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1. Introduction

The Chinese Sina-Microblog is reported to have 446 million active users per month (32% of the
Chinese population) at the end of 2018 and is particularly popular among the young generations. Take
the event (Weibo) “304 car theft case” as an example, around 185 thousand of forwarding users were
generated into 36 hours since it was posted [1]. This important platform presents some unique
characteristics different from other microblogs for public opinion diffusion [2, 3] that a systematic
approach towards understanding the diffusion patterns and nearcasting the information propagation is
called for.

The information propagation of a microblog is created through the action of “follow” connecting
as an interaction network, where a following user is called “follower” and a followed user is called
“followee” [4, 5]. There are a large amount of literature and there seem to be three typical and
important information diffusion models developed for microblogs [6] according to the spreading
process, influence ability [7,8] and forwarding factors [9,10]. The model we are exploring is based on
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the propagation process as we focus on the dynamic changes of the status of users during the
spreading process.

Our approach follows the classical rumor model that evolved from the epidemic models, in which
the population is stratified into three mutually exclusive and exhaustive classes: heard rumor
(ignorants), actively spreading rumor (spreaders) and no longer spreading rumor (stiflers). The
propagation of information (rumor) occurs through the transitions of infections from ignorants to
spreaders, and removals from spreader to stiflers [11]. This is very much similar to epidemic models
for infectious disease spreading in the population. Extensions from this classic rumor model to
information spreading in microblogs include propagation transition models [12–16] and population
classification models [17–21]. In particular, taking into account of different behaviors of differential
users in different platforms, Huang et al. [12] extended the rumor spreading model to characterize
browsing behaviors of users and examine differentiating rumor refuting effects. This model involves a
parameter similar to the birth rate in a standard epidemic model to describe the entry of new
susceptibles. Liu et al. [13] proposed a modified rumor spreading model (SIRe), where two contact
parameters are used to describe the stifler’s broadcasting effect and social intimacy degree. Su et
al. [14] developed a Microblog-Susceptible-Infected-Removed (Mb-SIR) model for information
propagation by explicitly considering the incomplete reading behaviors of users using the probability
that a newly posted or retweeted message will be read by its followers. These models also utilized real
data from the Chinese Sina-Microblog in their numerical simulations.

Our framework follows the work of Borge-Holthoefer et al. [15] that considered the situation
where spreaders are not always active and an ignorant is not interested in spreading the rumor. Their
numerical simulations were based on data from Twitter. A similar model for an information
dissemination network was proposed in [16], where different transition probabilities from the spreader
stage to stifler stage and from the ignorant stage to stifler stage were used. This set a theoretical
foundation to compare microblog information dissemination and epidemic disease spreading.There
have been other efforts to incorporate further states during the propagation process, in addition to the
states of ignorant, spreader and stifler. In particular, reflecting some information features and diffusion
characteristics of Weibos in the Chinese Sina-Microblog, Li et al. [17] incorporated the number of
fans of infectious and validated the modified SIR model using actual event data. Liu et al. [18]
considered a dynamic model to characterize the super-spreading phenomenon in tweet information
propagation. An ignorant spreaders, super-spreaders, stiflers model (ISJR model) was proposed
in [19] that considered the role of super-spreaders to show how super-spreaders can accelerate the
information dissemination and amplify information influence in microblogging networks. Other
models have also been proposed to incorporate the recovery state of users in different platforms
including the Chinese Microblogs, Japanese Mixi, and Facebook [20, 21].

Here we consider the capacity of using a simple compartmental model for information propagation
of Microblog for nearcasting the trend of information propagation in the Chinese Microblogs.
Nearcasting is an important issue for assessing public opinions, that aims to project the forwarding
trend at the earliest possible stage of a Weibo outbreak so interventions for the information
propagation and/or rapid response to the public opinions can be designed and implemented
effectively. Our ultimate goal is to develop nearcasting technologies for a group of Weibos (similar to
“Tweet” in Twitter) in the ecosystem of Chinese Microblogs. To achieve this goal, we need to develop
computable summative indices to characterize each Weibo, and see how these indices can be
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effectively calculated or at least estimated from the public available information at the early stage of
information propagation of the Weibo. Here,we formulate the basic compartmental model (SFI) and
introduce the Weibo propagation indices in the Chinese Sina-Microblog (Section 2), and then contrast
two methods to use this SFI-model for nearcasting.

2. The SFI model for forwarding behavior

2.1. Model description

We consider a population of Chinese Sina-Microblog users, stratified in terms of three distinct
states: the susceptible state (S ), in which users are unaware of but susceptible to the Weibo; the
forwarding state (F), in which users have been forwarding the Weibo actively to influence other users;
and the immuned state (I), in which users have already forwarded the Weibo, but are no longer
forwarding the Weibo and even if receiving it again.

Assuming the populations susceptible to the Weibo is sufficiently large and denoting the total
numbers of users in the susceptible, forwarding and immune state at time t ≥ 0 by S (t), F(t) and I(t),
respectively, we obtain the following susceptible-forwarding-immune model:

S ′(t) = −βS (t)F(t), (2.1)

F′(t) = pβS (t)F(t) − αF(t), (2.2)

I′(t) = (1 − p)βS (t)F(t) + αF(t), (2.3)

where ′ = d/dt is the derivative with respect to t. The model is illustrated in Figure 1.

 

S F I

αpβ 

(1—p)β 

Figure 1. A schematic diagram to illustrate the Weibo spreads in the population with three
different states: susceptible (S ), forwarding (F), immuned (I).

In the model, β is the average number of exposures to the Weibo of a susceptible user, p is the
probability that the exposed user will forward the Weibo and α is the rate at which a user in the F state
becomes inactive to forwarding. The mass action term can also be interpreted as follows: an active
forwarding user will contact an average number of βN users per unit time, among which pβN will
choose to forward the Weibo and (1 − p)βN will not. Since the probability of a contacted user to be
a susceptible user is S (t)/N, the number of exposed users who leave the state S are βS (t)F(t) among
which new forwarding and immuned users are pβN(S (t)/N)F(t) = pβS (t)F(t) and (1 − p)βS (t)F(t),
respectively. As usual, 1/α is the average duration a F-user remains active in forwarding.

An important distinction between a standard epidemic-SIR model and the Weibo-SFI model is the
direct immunity of a susceptible user gained through exposure to the Weibo. The parameter 1−p reflect
the suitability of the Weibo for a susceptible user to trick the activity of forwarding. This SFI model
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was used in [15, 16] as a basic building block of a more complicated framework. We adopt this for
the Weibo information spread dynamics model in the hope this can be further expanded to discuss the
dynamics of an ecosystem consisting of multiple Weibos sharing a same set of key words. The novelty
of our approach here is to develop some analytic indices which will be used in our subsequent studies
to consider Weibo spreading dynamics in a complex Weibo ecosystem, and explore the feasibility of
using openly available Weibo data from the Chinese Sina-Microlog to estimate these indices for the
purpose of nearcasting the propagation trend.

The official Chinese Sina-Microblog only provides limited information of the propagation, an
important piece of information we can obtain from the Chinese Sina-Microblog directly is the number
of cumulative forwarding users given by

E(t) =

∫ t

0
pβS (t)F(t)dt. (2.4)

Observe that this is NOT a new compartment from the coupled system (2.1). Instead, from Eq (2.1),
we can obtain

E′(t) = pβS (t)F(t). (2.5)

It is easy to show that S (t), F(t), I(t) and hence E(t) all remain nonnegative. We consider the case
when the Weibo is posted by a single user at the beginning, leading the initial condition: E0 = F0 = 1,
I0 = 0, S 0 = N − F0 = N − 1.

From Eqs (2.1) and (2.5) it follows that S (t) is decreasing since S ′(t) = −βS (t)F(t) < 0, and that
the function E(t) is increasing since E′(t) = pβS (t)F(t) > 0. Therefore, S (t) decreases to a limit
S∞ := lim

t→∞
S (t) > 0, E(t) increases to a limit E∞ := lim

t→∞
E(t) < N, F(t) tends to 0 (F∞ = 0), and

I∞ = N − S∞. These limits are shown to be relevant to the so-called final size of the Weibo spreading.

2.2. The Weibo propagation indices

Weibo reproduction ratio<o: The initial growth of the F-population is given by r = pβS 0 − α, and
the propagation of the Weibo will never take off if F′(t) > 0. Since F′(t) ≤ (pβS 0 − α)F(t) due to the
decreasing property of S (t) (S (t) < S 0). We then define

<o :=
pβS 0

α
(2.6)

as the Weibo reproduction ratio. Then <o < 1 implies a rapid decline of F-user which results in
information propagation never taking off. However, when <o > 1 the F-population used grow
exponentially initially.

Index <o denotes the number of F-users generated by one active forwarding user during an active
period. A typical curve for F-population with a Weibo with <o > 1 has the bell shape as shown in
Figure 2.
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Figure 2. The temporal variation of the actively forwarding and cumulative forwarding users,
F(t) and E(t), expressed as functions of the time variable t (horizontal axis), throughout
the paper, the time unit is day and the variables for the numbers of the users in different
compartments are real nonnegative numbers.

Maximal Weibo forwarding users Fmax: The maximum of the F-curve is achieved when F′(t) = 0.
At this point, we have S (t) = α/pβ. We also use Eqs (2.1) and (2.2) to get

F′(t) =

(
α

βS (t)
− p

)
S ′(t). (2.7)

Integrating then yields

F(t) = F0 + p [S 0 − S (t)] +
α

β
log

S (t)
S 0

. (2.8)

If we substitute F0 = 1, we get ( notify Fmax = F(t) for t when S (t) = α/pβ ) that

Fmax = 1 + pS 0 −
α

β

(
1 − log

α

pβS 0

)
= 1 + pS 0 −

pS 0

<o

(
1 − log

1
<o

)
. (2.9)

Maximum Weibo cumulative forwarding users Es: The maximum Weibo cumulative forwarding
users Es, which represents the number of users that encountered the Weibo, is also a factor we are
interested in. To establish an analytic formula, we integrate from 0 to +∞ on both sides of Eq (2.1) to
get ∫ +∞

0

1
S (t)

dS (t) = −β

∫ +∞

0
F(t)dt. (2.10)

Adding Eqs (2.1) and (2.2) and integration yields also

p
∫ +∞

0
dS (t) +

∫ +∞

0
dF(t) = −α

∫ +∞

0
F(t)dt. (2.11)

From Eqs (2.11) and (2.12), we get

log
(
S∞
S 0

)
=
β

α

[
p (S∞ − S 0) + (F∞ − F0)

]
. (2.12)

In order to analyze the relation between E and S , we integrate from Eqs (2.1) and (2.5) to obtain

S∞ = S 0 −
E∞ − E0

p
. (2.13)
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Similarly, E0 = F0 = 1, F∞ = 0 and <o = pβS 0/α, from Eqs (2.12) and (2.13) we get ( notify
Es := E∞ ) that

log
(
1 −

1
pS 0

(Es − 1)
)

= −
β

α
Es = −

<o

pS 0
Es (2.14)

and then
Es = 1 + pS 0

(
1 − e−

β
αEs

)
= 1 + pS 0

(
1 − e−

<o
pS 0

Es

)
. (2.15)

We observe from Eqs (2.9) and (2.15) that, with a fixed<o, the final outcome of the Weibo spread
is determined by parameter S 0. Note that, differently from an epidemic study, the initial susceptible
Weibo users are usually unknown.

Weibo public opinion times and velocities: To understand the global performance of the Weibo
ecosystem, we need to know the take-off and extinctive time of a particular Weibo, denoted by tb

and te, respectively. The definitions depend on the threshold F∗ which is set in advance such that
F(tb) = F∗ = F(te). In the experiment we design, we let F∗ = 0.1 × Fmax. The difference, te − tb, is
the duration during which the Weibo remains active in the ecosystem. We denote this by ti := te − tb.
Relevant to the timings and the spread duration, we can define the (initial) outbreak velocity Vo, the
propagation decline velocity Vd, and the average spreading velocity Va as follows:

Vo =
Fmax − F∗

tmax − tb
, (2.16)

Vd =
Fmax − F∗

te − tmax
, (2.17)

Va =
Fmax − F∗

te − tb
, (2.18)

where tmax is given when F(t) = Fmax. Note that tb, te, tmax, Vo, Vd and Va can be calculated when model
parameters are estimated although we do not have the closed form of these quantities. A schematic
picture is given in Figure 2.

2.3. An example:

The number of cumulative forwarding users can be collected through the Weibo’ Application
Programming Interface (API). Table 1 lists such a data set, studied in paper [22], for an actual event
lasted 16 days.

Table 1. The cumulative forwarding numbers of a particular Weibo lasted for 16 days.

t(day) 1 2 3 4 5 6 7 8
number 10 198 737 2674 9644 33943 110751 550102

t(day) 9 10 11 12 13 14 15 16
number 739491 835032 880337 913164 919055 924084 925093 925664

The LS method [23] can be used to estimate the parameters of the SFI model (2.1), (2.2), (2.3) and
(2.5). The parameter vector is set as Θ = (β, α, p, S 0), and the corresponding numerical result for E(t)
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is denoted by fE(t,Θ). The LS error function

LS =
∑T

k=0 | fE (tk,Θ) − IDk|
2 (2.19)

can be used, where ID denotes the real number of cumulative forwarding users given in Table 1, tk = k
is the sampling time, k = 1, 2, ..., 16.

We use the standard package ( fmincon ) of MATLAB to solve a nonlinear LS problem, with
parameter initial values and ranges given as follows: β ∈ [2 × 10−6, 8 × 10−6], p ∈ [0.1, 0.5],
α ∈ [0.5, 1.5], S 0 ∈ [7 × 106, 2 × 107], Θ0 = (4.0 × 10−6, 0.3, 1.0, 1.0 × 107).
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Figure 3. Numerical results of the Weibo given in Table 4, where the horizontal axis is
the time in days and the vertical axis is the number of users. (a). data fitting to the actual
number of E population. (b). four different populations: S-population, F-population ( Fmax is
indicated with a red asterisk ), I-population and E-population. The numerical results are as
follows: β = 2.5651×10−6, α = 1.0365, p = 0.1006, S 0 = 1.0221×107. The relevant indices
are<o = 2.5460, Fmax = 2.4724 × 105, Es = 0.9243 × 106, tb = 5.92(day), te = 12.57(day),
ti = 6.65(day), tmax = 8.49(day), Vo = 0.8658 × 105/day, Vd = 5.4538 × 104/day, and
Va = 3.3461 × 104/day.

Figure 3 reports our data fitting and simulation results. Figure 3a shows the fitting result between the
numerically calculated and the actual numbers of cumulative forwarding users. From the data fitting,
we can estimate the model parameters and then inform other information not available from the API.
Namely, we can obtain the temporal variations of the numbers of susceptible, forwarding, immunized
and cumulative forwarding users, S (t), F(t), I(t) and E(t), after obtaining the model parameters.

Note that for the Weibo data listed in Table 1,the estimated basic reproductive ratio <o = 2.5460,
and since it is much greater than one, we should expect a rapid information spread at the beginning of
the propagation. Figure 3a does confirm this expectation. We should also expect, from surveillance
data of infectious disease outbreak such as influenza, a large number of F-users and a large number of
E-users for the Weibo. The numerical simulations reported in Figure 3b, however, shows otherwise:
despite a large number of susceptibles ( S 0 = 1.0221 × 107 ), the cumulative E-users during the entire
propagation is only Es = 9.2430 × 105 and maximum F-users at the propagation peak is only Fmax =

2.4724× 105. A reason is that p is only 0.1006 and hence a large number of individuals exposed to the
Weibo became immunied immediately upon exposure.
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3. Nearcasting capacity of SFI-modelling

3.1. Method 1 (all parameters estimated)

The numerical illustration in the last section indicates a good data fitting results using the numbers
of cumulative forwarding users during the entire outbreak period. These numbers can be collected from
the API, and therefore a Weibo can now be characterized by the SFI-model parameters (β, α, p, S 0),
using the information from API retroactively.

An important question in Weibo information management is how many units (days) of data about
the cumulative forwarding users we need to be able to estimate the model parameter and thus make the
prediction for the near future about the propagation trend and calculate key Weibo indices. Figure 4
reports our numerical experiments in which parameters (β, α, p, S 0) are estimated from the past days,
and then the cumulative F-users are predicted and compared with the actual data from API data.
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Figure 4. Numerical experiments with all parameter estimated based on days since the
outbreak started: the numbers of the E-users which we used for prediction are marked with
a red asterisk; the numbers of the E-users which we predict are marked as pink circles;
the predicted E-population and F-population are shown using a blue line and black line,
respectively; and the maximal F-population is marked as black asterisk. In the figure, the
horizontal axis is the time (as unit time by day) and the vertical axis is the number of users.
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Comparing with the estimated parameters β = 2.5651 × 10−6, α = 1.0365, p = 0.1006, and
S 0 = 1.0221 × 107 from the entire outbreak duration, we observe that the estimated parameter and the
resulted SFI-model prediction does not fit the actual data until 7 days have pasted, when the peaking
time is 8.49 days.

3.2. Method 2 (a-prior estimation)

Therefore, the use of an SFI-model for nearcasting is not promising if we need to use the historical
data to estimate all the model parameters altogether. On the other hand, in the Chinese Sina-Microblog,
parameter β is determined by the compactness of the network structure and parameter α is usually
user-specific rather than Weibo-specific. Thus, it is feasible to estimate parameters β and α before the
outbreak of an event ( for example from other events ). Figure 5 gives the numerical results with fixed
β and α that are given a-priori.

This experiment indicates the remaining parameters ( p, S0 ) can be estimated from the data in the
first 3-days, much ahead of the outbreak peak time. Therefore, the nearcasting capacity of an SFI-
model can be significantly enhanced should the network-specific parameter β and user-specific α be
estimated in advance.

3.3. Comparison

The numerical experiments with all parameter estimated (Method 1) and some parameters a-priori
estimated (Method 2) clearly show that Method 2 has a much better performance in nearcasting with
limited historical data well before the peaking time of the Weibo information outbreak.

Tables 2,3,4 give the comparison of indices <o, Fmax, Es, indices tb, ts, ti, tmax, and indices Vo, Ve,
Va, separately. For Method 1, Tables 2,3,4 show that at the beginning of the Weibo propagation, our
predictions have low accuracy when using the historical data until Day 7. Using the historical data
until after the propagation peak (Day 8), the predicted maximum F-users (Fmax), cumulative F-users
(Es), reproduction ratio (<o) and the outbreak velocity (Vo) are larger than the actual values,
indicating over-estimation of the propagation potential. However, as one gains more and more
historical data, the prediction converges to the actual values. For the prediction of key times during
the Weibo information outbreak, Method 1 can produce predictions of key instants, after Day 7, such
as take-off, extinction, duration and propagation peak time within 1-day error. The predicted maximal
forwarding users (Fmax), the outbreak velocity (Vo), the propagation decline velocity (Ve) and the
average spreading velocity (Va) are all consistent with corresponding actual instants. So, the time
after which a good nearcasting prediction is possible is Day 7, and the prediction quality is very high
if historical data until Day 9 is used.

Method 2 is more effective in nearcasting both in terms of estimating the peaking time at the 3-
day, but also estimating all relevant indices. Therefore, it is advised that one should perform the
nearcasting by estimating parameters β and α before the outbreak of the event. This proposed a-
priori estimation method for nearcasting emphasizes the importance of understanding the propagation
of other previously happened Weibos propagation events in advance, in order to better monitor and
respond to public opinion dynamics at a real time.
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Figure 5. Numerical experiments with a-priori estimated (and thus) fixed β (2.5651 × 10−6)
and α (1.0365) based on days since outbreak started: the numbers of the E-users which
we used for prediction are marked with a red asterisk; the numbers of the E-users which
we predict are represented by pink circles; the predicted E-population and F-population are
shown using a blue line and black line, respectively; and the maximal F-population is marked
as black asterisk. In the figure, the horizontal axis is the time (as unit time by day) and the
vertical axis is the number of users.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5380–5394.



5390

Table 2. Comparison of indices<o, Fmax, Es for Method 1 and Method 2 based on historical
data since the outbreak started: Method 1: all parameter estimated; Method 2: a-priori
estimation with fixed β (2.5651 × 10−6) and α (1.0365).

<o(actual : 2.5460) Fmax(actual : 2.4724 × 105) Es(actual : 0.9243 × 106)
Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

Day 3 – 2.8762 – 3.3083 – 1.0824
Day 4 – 2.6504 – 2.7307 – 0.9751
Day 5 – 2.5428 – 2.4641 – 0.9228
Day 6 – 2.4803 – 2.3126 – 0.8920
Day 7 3.5855 2.4412 1.4758 2.2194 0.3920 0.8726
Day 8 4.2506 2.5546 4.5234 2.4942 1.0504 0.9286
Day 9 2.7779 2.5531 2.8837 2.4930 0.9768 0.9278
Day 10 2.5132 2.5504 2.4809 2.4866 0.9411 0.9265
Day 11 2.6986 2.5489 2.6283 2.4759 0.9189 0.9258
Day 12 2.6363 2.5490 2.5757 2.4798 0.9248 0.9258
Day 13 2.5974 2.5492 2.5285 2.4789 0.9245 0.9259
Day 14 2.4557 2.5496 2.3632 2.4796 0.9233 0.9261
Day 15 2.4561 2.5496 2.3738 2.4788 0.9272 0.9261

Table 3. Comparison of indices tb, ts, ti, tmax for Method 1 and Method 2 based on historical
data since the outbreak started: Method 1: all parameter estimated; Method 2: a-priori
estimation with fixed β (2.5651 × 10−6) and α (1.0365).

tb(actual : 5.92day) te(actual : 12.57day) ti(actual : 6.65day) tmax(actual : 8.49day)

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 Method 1 Method 2
Day 3 – 5.20 – 11.05 – 5.85 – 7.35
Day 4 – 5.67 – 12.03 – 5.85 – 8.08
Day 5 – 5.93 – 12.59 – 6.66 – 8.49
Day 6 – 6.09 – 12.95 – 6.86 – 8.76
Day 7 5.71 6.20 13.93 13.19 8.22 6.99 8.47 8.94
Day 8 6.20 5.90 14.94 12.52 9.74 6.62 8.91 8.46
Day 9 6.02 5.90 12.98 12.53 6.96 6.63 8.61 8.46
Day 10 5.93 5.91 12.56 12.55 6.63 6.64 8.50 8.47
Day 11 5.92 5.91 12.73 12.56 6.81 6.65 8.48 8.47
Day 12 5.94 5.91 12.70 12.56 6.76 6.65 8.53 8.47
Day 13 5.91 5.91 12.61 12.56 6.70 6.65 8.48 8.47
Day 14 5.90 5.91 12.44 12.56 6.54 6.65 8.46 8.47
Day 15 5.90 5.91 12.43 12.56 6.53 6.65 8.46 8.47
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Table 4. Comparison of indices Vo, Ve, Va for Method 1 and Method 2 based on historical
data since the outbreak started: Method1: all parameter estimated; Method 2: a-priori
estimation with fixed β (2.5651 × 10−6) and α (1.0365).

Vo(actual : 0.8658 × 105/day) Vd(actual : 5.4538 × 104/day) Va(actual : 3.3461 × 104/day)

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2
Day 3 – 1.3863 – 8.0554 – 5.0948
Day 4 – 1.0199 – 6.2227 – 3.8647
Day 5 – 0.8663 – 5.4091 – 3.3299
Day 6 – 0.7800 – 4.9701 – 3.0357
Day 7 0.4813 0.7293 2.4331 4.7019 1.6161 2.8588
Day 8 1.5023 0.8773 6.7514 5.5317 4.6580 3.3926
Day 9 1.0021 0.8769 5.9390 5.5159 3.7290 3.3861

Day 10 0.8688 0.8745 5.4995 5.4869 3.3677 3.3715
Day 11 0.9241 0.8706 5.5661 5.4494 3.4737 3.3516
Day 12 0.8952 0.8721 5.5603 5.4586 3.4299 3.3573
Day 13 0.8855 0.8718 5.5105 5.4568 3.3967 3.3561
Day 14 0.8312 0.8720 5.3464 5.4582 3.2536 3.3570
Day 15 0.8349 0.8717 5.3839 5.4562 3.2732 3.3558

4. Discussions

This paper concerned with nearcasting for forwarding behaviors in the Chinese Sina-Microblog
based on the use of a simple compartmental SFI model for a Weibo to be forwarded by users exposed
to the Weibo. A significant difference of Weibo information propagation from the pathogen of an
infectious disease is that an exposed user may gain immunity to the Weibo so the user becomes
completely uninterested in forwarding the Weibo.

The relative simplicity of the model permitted the construction of various indices and their
calculations/estimations: the Weibo reproduction ratio, the maximal forwarding users, the maximum
cumulative forwarding users, and critical propagation peak time, taking off and extinction times, and
propagation velocities during different phases of the information outbreak. An important issue, to use
this simple model to predict these critical indices and thus contribute to nearcasting propagation trend
based on historical Application Programming Interface (API) data, was addressed through some
numerical experiments based on a real Weibo event data. We considered two cases, where we can
accurately estimate all model parameters with the historical data passing the peaking time, or we can
rapidly and accurately estimate two critical parameters relevant to the Weibo when two other model
parameters relevant to the network characteristic and forwarding users’ waning interest rate are
estimated a-priori. This second approach clearly shows the nearcasting capacity of a simple
compartmental SFI-model as long as we have some information about the network characteristics and
the anticipated public interest in a class of Weibo events.

The simple model provides two important pieces of information about the propagation
characteristics of a particular Weibo: the intrinsic growth rate (the basic Weibo reproduction ratio),

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5380–5394.



5392

and the maximal capacity of the network for the particular Weibo event (the maximal number of
cumulative forwarding users). As anticipated from long time intensive modeling study of biological
ecosystems, the intrinsic growth rate and the maximal capacity gives the logistic growth
dynamics [24] of a single Weibo propagation dynamics. A full understanding of this propagation
dynamics of a single Weibo event is the first critical step towards examining the propagation
dynamics of a group of interactive Weibo events in a complex network.

There are many different model frameworks, as briefly reviewed in the introduction. We have
listed existing studies which are directly relevant to our mechanistic approach towards developing a
simple compartmental model for characterizing the Weibo information spread in the Sina-Microblog.
We refere to [25–27] and references therein for further studies at the intersection of mathematics,
epidemics, information diffusion and control. Interestingly, the work [25] that introduces a class of
infants with maternal antibodies giving passive temporary immunity for the considered infectious
disease may find an application for our modeling Weibo spread within the Sina-Microblog as some
immediate followers of opinion leaders may inherit a certain immunity for a Weibo. Obviously, the
Sina-Microblog possesses all kinds of features of complex networks [26], the sub-network structure
and the network topology require much further investigations that our simple mechanistic model can
serve as a building block towards a more complicated network framework. A primary goal of
nearcasting the propagation trend is to inform optimal design of interventions, so the methodologies
designed for the control of infection dynamics [27] may also be adopted in our simple model and its
variations.

We mention also that a variant of the epidemiological SIR model was used in [28] to accurately
describe the diffusion of online content over the online social network Digg.com. The work examined
also qualitative properties of our viral information propagation model, demonstrate the model’s
applications to nearcasting social media spread in online social networks. Alternatively, a linear
diffusive model was proposed and considered in Feng et al. [29, 30] using a temporal-spatial partial
differential equation model to explain these rates of spread in the DOSN. The PDE and network
analogue of the SFI model should be developed to reflect the spatial spread and network
heterogeneity.
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