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Abstract: We propose a mathematical model for the transmission dynamics of cholera under the
impact of available medical resources. The model describes the interaction between the human hosts
and the pathogenic bacteria and incorporates both the environment-to-human and human-to-human
transmission routes. We conduct a rigorous equilibrium analysis to the model and establish the global
asymptotic stability of the disease-free equilibrium when R0 ≤ 1 and that of the endemic equilibrium
when R0 > 1. As a realistic case study, we apply our model to the Yemen cholera outbreak during
2017–2018. By fitting our simulation results to the epidemic data published by the World Health
Organization, we find that different levels of disease prevalence and severity are linked to different
geographical regions in this country and that cholera prevention and intervention efforts should be
implemented strategically with respect to these regions in Yemen.
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1. Introduction

Cholera has been endemic in South Asia, Central America, and a number of countries in Africa, re-
maining a significant threat to the public health in these places. A water- and food-borne disease caused
by the bacterium Vibrio cholerae, cholera can be transmitted either from the contaminated aquatic en-
vironment, or through the human-to-human contact [1, 2]. Currently in its seventh pandemic, cholera
continues devastating populations in developing countries, particularly those places where sanitation
facilities and access to clean drinking water are limited. Large-scale cholera outbreaks in recent years,
such as those in Zimbabwe (2008–2009, with nearly 100,000 reported cases), Haiti (2010–2012, with
545,000 reported cases), and Yemen (2016–2018, with suspected cases exceeding 1 million), have
received worldwide attention.
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An important factor in the cholera epidemics and endemics in developing countries is that the med-
ical resources are insufficient to meet the needs of fighting the cholera outbreaks. Indeed, one of the
common characteristics among the recent, large-scale cholera outbreaks, including those from Zim-
babwe, Haiti and Yemen, is the difficulty in providing an adequate medical response due to shortages
in health professionals and medical supplies [3, 4, 5, 6, 7]. Consequently, massive surge of cases oc-
curred in these outbreaks, underscoring the importance of medical resources in shaping the cholera
epidemics.

Under normal situations, cholera is relatively easy to treat. Oral rehydration therapy using clear
water and modest amount of salt and sugar has saved millions of lives and reduced overall case fatality
rates below 1% [8, 9]. Antibiotics are used to treat severe infections, while their effects in mass
administration are unclear as they contribute to increasing antimicrobial resistance [8]. In addition,
cholera vaccines, especially the recently introduced two-dose oral vaccine that is less expensive and
more convenient to deliver than its predecessor [10, 11], have been effective in both the prevention and
intervention of disease outbreaks. For many developing countries, however, the availability of medical
resources significantly limits the implementation of these control measures. Antibiotics, vaccines and
other medicine may not be available or may be in severe shortage compared to the demands. There
may not even be sufficient clean drinking water, salt and sugar for the basic rehydration practice [7, 12,
13, 14].

Due to the inadequate medical resources, the infection may rapidly spread, leading to unusually high
prevalence and attack rates. The risk of transmitting cholera from the environment as well as among
human hosts could be significantly increased. Meanwhile, as a result of insufficient medical treat-
ment and sanitation and as a feedback of increased infection levels, human contribution (e.g., through
shedding) to the environmental pathogen could also increase. These factors worsen and elongate the
cholera epidemics.

There have been many mathematical models published for cholera [5, 15, 16, 17, 18]. These studies
have emphasized the dual routes (environment-to-human and human-to-human) for cholera transmis-
sion, the impact of seasonal fluctuations on cholera dynamics, the role of the free-living water-borne
pathogens, and the effects of media reports and awareness programs on cholera epidemics. The focus
of the present paper, however, is to investigate how the availability of medical resources would im-
pact the cholera transmission and shape the pattern of a cholera epidemic. To that end, we formulate
a system of differential equations to describe cholera transmission dynamics, using a compartmen-
tal modeling approach. In addition to the typical compartments involved in cholera models (i.e., the
susceptible hosts, the infected/infectious hosts, the recovered hosts, and the pathogen), we introduce
another compartment to represent the strength, or availability level, of the medical resources. Our
model will then describe the interaction among the hosts, the pathogen, and the medical resources,
incorporating both direct and indirect transmission pathways. Particularly, several model parameters,
including the direct and indirect transmission rates and the host shedding rate, will explicitly depend
on the medical resources.

As an application of our model, we study the Yemen cholera outbreak during the period of April
2017 to May 2018. Yemen has experienced years of heavy conflicts and wars, severely disrupting the
society and the public health infrastructure. In particular, 55% of the health facilities in Yemen are
no longer fully functional [19]. In October 2016, a small cholera epidemic started in Yemen which,
by March 2017, was apparently in decline. However, the outbreak resurged on April 27, 2017 and
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remained on-going since then, leading to the largest documented cholera epidemic of modern times.
By the end of 2017, cumulative cases exceeded 1 million, and by May 2018, more than 1.1 million
cases were reported [20]. We conduct data fitting of our model by using the weekly epidemiological
reports published by the World Health Organization (WHO) [21]. We particularly emphasize the role
of limited medical resources in shaping the Yemen cholera outbreak, by examining the data fitting
results at both the national and governorate levels. Our findings contribute to deeper understanding of
the transmission dynamics underlying the Yemen cholera outbreak, and provide useful guidelines for
the design of future prevention and intervention strategies.

The remainder of this paper is organized as follows. In Section 2, we present the mathematical
model and conduct a careful equilibrium analysis, studying both local and global stabilities. In Section
3, we apply our model to the Yemen cholera outbreak using data fitting and numerical simulation. In
Section 4, we conclude the paper with some discussion.

2. Model formulation and analysis

We use the following differential equations to describe the impact of available medical resources on
cholera transmission:

dS
dt

= µN − β1(M)S I − β2(M)S
B

B + K
− µS ,

dI
dt

= β1(M)S I + β2(M)S
B

B + K
− (γ + µ)I,

dR
dt

= γI − µR,

dB
dt

= ξ(M)I − δB,

dM
dt

= − Γ + ηI + λ(M).

(2.1)

Here S , I and R are the the numbers of susceptible, infected and recovered individuals, respectively,
and B is the concentration of the pathogenic vibrios in the environment. Meanwhile, M denotes the
strength (or, availability) of related medical resources and facilities, normalized to 0 ≤ M ≤ 1; these
could include, in a broad (and abstract) sense, medicines, health centers, sanitation systems, etc. The
parameter µ is the natural birth and death rate for the human hosts, K is the half saturation concentration
of the vibrios, γ is the rate of recovery from cholera infection, and δ is the removal rate of vibrios from
the environment. We neglect the disease induced death rate in our model, since the mortality rate for
cholera is generally lower than 1% [8]; in particular, the overall case fatality rate for the Yemen cholera
outbreak from April 2017 to May 2018 is 0.21% [20].

The parameter Γ represents the outflux rate of the medical resources due to socioeconomic factors
such as conflicts, wars, and economic collapse. Meanwhile, the availability of medical resources is
stimulated by the disease prevalence at a rate η (for example, through international assistance from
WHO, CDC, UNICEF, etc.). We additionally assume that its self growth is described by a function
λ(M), which is introduced to ensure that a positive number of medical facilities and infrastructures are
available at any time, as a minimal requirement of public health. The parameters β1 and β2 are the
direct (or, human-to-human) and indirect (or, environment-to-human) transmission rates, respectively,
and ξ is the rate of human contribution (e.g., through shedding) to the environmental vibrios. We
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assume that β1 , β2 and ξ all explicitly depend on M and increase while M decays, reflecting the impact
of the collapsing public infrastructure on cholera transmission and spread. Specifically, we make the
following assumptions on these three parameters:

(H1) β1(M), β2(M), ξ(M) ∈ C1[0, 1] and are all positive;
(H2) β′1(M) ≤ 0, β′2(M) ≤ 0, ξ′(M) ≤ 0.

We also assume that the function λ(M) satisfies:

(H3) λ(M) ∈ C1[0, 1] and λ′(M) < 0;
(H4) λ(0) > Γ > ηN + λ(1).

The condition (H3) states that when the available medical resource (M) increases, its self-growth rate
would decrease. The condition (H4) is introduced to ensure that M remains in the range [0, 1].

2.1. Basic reproduction number

We will make use of the basic reproduction number [22], commonly denoted as R0, in the analysis
of our model (2.1). Let us first determine R0 by the standard next generation matrix technique [23, 24].

Note that λ(M) is invertible since λ′(M) < 0. The system (2.1) has a unique disease-free equilibrium
(DFE) at

E0 = (S 0, I0,R0, B0,M0) =
(
N, 0, 0, 0, λ−1(Γ)

)
. (2.2)

The infection components in this model are I and B. We find that the new infection matrix F and the
transition matrix V are given by

F =

[
β1(M0)N β2(M0)N/K

0 0

]
and V =

[
γ + µ 0
−ξ(M0) δ

]
. (2.3)

It follows that the next generation matrix is given by

FV−1 =

[β1(M0)N
γ+µ

+
β2(M0)ξ(M0)N

δK(γ+µ)
β2(M0)N

δK

0 0

]
. (2.4)

The basic reproduction number of model (2.1) is then defined as the spectral radius of the matrix
FV−1, and we find that

R0 = ρ(FV−1) =
β1(M0)N
γ + µ

+
β2(M0)ξ(M0)N
δK(γ + µ)

=: R01 + R02 , (2.5)

which provides a quantification of the disease risk during a cholera outbreak. The first term R01 comes
from the direct transmission route, and the second termR02 represents the contribution from the indirect
transmission route.

2.2. Equilibrium analysis

We now analyze the equilibria of the system (2.1) which will provide essential information regard-
ing the transmission dynamics of the disease. Let (S , I,R, B,M) be an equilibrium of model (2.1),
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which satisfies the following equations

µN − β1(M)S I − β2(M)S
B

B + K
− µS = 0,

β1(M)S I + β2(M)S
B

B + K
− (γ + µ)I = 0,

γI − µR = 0,
ξ(M)I − δB = 0,
− Γ + ηI + λ(M) = 0.

(2.6)

Solving (2.6) yields

S =
(γ + µ)I

β1(M)I + β2(M)B/(B + K)
,

M = λ−1(Γ − ηI),

R =
γ

µ
I,

B =
ξ(M)
δ

I.

(2.7)

Note that Γ− ηI > 0 based on the condition (H4). It follows from S + I + R = N that the third equation
of (2.7) implies

S = N − aI =: φ(I) with a = 1 + γ/µ. (2.8)

Meanwhile, in view of the first equation of (2.7), we obtain

S =
γ + µ

h(I)
=: ψ(I), (2.9)

where
h(I) = β1(χ(I)) +

β2(χ(I)) ξ(χ(I))
ξ(χ(I)) I + δK

with χ(I) = λ−1(Γ − ηI). (2.10)

Let us now consider curves S = φ(I) and S = ψ(I). In particular, any intersection of these two
curves in R2

+ determines a non-DFE equilibrium. Note that

h′(I) =β′1(χ(I))χ′(I) +
β′2(χ(I)) χ′(I) ξ(χ(I))

ξ(χ(I)) I + δK

+ β2(χ(I))
δKξ′(χ(I))χ′(I) − ξ2(χ(I))

(ξ(χ(I)) I + δK)2 .

(2.11)

Using assumption (H2) and the fact χ′(I) = −η/λ′(χ(I)) > 0, we see that h′(I) ≤ 0. This implies
that ψ(I) is an increasing function. In contrast, φ(I) is strictly decreasing. Additionally, one can easily
verify that ψ(0) = N/R0, φ(0) = N, ψ(N/a) > 0 and φ(N/a) = 0. Hence, we conclude:

(1) If R0 > 1, these two curves have a unique intersection lying in the interior of R2
+, due to ψ(0) <

φ(0) and ψ(N/a) > φ(N/a). Furthermore, at this intersection point, equation (2.7) yields M,R, B >

0 (since I > 0).
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(2) If R0 ≤ 1, the two curves have no intersection in the interior of R2
+ as ψ(0) ≥ φ(0).

Therefore, by equation (2.7), we find that the model (2.1) admits a unique equilibrium, the DFE, if
R0 ≤ 1; and it admits two equilibria, the DFE and an endemic equilibrium (EE), if R0 > 1.

In what follows, we perform a study on the global stability of the DFE. By a simple comparison
principle, we find that 0 ≤ B ≤ Bmax and M0 ≤ M ≤ 1, where Bmax = ξ(0)N/δ. Thus, it leads to a
biological feasible domain

Ω = {(S , I,R, B,M) ∈ R5
+ : S + I + R = N, 0 ≤ B ≤ Bmax, M0 ≤ M ≤ 1}.

Theorem 2.1. The following statements hold for the model (2.1).

(1) If R0 ≤ 1, the DFE of system (2.1) is globally asymptotically stable in Ω.
(2) If R0 > 1, the DFE of system (2.1) is unstable and there exists a unique endemic equilib-

rium. Moreover, the disease is uniformly persistent in the interior of Ω, denoted by Ω̊; namely,
lim inf

t→∞
(I(t), B(t)) > (c, c) for some c > 0.

Proof. Let x = (I, B)T . One can verify that

dx
dt
≤ (F − V)x,

where the matrices F and V are given in equation (2.3). Take u = (β1(M0)N, β2(M0)N/K). It then
follows from the fact R0 = ρ(FV−1) = ρ(V−1F) and direct calculation that u is a left eigenvector
associated with the eigenvalue R0 of the matrix V−1F; i.e., uV−1F = R0u. Let us consider a Lyapunov
function

L = uV−1x.

Differentiating L along the solutions of (2.1), we have

L′ = uV−1x′ ≤ uV−1(F − V)x = u(R0 − 1)x. (2.12)

Case 1: R0 < 1. The equality L′ = 0 implies that ux = 0. This leads to I = B = 0 by noting
the positive components of u. Hence, when R0 < 1, equations of (2.6) yield S = S 0, M = M0 and
I = R = B = 0. Therefore, the invariant set on which L′ = 0 contains only one point which is the DFE.

Case 2: R0 = 1. The equality L′ = 0 implies that β1(M)S I = β1(M0)NI, β2(M)S B/(B + K) =

β2(M0)NB/K and ξ(M)I = ξ(M0)I. Thus, either I = B = 0, or B = 0, S = N and β1(M) = β1(M0) and
ξ(M) = ξ(M0) hold. The former can proceed as above. Suppose the latter holds, then dB

dt = ξ(M)I ≡ 0
which implies I = 0. Once again this would yield the same conclusion as before.

Therefore, in either case, the largest invariant set on which L′ = 0 consists of the singleton E0 =

(N, 0, 0, 0,M0). By LaSalle’s Invariant Principle [25], the DFE is globally asymptotically stable in Ω if
R0 ≤ 1.

In contrast, if R0 > 1, then it follows from the continuity of vector fields that L′ > 0 in a neighbor-
hood of the DFE in Ω̊. Thus the DFE is unstable by the Lyapunov stability theory. The last part can
be proved by the persistent theory [26] which is similar to the proof of Theorem 2.5 in Gao and Ruan
[27]. �
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In addition, we have carried out an analysis on the global asymptotic stability of the endemic equi-
librium. We remark that, in general, this would be a nontrivial task for an epidemic system of dimension
higher than two. Our model (2.1) is essentially four-dimensional, after we remove the equation for R.
We have managed to conduct the endemic stability analysis using the geometric approach based on the
third additive compound matrix [28, 29]. Below we first briefly describe this method.

The third additive compound matrix for a 4 × 4 matrix A = (ai j) is defined as

A[3] =


a11 + a22 + a33 a34 −a24 a14

a43 a11 + a22 + a44 a23 −a13

−a42 a32 a11 + a33 + a44 a12

a41 −a31 a21 a22 + a33 + a44

 .
Now consider a dynamical system

dX
dt

= F(X), (2.13)

where F : D 7→ Rn is a C1 function and where D ⊂ Rn is a simply connected open set. Let X(t, X0)
denote the solution of (2.13) with the initial condition X(0) = X0. We assume:

(a1) There exists a compact absorbing set K ⊂ D;
(a2) The system (2.13) has a unique equilibrium point X∗ in D.

The linearized system of system (2.13) is

Y ′ = J(X(t, X0))Y, (2.14)

and the associated third compound system is

Z′ = J[3](X(t, X0))Z , (2.15)

where J[3] is the third compound matrix of the Jacobian J for equation (2.13).

Theorem 2.2. Assume that (a1), (a2) hold and there are a Lyapunov function V(X,Z), a function κ(t),
and positive constants c, k, and C such that

(i) c|Z| ≤ V(X,Z) ≤ C|Z|, c ≤ κ(t) ≤ C;
(ii) V ′ ≤ (κ′(t) − k)V,

where the total derivative V ′ is taken along the direction of (2.15). Then the interior equilibrium X∗ of
system (2.13) is globally asymptotically stable.

Proof. If κ(t) is a constant, this is the case covered by Corollary 3.2 in [29]. For a general differentiable
function κ(t), the conclusion follows from a similar proof, since the modified Lyapunov function Ṽ =

V(X,Z)/κ(t) satisfies all the conditions to establish Corollary 3.2 in [29]. �

We now prove the main result in this section; i.e., the global stability of the endemic equilibrium,
using the geometric approach described above. To simplify our notations, we will adopt the abbrevia-
tions

β1 = β1(M), β2 = β2(M), ξ = ξ(M), λ = λ(M).

Furthermore, we will assume that each of these four functions is subject to saturation effects, a common
assumption for disease-related rates, mathematically characterized by a non-positive second derivative.
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Theorem 2.3. If R0 > 1 and the following inequalities hold for all M ∈ [0, 1]

β1 ≤
µ

N
, and β′′1 , β

′′
2 , ξ

′′, λ′′ ≤ 0, (2.16)

then the unique endemic equilibrium of the system (2.1) is globally asymptotically stable in Ω.

Proof. It is clear that the equation for R can be decoupled from the system (2.1). As a result, we obtain
a four-dimensional system associated with S , I, B and M, for which the Jacobian matrix is given by

J =


−β1I − β2B

B+K − µ −β1S −β2S K
(B+K)2 −β

′
1S I − β′2S B

B+K

β1I +
β2B
B+k β1S − (γ + µ) β2S K

(B+K)2 β′1S I +
β′2S B
B+K

0 ξ −δ ξ′I
0 η 0 λ′

 .
The third additive compound matrix of J is

J[3] =


a1 ξ′I −β′1S I − β′2S B

B+K −β′1S I − β′2S B
B+K

0 a2
β2S K

(B+K)2
β2S K

(B+K)2

−η ξ a3 −β1S
0 0 β1I +

β2B
B+K a4

 ,
where

a1 = β1S − β1I −
β2B

B + K
− γ − 2µ − δ,

a2 = β1S − β1I + λ′ −
β2B

B + K
− γ − 2µ,

a3 = λ′ − β1I −
β2B

B + K
− µ − δ,

a4 = λ′ + β1S − γ − µ − δ.

The associated linear compound system is

X′ = a1X + ξ′IY − (β′1S I +
β′2S B
B + K

)Z − (β′1S I +
β′2S B
B + K

)W,

Y ′ = a2Y +
β2S K

(B + K)2 Z +
β2S K

(B + K)2 W,

Z′ = −ηX + ξY + a3Z − β1S W,

W ′ = (β1I +
β2B

B + K
)Z + a4W.

(2.17)

We need to show the uniform global stability of the linear compound system (2.17). To this end, we
choose an associated Lyapunov function

V(t, X,Y,Z,W) = max {V1,V2,V3},

where

V1 = M|X|, V2 = B|Y |, V3 =

I|Z + W |, ZW ≥ 0,
max {I|Z|, I|W |}, ZW < 0.
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It is easy to see that the following estimate hods

I|Z + W | ≤ V3 ≤ V, (Z, W) ∈ R2. (2.18)

Based on the uniform persistence of the system, we see that there exist positive constants c1 and c2

such that
c1(|X| + |Y | + |Z| + |W |) ≤ V ≤ c2(|X| + |Y | + |X| + |W |). (2.19)

Meanwhile, note that β1, β2 > 0 for M ∈ [0, 1], we can choose a small positive constant k such that

β1I +
β2B

B + K
, γ, µ ≥ k. (2.20)

Other than that, we have the following inequalities by (2.16):

β1S ≤ µ, − ξ′M ≤ ξ, − β′2M ≤ β2 ,

λ′ ≤
λ − λ(0)

M
≤
λ − Γ

M
≤

M′

M
.

(2.21)

Now, we can estimate the total derivative of V along the trajectory of the compound system (2.17) by
inequalities (2.20) and (2.21). We need to discuss the following cases.

Case 1: V = V1. Then B|Y | ≤ M|X|, I|Z + W | ≤ M|X|. We have

D+V = M′|X| + MD+|X|

≤ M′|X| + M
(
a1|X| − ξ′I|Y | −

(
β′1S I +

β′2S B
B + K

)
|Z + W |

)
≤

(
M′

M
+ a1 −

ξ′MI
B
−
β′2MS B
(B + K)I

− β′1MS
)

V

≤

(
M′

M
+ β1S +

β2S B
(B + K)I

− γ − µ +
ξI
B
− δ −

(
β1I +

β2B
B + K

)
+ β1S − µ

)
V

≤

(
M′

M
+

I′

I
+

B′

B
− k

)
V. (2.22)

Case 2: V = V2. Then I|Z + W | ≤ B|Y |, and

D+V = B′|Y | + BD+|Y |

≤ B′|Y | + B
(
a2|Y | +

β2S K
(B + K)2 |Z + W |

)
≤

(
B′

B
+ β1S +

β2S BK
(B + K)2I

− γ − µ + λ′ −
(
β1I +

β2B
B + K

)
− µ

)
V

≤

(
B′

B
+

I′

I
+

M′

M
− k

)
V. (2.23)

Case 3-a: V = I|Z + W |. Then M|X|, B|Y | ≤ I|Z + W |, and

D+V = I′|Z + W | + ID+|Z + W |
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≤ I′|Z + W | + I(η|X| + ξ|Y | + (λ′ − µ − δ)|Z + W | − γ|W |)

≤

(
I′

I
+
ξI
B
− δ +

ηI
M

+ λ′ − µ

)
V

≤

(
I′

I
+

B′

B
+
λ − Γ + ηI

M
− µ

)
V

≤

(
I′

I
+

B′

B
+

M′

M
− k

)
V. (2.24)

Case 3-b: V = I|Z|. Then |W | ≤ |Z|, M|X|, B|Y | ≤ I|Z|, and

D+V = I′|Z| + ID+|Z|

≤ I′|Z| + I
(
η|X| + ξ|Y | +

(
λ′ − β1I −

β2B
B + K

− µ − δ
)
|Z| + β1S |W |

)
≤

(
I′

I
+
ξI
B
− δ +

ηI
M

+ λ′ −
(
β1I +

β2B
B + K

)
+ β1S − µ

)
V

≤

(
I′

I
+

B′

B
+

M′

M
− k

)
V. (2.25)

Case 3-c: V = I|W |. Then

D+V = I′|W | + ID+|W |

= I′|W | + I
(
−

(
β1I +

β2B
B + K

)
|Z| + (λ′ + β1S − γ − µ − δ)|W |

)
≤

(
I′

I
+ λ′ − δ − γ + β1S − µ

)
V

≤

(
I′

I
+

M′

M
+
ξI
B
− δ − γ

)
V

≤

(
I′

I
+

M′

M
+

B′

B
− k

)
V. (2.26)

Now, let κ(t) = ln(IBM). Then it follows from (2.22) to (2.26) that the following inequality hods

D+|V | ≤ (κ(t)′ − k)V. (2.27)

In view of the uniform persistence, we can actually choose c1 and c2 from (2.19) such that

c1 ≤ κ(t) ≤ c2, (2.28)

for sufficiently large t. Therefore, we conclude from (2.19), (2.27), (2.28) and Theorem 2.2 that the
endemic equilibrium of the system (2.1) is globally asymptotically stable. �

Essentially, the stability results in Theorems 2.1 and 2.3 establish R0 = 1 as a forward transcritical
bifurcation point, or, a sharp threshold for disease dynamics, and indicate that reducing R0 to values
at or below unity will be sufficient to eradicate the disease. In other words, the cholera model (2.1)
exhibits regular threshold dynamics.
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3. Numerical results

In order to verify our mathematical modeling framework, we apply our model to study the recent
cholera outbreak in Yemen, where heavy conflicts and wars have led to a collapsed public health system
and severe shortage of medical resources. Using our model, we aim to gain insight into the transmission
pattern of this large-scale cholera outbreak under the impact of limited medical resources.

We utilize the outbreak data in the Yemen Situation Reports published weekly by WHO [21]. These
data sets contain the weekly reported new cases and cumulative cases for each governorate as well as
the entire country. We implement our model and conduct numerical simulation for an epidemic period
slightly over one year, starting from April 2017 (when the cholera epidemic resurged in Yemen and
went on to become the worst cholera outbreak in modern history) and ending in May 2018 (when
the cholera epidemic significantly slowed down already and only a small number of new cases were
reported since then).

We first describe how the values of the model parameters are determined in our numerical simu-
lation. The entire population in Yemen is about N = 27.5 million as of 2016 [30]. The average life
expectancy in Yemen is about 64 years [31], and so we may estimate the natural human death rate µ
by µ ≈ (64 year)−1 ≈ 0.0003 week−1. Vibrio cholerae can typically survive in the aquatic environ-
ment for about 30 days [2], thus we calculate the natural death (or, removal) rate of the bacteria by
δ ≈ (30 day)−1 ≈ 0.233 week−1. An individual with a moderate cholera infection could recover in
about 5 days [1], and so we estimate the recovery rate by γ ≈ (5 day)−1 ≈ 1.4 week−1. Based on
the recent WHO survey on Yemen’s health system [19], only 45% of the medical facilities in Yemen
remain fully functional after two years of wars. Then we may roughly estimate the decay rate of the
medical resources by Γ ≈ 0.5 ∗ 0.55 year−1 ≈ 0.00529 week−1. Additionally, the half saturation rate of
Vibrio cholerae is commonly accepted as K ≈ 106 cells ·ml−1 [1].

On the other hand, the direct transmission rate β1(M), the indirect transmission rate β2(M), the
average individual shedding rate ξ(M), and the self-growth rate of medical resources λ(M) all depend
on M (where 0 ≤ M ≤ 1) and are more difficult to calibrate. For simplicity, we consider the following
representations of these rates, as decreasing functions of M:

β1(M) = c1 − d1M , β2(M) = c2 − d2M , ξ(M) = c3 − d3M , λ(M) = c4 − d4M .

Using the base values from [5] for the cholera transmission rates and individual shedding rate, we set
the lower bounds of these parameters as β1(1) = c1 − d1 = 1.099 × 10−4 week−1 person−1, β2(1) =

c2 − d2 = 0.0077 week−1, and ξ(1) = c3 − d3 = 70 cells · ml−1 week−1 person−1. By using these
conditions as well as the assumption (H4), we are left with five independent parameters ci (1 ≤ i ≤ 4)
and η, whose values will then be determined through data fitting.

We conduct data fitting to a number of time series that include the weekly reported cases at the
country level and the individual governorate level, based on the standard least squares method. We also
note that the country of Yemen can be divided into three major regions (the Northwest, the Southwest,
and the East) which differ from each other in climatic and geographical conditions [32, 33]. The
three regions can be roughly defined as – East: Longitude + Latitude > 60◦; Northwest: Longitude +

Latitude < 60◦ & Latitude > 14.5◦; Southwest: Longitude + Latitude < 60◦ & Latitude < 14.5◦. In our
numerical simulation, we have chosen one or more governorates from each of the three regions.
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Figure 1. Cumulative cholera cases for the entire country of Yemen from April 2017 to May
2018. Circles (in blue) denote the WHO reported cases, and solid line (in red) denotes the
simulation result. Parameter values are provided in Table A1 based on data fitting. The basic
reproduction number is estimated as R0 = 1.344.

Table 1. The normalized mean square errors (NMSE) for the cholera data fitting of Yemen
and its four governorates: Al Hudaydah in the Northwest, Taizz in the Southwest, and Al
Jawf and Sa’ada in the East.

Yemen Al Hudaydah Taizz Al Jawf Sa’ada
NMSE 0.00615 0.01014 0.00590 0.03430 0.16661

Figure 1 shows the number of cumulative infections from the WHO reports and from our numerical
simulation, for the entire country of Yemen. The parameters ci (1 ≤ i ≤ 4) and η are determined from
the data fitting; their values and 95% confidence intervals are shown in Table A1 in the Appendix. From
Figure 1, we observe reasonably good fitting results based on our numerical simulation (red curve) to
the reported data (blue circles). To quantify the goodness of fit, we have calculated the Normalized
Mean Square Error (NMSE), which provides an estimate of the overall deviation between the predicted
and measured values. The NMSE in this case is computed by

1
n

n∑
i=1

(yi − xi)2

x̄ȳ

where

x̄ =
1
n

n∑
i=1

xi , ȳ =
1
n

n∑
i=1

yi

and where xi (1 ≤ i ≤ n) are the WHO reported data, yi (1 ≤ i ≤ n) are the fitted data, and n is
the number of data points used. In general, a lower value of NMSE indicates a better fitting result.
The values of the NMSE for the cholera data fitting of Yemen (as well as four of its governorates) are
presented in Table 1.
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Figure 2. Numerical simulation for the number of cholera infections in Yemen, based on
parameter values from data fitting, over a large time frame. The infection curve approaches
the endemic equilibrium after a long transient period.

In Figure 1, we see that the the increase of the cumulative cholera cases was very fast during the
first 20 weeks or so (starting from April 27, 2017), but gradually slowed down afterwards (ending in
May 2018). Based on the data fitting result, we are able to evaluate the basic reproduction number
from equation (2.5). We find that R0 = 1.344, consistent with our prediction of a cholera epidemic
when R0 > 1. Moreover, Figure 2 shows the long-term behavior of the infection (or, prevalence) curve
which approaches a positive endemic state (i.e., the endemic equilibrium) over time, an evidence for
the global stability of the endemic equilibrium when R0 > 1, as predicted by Theorem 2.3.

In order to conduct a deeper investigation into the transmission dynamics of this cholera outbreak,
we have also carried out numerical simulation and data fitting for a number of individual governorates
in Yemen. Figures 3 and 4 show some typical results, where one governorate is chosen from each of
the Northwest and Southwest regions, and two chosen from the East region. The parameter values for
ci (1 ≤ i ≤ 4) and η are again determined through data fitting in each scenario; see Tables A2 - A5 for
their values and confidence intervals. We observe that Al Hudaydah in the Northwest has the highest
cumulative infection cases among the four governorates, followed by Taizz in the Southwest, and the
lowest are Al Jawf and Sa’ada in the East. Correspondingly, the value of the basic reproduction number
R0 (evaluated based on the data fitting result for each governorate) is the highest for Al Hudaydah, and
the lowest for Al Jawf and Sa’ada, indicating the different levels of disease risk in these places. More
specifically, the numbers of cumulative cases in Al Jawf and Sa’ada are about one order lower than
those in Al Hudaydah and Taizz. For each of the two governorates in the East, the reported number
of cumulative cases remains pretty flat during the first 10 weeks or so, indicating that the onset of the
major cholera outbreak in the East region lags behind, and is possibly caused by, that in the Northwest
and Southwest regions. Meanwhile, when t ≥ 30 weeks, the reported cumulative cases in Al Jawf
and Sa’ada essentially level off, a strong indication that the cholera epidemic has been contained in
these places after about 30 weeks. As a result, the reported cumulative cases in each of these two
governorates in the East (especially Sa’ada) show an approximate ’S’ shape. These factors contribute
to the fact that our least squares data fitting results for the eastern governorates (especially Sa’ada) are
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not as good as those for the northwestern and southwestern governorates. Indeed, Table 1 shows the
values of the NMSE for each case, which quantifies the goodness of fitting, and we clearly observe that
the NMSE value for Sa’ada is the highest, followed by that for Al Jawf, and those for Al Hudaydah
and Taizz are the lowest.

Based on the parameters estimated in each scenario, we have calculated the two parts R01 and R02

in equation (2.5), which represent the contribution from the direct and indirect transmission routes,
respectively, to the overall disease risk. We observe that the ratio of R01/R02 is high for the two
governorates in the Northwest and Southwest, showing that the direct transmission route plays the
dominant role in shaping the transmission pattern in these places. Particularly, for Al Hudaydah in the
Northwest, the value of R01 is almost 8 times of that of R02 . On the other hand, for Al Jawf and Sa’ada
in the East, the values of R01 and R02 are much closer, indicating that the indirect transmission route
plays a more significant role there. A possible explanation for this difference is that in the country
of Yemen, the population density in the Northwest and Southwest is much higher than that in the
East [32, 30], thus the direct, human-to-human, transmission route may contribute more to the cholera
epidemic in the Northwest and Southwest, but less in the East.
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Figure 3. Cumulative cholera cases for Al Hudaydah in the Northwest and Taizz in the
Southwest. Circles (in blue) denote the WHO reported cases, and solid line (in red) denotes
the simulation result. (a) Al Hudaydah: parameter values are provided in Table A2 based
on data fitting. M0 = 0.2622, R01 = 1.136, R02 = 0.146, and R0 = 1.282. (b) Taizz:
parameter values are provided in Table A3 based on data fitting. M0 = 0.6003, R01 = 0.914,
R02 = 0.218, and R0 = 1.132.

In addition, we have examined the variation of M in our simulation. We find that the value of M
is generally decreasing throughout the course of the epidemic, indicating the continuing decline of
the available medical resources and deterioration of the public health system due to the conflicts and
wars, despite the stimulation from the on-going cholera outbreak. Particularly, we have calculated the
value of M0 , the level of medical resources at the disease-free equilibrium, for these four governorates
under consideration (see the caption under each figure). We see that the values of M0 in Al Hudaydah
and Taizz are much higher than those in Al Jawf and Sa’ada, implying that a much higher level of
medical resources is required to attain the disease-free state in the Northwest and Southwest regions,
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Figure 4. Cumulative cholera cases for Al Jawf and Sa’ada in the East. Circles (in blue)
denote the WHO reported cases, and solid line (in red) denotes the simulation result. (a)
Al Jawf: parameter values are provided in Table A4 based on data fitting. M0 = 0.0319,
R01 = 0.814, R02 = 0.208, and R0 = 1.022. (b) Sa’ada: parameter values are provided in
Table A5 based on data fitting. M0 = 0.0135, R01 = 0.606, R02 = 0.406, and R0 = 1.012.
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Figure 5. Cumulative cholera cases for the entire country of Yemen from April 2017 to May
2018 for two hypothetical scenarios: M = 0 and M = 1, and for the more realistic scenario
where M varies. The curve with variable M comes from Figure 1.

than that required in the East region. This is possibly caused by the larger populations (that demand
more medical supplies/facilities) and the higher degrees of outbreak severity (characterized by the high
levels of prevalence and accumulated cases) in the Northwest and Southwest.

To further demonstrate the impact of the available medical resources, which interact with the disease
transmission dynamics and vary with time, on the Yemen cholera outbreak, we consider two extreme
cases with fixed M: M = 0 (no resources available throughout the epidemic) and M = 1 (100%
resources available throughout the epidemic). In each of these two scenarios, the disease transmission
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rates β1(M) and β2(M), and the rate of human contribution to the bacterial growth, ξ(M), are all reduced
to constants; i.e., independent of M. When M = 0, the host transmission and pathogen growth rates
are fixed at their maximum values, so that higher disease prevalence and severity are expected. When
M = 1, these transmission and growth rates remain at their minimum values for the entire course,
which would lead to a less severe epidemic. Figure 5 plots the numbers of infected human hosts in
Yemen for M = 0 and M = 1, and compare those to the scenario emphasized in our model where M is a
variable with respect to the time. An implication of these results is that without considering the impact
of the dynamic, time-dependent medical resources, we might either over-estimate or under-estimate
the disease risk.

4. Discussion and conclusion

In this study, we have formulated a mathematical model to investigate cholera transmission un-
der the impact of limited medical resources. Our model includes both the human-to-human (direct)
and environment-to-human (indirect) transmission pathways. In particular, we have incorporated the
strength of the medical resources as a key component in the model, on which the transmission rates
explicitly depend. Our model thus represents the interaction among the human hosts (susceptible,
infectious, and recovered), the environmental pathogen, and the available medical resources, which
shapes the transmission pattern of a cholera epidemic. We have carefully analyzed the dynamical
properties of our model. Particularly, using the geometric approach based on the third compound ma-
trix, we are able to establish the global asymptotic stability of the endemic equilibrium for our model
(which essentially constitutes a four-dimensional system). Our analytical results show that under this
model setting, cholera transmission follows regular threshold dynamics that are characterized by the
basic reproduction number R0 ; i.e., the disease is eradicated when R0 ≤ 1 and persists when R0 > 1.

We have applied our model to the simulation of the recent cholera outbreak in Yemen, as a means
to demonstrate the application of our model and to verify our analytical predictions. We fit the model
parameters using the realistic data published by WHO for both the whole country level and individual
governorate level, with a few typical governorates from the three major regions of Yemen (the North-
west, the Southwest and the East). The findings from our numerical simulation and data fitting show
significant differences of transmission structures among the three regions; these are reflected by the de-
grees of outbreak severity, disease risk quantifications, relative roles played by the direct and indirect
transmission routes, and demand levels of medical resources. The results help us to better understand
the complex, and heterogeneous, disease dynamics involved in this extremely severe and long-lasting
cholera epidemic.

It is well known that the transmission and spread of cholera involve complicated biological, envi-
ronmental and socioeconomic processes, and the underlying mechanism for a cholera outbreak may
vary from place to place. Our work puts an emphasis on the availability of medical resources and its
contribution to the overall transmission pattern of cholera. The Yemen cholera outbreak provides a re-
alistic case study for this model, as the high prevalence and severity of this cholera epidemic are widely
believed to stem from the collapsed health system and limited medical resources in this country. We
obtain reasonably good results in fitting our model to the reported cholera data. Moreover, we find that
different degrees of epidemic severity are linked to different geographical regions, which in term leads
to different levels of demands for necessary medical resources in order to reach a disease-free state.
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These findings indicate that cholera prevention/intervention efforts should be implemented strategi-
cally with respect to different locations. Particularly for Yemen, stronger control measures should be
planned, and more attention should be paid to the reduction of the direct disease transmission, for the
Northwest and Southwest regions than that for the East region. Above all, the improvement of public
health infrastructure and recovery of medical facilities and supplies are of fundamental importance in
fighting future cholera outbreaks.

There are, however, a few limitations in our study. Our model does not consider the intrinsic dynam-
ics of the pathogenic vibrios in the contaminated water, by assuming that the growth of the vibrios in
the aquatic environment is predominantly refueled by the infected hosts [1, 5, 6, 34]. Several cholera
models (e.g., [17, 35]) published in recent years have incorporated some bacterial intrinsic growth
terms, though their potential impact on the transmission dynamics of the Yemen cholera outbreak re-
mains unclear (but is worth exploring). Meanwhile, the intense conflicts and wars in Yemen and their
devastating effects on the country’s social, political and economic conditions certainly played a large
role in this cholera outbreak. The significant reduction and shortage in medical resources represent one
angle to investigate the complex dynamical interaction, and that is what our current paper is focused on,
though there are many other socioeconomic factors which may have contributed to the Yemen cholera
outbreak and which are not considered in our model. Furthermore, such factors are most likely random
and discontinuous, and might be better represented in a stochastic modeling framework.
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Appendix

We present the parameter values and their confidence intervals in the tables below (A1 - A5) for
the cholera data fitting of Yemen and its four governorates: Al Hudaydah in the Northwest, Taizz
in the Southwest, and Al Jawf and Sa’ada in the East. The 95% confidence intervals listed in these
tables imply that the corresponding p-values are greater than 0.05. They also indicate that the standard
deviations are large. This may be caused by the fact that our sample size is relatively small, as our data
fitting is based on the weekly reported cases from WHO for about 39 weeks in the period from April
2017 to May 2018 (there are a number of weeks in this period that WHO did not report the data).
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Table A1. Parameter values and confidence intervals for Yemen.

Parameter Value 95% Confidence Interval
c1 0.000154 [-0.000218, 0.000526]
c2 0.007759 [-0.03769, 0.05321]
c3 1129.26 [-19224.3, 21482.8]
c4 0.005518 [-0.786525, 0.797561]
η 0.00000012 [-0.00427189, 0.00427212]

Table A2. Parameter values and confidence intervals for Al Hudaydah.

Parameter Value 95% Confidence Interval
c1 0.000177 [-0.000160, 0.000513]
c2 0.00905 [-0.04469, 0.06278]
c3 716.95 [-22458.9, 23892.8]
c4 0.007175 [-1.015730, 1.030079]
η 0.00000018 [-0.00540931, 0.00540949]

Table A3. Parameter values and confidence intervals for Taizz.

Parameter Value 95% Confidence Interval
c1 0.000194 [-0.000326, 0.000714]
c2 0.00619 [-0.03341, 0.04580]
c3 2942.27 [-27923.1, 33807.6]
c4 0.013275 [-0.728133, 0.754684]
η 0.00000029 [-0.00290934, 0.00290991]

Table A4. Parameter values and confidence intervals for Al Jawf.

Parameter Value 95% Confidence Interval
c1 0.000114 [-0.001049, 0.001277]
c2 0.00772 [-0.10053, 0.11596]
c3 905.93 [-85663.8, 87475.7]
c4 0.006558 [-1.798823, 1.811938]
η 0.00033287 [-0.04580790, 0.04647364]
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Table A5. Parameter values and confidence intervals for Sa’ada.

Parameter Value 95% Confidence Interval
c1 0.000085 [-0.003705, 0.003875]
c2 0.00709 [-0.24508, 0.25926]
c3 1903.02 [-335859.7, 339665.7]
c4 0.005915 [-4.040728, 4.052557]
η 0.00040432 [-0.1017587, 0.10256739]
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