume that RH

0 > 1.

To find the disease-endemic equilibrium point of system (2.1)-(2.7), denoted by

E∗ := (S ∗H, E
∗
H, I

∗
H,R

∗
H, S

∗
M, E

∗
M, I

∗
M),

we need to solve the algebraic equations (3.1a)-(3.1g). If we define the basic reproduction number by

R0 :=
b2βMHβHMe−µHτH−µMτM N∗M

µM(γ + µH)N∗H
,

then we obtain the existence of the disease-endemic equilibrium as follows.

Theorem 3. The unique disease-endemic equilibrium of system (2.1)-(2.7) exists if and only if R0 > 1
and RM

0 > 1.

Proof. From (3.1d), we have
R∗H =

γ

µH
I∗H. (3.5)

From (3.1b) and (3.1c), we respectively have

µHE∗H = bβMHI∗M
S ∗H
N∗H
· (1 − e−µHτH ), (γ + µH)I∗H = bβMHI∗M

S ∗H
N∗H
· e−µHτH .

Hence we get the relation between E∗H and I∗H as

µHE∗H
(γ + µH)I∗H

=
1 − e−µHτH

e−µHτH
,

i.e.,

E∗H =
(eµHτH − 1)(γ + µH)

µH
I∗H. (3.6)

Recall that at any steady state, we have

rHN∗H
(
1 −

N∗H
κH

)
= µHN∗H.

Combining (3.1a) and (3.1c), one has

µH(N∗H − S ∗H) = bβMHI∗M
S ∗H
N∗H

= eµHτH (γ + µH)I∗H,
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and hence

S ∗H = N∗H −
eµHτH (γ + µH)

µH
I∗H. (3.7)

From (3.1f) by (3.1g), we have

µME∗M = bβHMS ∗M
I∗H
N∗H
· (1 − e−µMτM ),

µMI∗M = bβHMS ∗M
I∗H
N∗H
· e−µMτM .

Hence, we get the relation between E∗M and I∗M which reads as

E∗M = (eµMτM − 1)I∗M. (3.8)

Again, notice that at any steady state, we have

rMe−µMτe N∗M
(
1 −

N∗M
κM

) 1
1 + θ

= µMN∗M.

Then from (3.1e) and (3.1g), we arrive at

µM(N∗M − S ∗M) = bβHMS ∗M
I∗H
N∗H

= µMeµMτM I∗M,

which leads to
S ∗M = N∗M − eµMτM I∗M. (3.9)

From (3.5) to (3.9), to get the explicit expression of the disease-endemic equilibrium point, we only
need to solve for I∗H and I∗M. To this end, combining (3.1c) and (3.7), we have

I∗H =
e−µHτH bβMH

(γ + µH)N∗H
·
[
N∗H −

eµHτH (γ + µH)
µH

I∗H
]
· I∗M

=
(e−µHτH bβMH

γ + µH
−

bβMH

µHN∗H
I∗H

)
I∗M. (3.10)

Similarly, from (3.1g) and (3.9), we have

I∗M =
e−µMτM bβHM

µMN∗H
· (N∗M − eµMτM I∗M) · I∗H

=
(e−µMτM bβHMN∗M

µMN∗H
−

bβHM

µMN∗H
I∗M

)
I∗H. (3.11)

Tedious but direct computations from (3.10)-(3.11) offers a linear relation between I∗M and I∗H as

( bβHM

µMN∗H
+

bβMH

µHN∗H
·

e−µMτM bβHMN∗M
µMN∗H

)
I∗H =

( bβMH

µHN∗H
+

bβHM

µMN∗H
·

e−µHτH bβMH

γ + µH

)
I∗M. (3.12)
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Plugging (3.12) into (3.10) and (3.11) yields the unique I∗H and I∗M as

I∗H =

[
e−µHτH−µMτM b2βMHβHMN∗M − (γ + µH)µMN∗H

]
µHN∗H

bβHM(e−µMτM bβMHN∗M + µHN∗H)(γ + µH)
, (3.13)

I∗M =

[
e−µHτH−µMτM b2βMHβHMN∗M − (γ + µH)µMN∗H

]
µH

bβMH

[
e−µHτH bβHMµH + (γ + µH)µM

] . (3.14)

It is easy to see from (3.5), (3.6), and (3.8) that R∗H, E∗H, and E∗M are positive provided that I∗M and
I∗H are positive. From (3.7) and (3.13), we have

S ∗H = N∗H −
eµHτH

[
e−µHτH−µMτM b2βMHβHMN∗M − (γ + µH)µMN∗H

]
N∗H

bβHM(e−µMτM bβMHN∗M + µHN∗H)

=
N∗H

bβHM(e−µMτM bβMHN∗M + µHN∗H)
· [bβHMµH + (γ + µH)µMeµHτH ] · N∗H > 0

always holds provided N∗M > 0 and N∗H > 0. Similarly, to guarantee S ∗M > 0, (3.9) requires again
N∗M > 0. From (3.9) and (3.14), with N∗H > 0, we have

S ∗M = N∗M − eµMτM

[
e−µHτH−µMτM b2βMHβHMN∗M − (γ + µH)µMN∗H

]
µH

bβMH

[
e−µHτH bβHMµH + (γ + µH)µM

]
=

1

bβMH

[
e−µHτH bβHMµH + (γ + µH)µM

] · µM(γ + µH)(N∗M + eµMτMµHN∗H) > 0.

Hence, the disease-endemic equilibrium point exists if and only if

e−µHτH−µMτM b2βMHβHMN∗M − (γ + µH)µMN∗H > 0,

i.e., R0 > 1. With the conclusion of Theorem 2, we complete the proof. �

4. Stability of equilibria

Because we are dealing with a system of delay differential equations, the characteristic equation has
an infinite number of roots satisfying

det(J + e−λτH JτH + e−λτM JτM + e−λτe Jτe − λI) = 0, (4.1)

where I is the identity matrix and the matrices J, JτH , JτM and Jτe have entries that are the partial
derivatives of the right sides of (2.1)-(2.7) with respect to, respectively,

(S H(t), EH(t), IH(t),RH(t), S M(t), EM(t), IM(t)),

(S H(t − τH), EH(t − τH), IH(t − τH),RH(t − τH), S M(t − τH), EM(t − τH), IM(t − τH)),

(S H(t − τM), EH(t − τM), IH(t − τM),RH(t − τM), S M(t − τM), EM(t − τM), IM(t − τM)),

(S H(t − τe), EH(t − τe), IH(t − τe),RH(t − τe), S M(t − τe), EM(t − τe), IM(t − τe)).
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Theorem 4. The disease-free equilibria E∗01 is locally asymptotically stable if and only if RM
0 < 1.

Proof. The matrices in (4.1) at E∗01 are

J =



µH − rH 2µH − rH 2µH − rH 2µH − rH 0 0 −bβMH

0 −µH 0 0 0 0 bβMH

0 0 −(γ + µH) 0 0 0 0
0 0 γ −µH 0 0 0
0 0 0 0 −µM 0 0
0 0 0 0 0 −µM 0
0 0 0 0 0 0 −µM


, (4.2)

JτH =



0 0 0 0 0 0 0
0 0 0 0 0 0 −e−µHτH bβMH

0 0 0 0 0 0 e−µHτH bβMH

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, JτM = 0,

Jτe =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0
rMe−µMτe

1 + θ

rMe−µMτe

1 + θ

rMe−µMτe

1 + θ
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

The characteristic matrix at E∗01 is
(

A∗01(λ) B∗01
0 C∗01(λ)

)
with

A∗01(λ) =

(
µH − rH − λ 2µH − rH

0 −µH − λ

)
(4.3)

B∗01 =

(
2µH − rH 2µH − rH 0 0 −bβMH

0 0 0 0 bβMH − e−(λ+µH)τH bβMH

)
(4.4)

C∗01(λ) =


−(γ + µH) − λ 0 0 0 e−(λ+µH)τH bβMH

γ −µH − λ 0 0 0
0 0 −µM − λ + e−(λ+µM)τe rM

1+θ
e−(λ+µM)τe rM

1+θ
e−(λ+µM)τe rM

1+θ

0 0 0 −µM − λ 0
0 0 0 0 −µM − λ


.

(4.5)
We firstly notice that when RH

0 > 1, µH − rH < 0. To prove the conclusion, we only need to prove that
all roots of

− µM − λ + e−(λ+µM)τe
rM

1 + θ
= 0 (4.6)
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have negative real parts if and only if RM
0 < 1. Recall Theorem 4.7 in Smith [28] which states that

λ = a + be−λτ has no roots with non-negative real parts if a + b < 0 and b ≥ a, irrelevant of the value
of τ > 0. By this theorem, we see that when

− µM +
rMe−µMτe

1 + θ
< 0, (4.7)

i.e., RM
0 < 1, all roots of (4.6) have negative real parts.

Next we prove that the condition (4.7) is also sufficient to exclude the possibility for (4.6) to have
roots with non-negative real parts. To proceed, assume that λ = z1 + iz2 with z1 ≥ 0 is a solution of
(4.6). Then

rMe−µMτe

1 + θ
e−τez1 cos(τez2) = µM + z1, (4.8)

rMe−µMτe

1 + θ
e−τez1 sin(τez2) = −z2, (4.9)

It is easy to see that if (z1, z2) satisfies (4.8)-(4.9), so does (z1,−z2). Without loss of generality, we
assume that z2 ≥ 0. Taking square of (4.8) and (4.9) and adding them together, we have

r2
M

(1 + θ)2 e−2τez1−2µMτe = (µM + z1)2 + z2
2. (4.10)

If z2 = 0, then z1 > 0 due to (4.7), and from (4.10), we have

µ2
M < (µM + z1)2 =

r2
M

(1 + θ)2 e−2τez1−2µMτe <
r2

M

(1 + θ)2 e−2µMτe ,

a contradiction to (4.7). If z2 > 0, from (4.10), we have

µ2
M < (µM + z1)2 + z2

2 =
r2

M

(1 + θ)2 e−2τez1−2µMτe ≤
r2

M

(1 + θ)2 e−2µMτe ,

also a contradiction to (4.7). This completes the proof. �

Remark 2. Theorem 4 implies that if the proportion of Wolbachia-infected males to wild mosquito
population, θ, satisfies θ > θ∗1, then wild mosquitoes will be eradicated eventually, which has proved
the first conclusion of Theorem 1.

Next we consider the stability of E∗02. The Jacobian matrices in (4.1) at E∗02 are

J =



µH − rH 2µH − rH 2µH − rH 2µH − rH 0 0 −bβMH

0 −µH 0 0 0 0 bβMH

0 0 −(γ + µH) 0 0 0 0
0 0 γ −µH 0 0 0

0 0 −bβHM
N∗M
N∗H

0 −µM 0 0

0 0 bβHM
N∗M
N∗H

0 0 −µM 0

0 0 0 0 0 0 −µM


, (4.11)
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JτH =



0 0 0 0 0 0 0
0 0 0 0 0 0 −e−µHτH bβMH

0 0 0 0 0 0 e−µHτH bβMH

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, JτM =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 −e−µMτM bβHM
N∗M
N∗H

0 0 0 0

0 0 e−µMτM bβHM
N∗M
N∗H

0 0 0 0


,

Jτe =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 2µM −
rMe−µMτe

1 + θ
2µM −

rMe−µMτe

1 + θ
2µM −

rMe−µMτe

1 + θ
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

The characteristic matrix at E∗02 is
(

A∗02(λ) B∗02
C∗02 D∗02(λ)

)
with

A∗02(λ) =


µH − rH − λ 2µH − rH 2µH − rH

0 −µH − λ 0
0 0 −(γ + µH) − λ

 (4.12)

B∗02 =


2µH − rH 0 0 −bβMH

0 0 0 bβMH − e−(λ+µH)τH bβMH

0 0 0 e−(λ+µH)τH bβMH

 , (4.13)

C∗02 =



0 0 γ

0 0 −bβHM
N∗M
N∗H

0 0 −bβHM
N∗M
N∗H
− e−(λ+µM)τM bβMH

N∗M
N∗H

0 0 e−(λ+µM)τM bβMH
N∗M
N∗H


, (4.14)

D∗02(λ) =


−µH − λ 0 0 0

0 S 1(λ) e−λτe
(
2µM −

rMe−µMτe

1 + θ

)
e−λτe

(
2µM −

rMe−µMτe

1 + θ

)
0 0 −µM − λ 0
0 0 0 −µM − λ

 , (4.15)

where
S 1(λ) = −µM − λ + e−λτe

(
2µM −

rMe−µMτe

1 + θ

)
. (4.16)

By direct computation, roots of (4.1) at E∗02 are µH − rH, −µH together with roots of

(−µH − λ) · (−µM − λ) · S 1(λ) · S 2(λ) = 0, (4.17)
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where

S 2(λ) = (γ + µH + λ)(µM + λ) − b2βMHβHMe−µHτH−µMτM e−(τH+τM)λ N∗M
N∗H

. (4.18)

On the roots of S 1(λ) = 0 and S 2(λ) = 0, we have the following two lemmas.

Lemma 4.1. All roots of S 1(λ) = 0 have negative real parts if and only if RM
0 > 1.

Proof. Notice that S 1(λ) → −∞ as λ → +∞. Then it is necessary to have S 1(0) < 0 to guarantee that
all roots of S 1(λ) = 0 have negative real parts. Since

S 1(0) = µM −
rMe−µMτe

1 + θ
= µM(1 − RM

0 ),

S 1(0) < 0 if RM
0 > 1. We claim that the condition RM

0 > 1 is also sufficient. In fact, assume that
λ = α + iβ satisfies S 1(λ) = 0. Then

−µM − α − iβ +

(
2µM −

rMe−µMτe

1 + θ

)
e−ατe[cos(βτe) − i sin(βτe)].

Separating the real and imaginary parts yields

e−ατe cos(βτe) =
µM + α

2µM −
rMe−µMτe

1+θ

, (4.19)

e−ατe sin(βτe) = −
β

2µM −
rMe−µMτe

1+θ

. (4.20)

If (α, β) satisfies (4.19)-(4.20), so does (z1,−z2). Without loss of generality, we assume that β ≥ 0. If
α ≥ 0, then e−ατe ≤ 1. Equation (4.19) implies that

µM + α ≤ 2µM −
rMe−µMτe

1 + θ
,

and hence
α ≤ µM −

rMe−µMτe

1 + θ
= µM(1 − RM

0 ) < 0,

a contradiction, which completes the proof. �

Lemma 4.2. All roots of S 2(λ) = 0 have negative real parts if and only if R0 < 1.

Proof. Notice that S 2(λ) is increasing with λ, and S 2(λ) → +∞ as λ → +∞. Hence to make sure that
all roots of S 2(λ) = 0 have negative real parts, the necessary condition is that S 2(0) > 0, that is,

b2βMHβHMe−µHτH−µMτM N∗M
µM(γ + µH)N∗H

< 1, (4.21)

i.e., R0 < 1. We claim that condition (4.21) is also sufficient to guarantee that all roots of S 2(λ) = 0
have negative real parts. For notation simplicity, we define

B := b2βMHβHMe−µHτH−µMτM
N∗M
N∗H

, τ := τH + τM.
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Table 1. Conditions for the existence and stability of equilibria of system (2.1)-(2.7) with
RH

0 > 1.

Condition on RM
0 Condition on R0 Equilibria and stability

RM
0 < 1 R0 < 1 E∗01 stable, E∗02(NA), E∗(NA)

RM
0 < 1 R0 > 1 E∗01 stable, E∗02(NA), E∗ (NA)

RM
0 > 1 R0 < 1 E∗01 unstable, E∗02 stable, E∗(NA)

RM
0 > 1 R0 > 1 E∗01 unstable, E∗02 unstable, E∗ exists

Assume that λ = z1 + iz2 is a solution of S 2(λ) = 0. Then

Be−τz1 cos(τz2) = z2
1 − z2

2 + (γ + µH + µM)z1 + (γ + µH)µM, (4.22a)

Be−τz1 sin(τz2) = −2z1z2 − (γ + µH + µM)z2. (4.22b)

It is easy to see that if (z1, z2) is a solution of (4.22a)-(4.22b), so does (z1,−z2). Thus we can assume
z2 > 0. Next we prove that z1 < 0 holds. If not, assume z1 = 0. Then (4.22a)-(4.22b) are reduced to

B cos(τz2) = −z2
2 + (γ + µH)µM, (4.23a)

B sin(τz2) = −(γ + µH + µM)z2, (4.23b)

which produces
B2 =

[
z2

2 + (γ + µH)2
]
(z2

2 + µ2
M).

Therefore,
B2

µ2
M(γ + µH)2

=

(
1 +

z2
2

µ2
M

) [
1 +

z2
2

(γ + µH)2

]
> 1,

a contradiction to (4.21). On the other hand, if z1 > 0, then from (4.22a)-(4.22b), we have

B2e−2τz1 = [z2
1 − z2

2 + (γ + µH + µM)z1 + (γ + µH)µM]2 + [2z1z2 + (γ + µH + µM)z2]2

= (z2
1 + z2

2)2 + z1(γ + µH + µM)[2z2
1 + 2z2

2 + (γ + µH + µM)z1 + 2µM(γ + µH)z1]
+2(γ + µH)µMz2

1 + [(γ + µH)2 + µ2
M]z2

2 + (γ + µH)2µ2
M

> (γ + µH)2µ2
M.

Therefore,
B2

µ2
M(γ + µH)2

> e2τz1 > 1,

also a contradiction to (4.21). This completes the proof. �

From Lemmas 4.1 and 4.2, we have

Theorem 5. The disease-free equilibrium point E∗02, if exists, is locally asymptotically stable.

Results on the existence and stability of equilibria for system (2.1)-(2.2) are summarized in Table
1. Noticing the fact that

RM
0 < 1⇔ θ > θ∗1, R0 < 1⇔ θ > θ∗2,

we conclude that Theorem 1 holds.
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5. Numerical implications on mosquito/dengue control

5.1. Sensitivity analysis of R0

The basic reproduction number R0 is a function of the parameters listed in Table 2.

Table 2. Parameter description.

Parameter Description Baseline Range References

rH Birth rate of humans 12.43‰ year−1 [29]
rM Birth rate of mosquitoes 2 day−1 0∼11.2 [19]
µH Death rate of humans 7.11‰ year−1 [29]
µM Death rate of mosquitoes 1/14 day−1 1/30∼1/10 [19]
b Average daily biting rate 0.63 day−1 0.5∼3 [30]
γ Recovery rate of humans 1/5 day−1 1/14∼1/3 [26]
βHM Fraction of transmission from humans to mosquitoes 0.33 0.2∼1 [31]
βMH Fraction of transmission from mosquitoes to humans 0.33 0.2∼1 [31]

rMH = κM/κH The carrying capacity ratio of mosquitoes to humans 0.5 0∼1 Modelled
τH Intrinsic incubation period of humans 7 days 3 ∼ 14 [32]
τM Extrinsic incubation period of mosquitoes 9 days 8 ∼ 12 [17, 32]
τe Delay between mating and emergence of adult mosquitoes 10 days 7 ∼ 19 [24]
θ The release ratio 1 1∼ 10 Modelled

To estimate the response of R0 to different parameters, following the procedure in [20], we define
the relative sensitivity index of R0 with respect to each parameter p in Table 2 by

S R0
p =

p∗

R∗0
×
∂R0

∂p

∣∣∣∣
p=p∗

,

where p∗ is taken as the baseline value in Table 2 which also yields R∗0 = 1.5869. The relative sen-
sitivity indices are shown in Figure 1 which are ranked in their absolute values. It turns out that
avoiding mosquito bites through physical and chemical means or a combination of both is the most
direct and effective method to reduce the transmission of dengue virus, which has comparable perfor-
mance of elevating the death rate of mosquitoes, µM. Compared with the parameter µM, the birth rate
of mosquitoes, rM, has much less contribution to R0. The elevation of R0 due to the increase of µH

can be almost equally offset by the decrease of rH. Parameters βMH, βHM, the ratio of the carrying
capacities of mosquitoes to humans, rMH, and the recovery rate of humans γ, contribute equally to
R0. Among the three delay parameters, the extrinsic incubation period of mosquitoes, τM, is the most
sensitive parameter, while the intrinsic incubation period of humans, τH, is the least sensitive one. Un-
expectedly, the release ratio, θ, only plays a minor role in controlling the basic reproduction number.
The most likely reason is that the baseline value of θ is set as 1, much smaller than the release ratio
in field trials. Coincidentally, further computation shows that when the release ratio is increased from
5 to 6, the basic reproduction number is decreased from 1.0447 to 0.9092(< 1). This observation is
in line with our claim that for mosquito eradication or virus eradication, the optimal release ratio of
Wolbachia-infected male mosquitoes to wild males is about 5 to 1 [9, 33].
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Figure 1. The relative sensitivity indices of R0 changing with parameters in Table 2.

5.2. Dynamics of θ∗1 and θ∗2
Theorem 1 shows that θ∗1 is the threshold value for mosquito eradication. If mosquito eradication

fails, then θ∗2 is the threshold value for virus eradication. Dynamics of θ∗1 and θ∗2 are shown in Figure
2, which are in terms of the designated parameter while letting other parameters in system (2.1)-(2.7)
be fixed as the baseline values in Table 2. The threshold values θ∗1 and θ∗2 increase as rM increase;
see Figure 2(a), which decrease as µM or τe decrease; see Figure 2(b) and (c). The threshold value
θ∗1 is fixed at 12.7072 when rM, µM and τe are fixed. In terms of b, βHM, βMH, and rMH, the threshold
θ∗2 presents a quasi-logistic growth mode; see Figure 2(d), (e), and (f). The threshold θ∗2 is a linear
decreasing function of γ or τM; see Figure 2(g) and (i). When τH lies between 3 and 14, it only brings
a negligible change of θ∗2; see Figure 2(h) which is consistent with the observation in Figure 1 that the
relative sensitivity index of τH is very close to 0.

5.3. Dynamics of mosquitoes and/or viruses under different release ratios

Given the baseline values in Table 2, we have

θ∗1 = 12.7072, θ∗2 = 5.3298

which offer the threshold values of mosquito and virus eradication, respectively. We initiate system
(2.1)-(2.7) with one infectious human, and a mosquito population size about 25, 000 with one infectious
mosquito. Figure 3 shows that if we take the release ratio θ = 13 > θ∗1, then both the virus and mosquito
will eventually be eradicated. When the production of Wolbachia-infected male mosquitoes fails to
meet θ∗1, we can only concede mosquito eradication to virus eradication.
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Figure 2. Dynamics of the threshold values θ∗1 and θ∗2.
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Figure 3. The release ratio greater than θ∗1 is capable of wiping both virus and mosquito.
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Figure 4 shows that the release ratio θ = 6 successfully clears the virus, together with the persis-
tence of mosquito populations. However, further lower of the release ratio to 2 which is less than the
threshold value θ∗2 can neither clear virus nor eradicate mosquitoes. To see this, we initiate system
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Figure 4. The release ratio lying in (θ∗1, θ
∗
2) clears virus, while leaving mosquito population

size at a nonzero steady states eventually.

(2.1)-(2.7) near the disease-endemic equilibrium point E∗, with

E∗ ≈ (29492.13, 1.8144, 1.2958, 13304.4331, 39095.3777, 1.6320, 1.8095).

When θ = 2, Figure 5 shows that the number of infectious humans oscillates in the vicinity of their
steady-state I∗H ≈ 1.2958, and the number of infectious mosquitoes oscillates in the vicinity of their
steady-state I∗M ≈ 1.8095.
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Figure 5. The release ratio less than θ∗2 can neither clear virus nor eradicate mosquitoes.

6. Conclusions

Dengue fever is one of the most common mosquito-borne viral diseases. Due to the lack of com-
mercially available vaccines and efficient clinical cures, traditional methods have been focused on
vector control by heavy applications of insecticides and environmental management. However, these
programs have not prevented the spread of these diseases due to the rapid development of insecticide
resistance and the continual creation of ubiquitous larval breeding sites. One novel dengue control
method involves the intracellular bacterium Wolbachia, whose infection in Aedes aegypti or Aedes
albopictus, the major mosquito vector of dengue virus, can greatly reduce the virus replication in
mosquitoes. Wolbachia can also induce cytoplasmic incompatibility (CI) in mosquitoes, which results
in early embryonic death from matings between Wolbachia-infected males and females that are either
uninfected or harbor a different Wolbachia strain.
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CI mechanism drives Wolbachia-infected male mosquitoes as a new weapon to suppress or erad-
icate wild females. However, complete population eradication in large-scale field trials is usually
formidable, and we can only concede mosquito eradication to virus eradication by restricting the
mosquito densities below the epidemic critical threshold. Motivated by the success and the challenge
in field trials, we developed a deterministic mathematical model of human and mosquito populations
interfered by the circulation of a single dengue serotype in the framework of SIER model to assess
the efficacy of blocking dengue virus transmission by Wolbachia. We extended the SIER model by
incorporating the Wolbachia-infected male mosquito release, where the infected males are maintained
at a fixed ratio to the adult female mosquito population. Furthermore, the extrinsic incubation period
in mosquito (EIP), the intrinsic incubation period in human (IIP), and the maturation delay between
mating and emergence of adult mosquitoes were embedded as three delays in our model.

The threshold values of the release ratio θ for mosquito or virus eradication were found by seeking
the sufficient and necessary condition on the existence of the disease-endemic equilibrium. Two ex-
plicit expressions on threshold values of θ, denoted by θ∗1 and θ∗2 with θ∗1 > θ∗2, were obtained. When
θ > θ∗1, the mosquito population will be eradicated eventually. If it fails for mosquito eradication but
θ∗2 < θ < θ

∗
1, virus eradication is ensured together with the persistence of susceptible mosquitoes. When

θ < θ∗2, the emergence of the disease-endemic equilibrium makes dengue virus circulation between
humans and mosquitoes possible. Sensitivity analysis of the threshold values showed that avoiding
mosquito bites through physical and chemical means is the most direct and effective method to reduce
the transmission of dengue virus, which has comparable performance of elevating the death rate of
mosquitoes. Results from numerical simulations also confirmed our previous claim that for mosquito
eradication or virus eradication, the optimal release ratio of Wolbachia-infected male mosquitoes to
wild males is about 5 to 1.
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