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Abstract: Citrus Huanglongbing (HLB) is one of severe quarantine diseases affecting citrus pro-
duction both in abroad and domestic. Based on the mechanism and characteristics of citrus HLB
transmission, we establish a vector-borne model with stage structure and integrated strategy and inves-
tigate the effect of the strategy in controlling the spread of HLB. By calculating, we obtain the basic
reproductive number R0, and prove that the disease can be eradicated if R0 < 1, whereas the disease
will persist if R0 > 1. Meanwhile, we apply the optimal control theory to obtain an optimal integrated
strategy. Finally, we use our model to simulate the data of the numbers of inspected and infected citrus
trees in “Yuan Orchard”, located in Ganzhou City, Jiangxi Province in the southeast of P.R China. We
also give some numerical simulations for our theoretical findings.
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1. Introduction

Huanglongbing (HLB), more commonly known as citrus greening disease, is one of the most dan-
gerous and devastating diseases of citrus worldwide [1, 2]. Two decades ago, it invaded the Western
Hemisphere, primarily Florida and Brazil, where it has spread rapidly and caused major damage to
global citrus production. It is estimated that citrus acreage in Florida has decreased by 40% and pro-
duction by 49% since their historical peaks, all of which occurred in the last 20 years [3]. Up to 2015,
20% of Brazil’s commercial citrus species has been infected with HLB, and the disease caused great
damage to citrus industry by shortening tree lifespan and poor yield and quality [4]. In São Paulo,
64.1% of the commercial citrus blocks and 6.9% of the citrus trees were affected by HLB in 2012 [5].
In addition, Ganzhou is the top citrus producing area in Jiangxi Province, China, with an annual pro-
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duction of approximately 1.2 million tons [6, 7]. However, the producing-area has also suffered from
the widespread out of HLB and the output has significantly decreased in recent years [8]. The citrus
acreage in Ganzhou had decreased from 2.48 million acres in 2013 to 1.00 million acres in 2018.

HLB is caused by phloem-restricted bacteria of the Candidatus Liberibacter group, which can
be transmitted by two species of citrus psyllids, the Asian citrus psyllid (ACP), Diaphorina citri
Kuwayama, and the African citrus psyllid, Trioza erytrae [3]. ACP is divided into eggs, 1st through 5th

nymphal instars and adults [9]. The five nymphal instars of ACP can be differentiated by their distinct
morphological characteristics [10]. Adults and nymphs are capable of acquiring the HLB pathogen af-
ter feeding on an infected plant for 30 min or longer [11]. Although the nymphs hardly move, they soon
become Las-carrying (Candidatus Liberibacter asiaticus) adults with the ability to fly and transmit Las
to other citrus plants. Thus the control period of vector psyllid should include the nymphal stages [10].
The results from [10] reported that psyllids can carry Las in either adult or nymphal stages, expect in
the 1st and 2nd instars, the 3rd through 5th instars have stronger transmission ability than adults.

Generally a healthy citrus tree is inoculated by infected nymphs and adults, there is an incubation
period in which the tree exhibits no symptoms but may act as a source of the disease [2]. The survey
results from [12, 13] indicated that the incubation period from grafting to development of HLB symp-
toms is 3 to 12 months under greenhouse conditions. Since incubation period is long and diagnosis is
difficult, citrus trees can not be easily found in time after infection. This issue reduces the effectiveness
of control strategy in which infected trees are removed to eliminate sources of HLB [14].

Recently, mathematical modeling has become an important and useful tool in understanding the
epidemiology of vector-transmitted plant pathogens [15, 16, 17, 18, 19]. For citrus HLB, a few math-
ematical models currently exist which analyze how HLB spreads within individual trees [20], within a
citrus grove [21, 22, 23, 24, 25], or from grove to grove [26]. In [21], the authors reviewed how math-
ematical models have yielded useful insights into controlling disease spread for vector-borne plant
diseases, especially HLB. Note that, for citrus psyllid, different stages have different biological charac-
ters, such as reproductive potential, growth, temperature tolerance, transmission efficiency. Therefore,
it is very necessary to consider the stage structure of psyllid in mathematical model, including eggs,
the 1st and 2nd nymphal instars, the 3rd through 5th nymphal instars and adults. However, the stage
structure of psyllid has not been discussed in the previous HLB models. Motivated by the preceding
discussion, our first purpose of this paper is to formulate and investigate a HLB model, in which the
incubation period of citrus tree and the stage structure of psyllid are taken into consideration.

There is no good source of genetic resistance to HLB in the genus citrus, and the disease cannot
be cured once the trees are infected [2, 27]. Current programs for HLB have focused on nutrient
solution injection to reduce the infection of the bacteria, removal of infected trees to reduce sources of
the disease and insecticide spraying control of the psyllid vector and planting with HLB-free nursery
stock [2]. The second aim of this paper is to achieve awareness about the most desirable technique for
minimizing the transmission of HLB by using the optimal control theory.

In this paper, different from the previous simple classification of psyllid into susceptible and infected
populations, we consider that citrus psyllid in different stages have different abilities and ways to
transmit HLB. Based on the above facts, in the next section, we establish a stage-structured HLB
model, and obtain the basic reproductive number R0 of the model. In Section 3, we obtain the equivalent
threshold condition T0 of the basic reproductive number R0, and prove extinction of the disease when
R0 ≤ 1 while persistence of the disease when R0 > 1. In Section 4, we apply the optimal control
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technique to minimize the population of infected citrus trees, dead trees and total number of vector
population. Different control strategies should be used for the elimination of infection in the population
of citrus trees. In Section 5, we use numerical simulation to demonstrate and support the theoretical
results. In the last section, we give a brief conclusion.

2. A mathematical model and the basic reproductive number R0

2.1. Model formulation

In this subsection, Citrus HLB model where transmission is via vector psyllids is formulated. The
notation used in the mathematical model includes four states for citrus tree population. S denotes
susceptible trees (individuals who can be infected by disease) and R represents dead trees. Due to the
latency delay we split the infected trees into a latent stage, E (individuals who infected and asymp-
tomatic but no infectious) and an infectious stage, I (individuals who have the ability to transmit the
disease to others). Let N(t) be the total numbers of citrus tree population at time t in a grove, that is,
N(t) = S (t)+E(t)+ I(t)+R(t). Based on the fact that 3rd through 5th nymphal instars can transmit HLB,
the citrus psyllid population is divided into six state variables. We let Xe represent eggs (produced by
susceptible adults of psyllids), Xr denote 1st and 2nd nymphal instars (individuals who do not have the
ability to transmit the disease to other susceptible trees), Xi and Yi denote 3rd through 5th susceptible
and infected nymphal instars, respectively. Xm and Ym denote susceptible and infected adults of psyl-
lid, respectively. We assume that the grove is subject to roguing and replanting management strategy.
Moreover, we ignore the natural mortality rate of the citrus tree. The model flow diagram is depicted in
Figure 1. Considering HLB transmission between citrus trees and psyllids, we establish the following
HLB model.

Figure 1. A schematic showing transitions to different categories for trees and psyllids.
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dS
dt

= fρR − α1Yi
S
N
− β1Ym

S
N
,

dE
dt

= α1Yi
S
N

+ β1Ym
S
N
− η1E + (1 − f )ρR,

dI
dt

= η1E − η2I,

dR
dt

= η2I − ρR,

dXe

dt
= rXm − γ1Xe − d1Xe,

dXr

dt
= γ1Xe − γ2Xr − d2Xr,

dXi

dt
= γ2Xr − α2Xi

I
N
− γ3Xi − d3Xi,

dXm

dt
= γ3Xi − β2Xm

I
N
− d4X2

m,

dYi

dt
= α2Xi

I
N
− γ4Yi − d3Yi,

dYm

dt
= γ4Yi + β2Xm

I
N
− d4Ym.

(1)

In model (1), dead trees are rogued at a rate ρ and the corresponding spots are replanted with new trees.
We assume that a proportion f ∈ [0, 1] of the newly planted trees will be healthy and a proportion 1− f
will become infected to a latent stage immediately. We also assume η1, γ1, γ3 and γ4 are the conversion
rates, η2 is the disease-induced mortality rate of tree, r denotes oviposition rates of susceptible adult
psyllid, d1 and d2 represent the natural mortality rates of eggs and 1st through2nd nymphal, respectively,
d3 is the natural mortality rate of 3rd through 5th nymphal, d4 is the natural mortality rate of adult
psyllid. Let α1 be the infection rate from 3rd through 5th infected nymphals to susceptible trees, α2

be the infection rate from infected trees to 3rd through 5th susceptible nymphals, β1 be the infection
rate from infected adult psyllid to susceptible trees, and β2 be the infection rate from infected trees to
susceptible adult psyllids.

Subject to the restriction dN(t)
dt =

dS (t)
dt +

dE(t)
dt +

dI(t)
dt +

dR(t)
dt ≡ 0, without loss of generality, let N(t) = 1,

and now S + E + I + R = 1. Here S , E, I and R are defined separately as susceptibility rate, latent rate,
infection rate and removal rate, respectively. Thus, system (1) can be reduced to the form:
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dS
dt

= fρR − α1YiS − β1YmS ,

dE
dt

= α1YiS + β1YmS − η1E + (1 − f )ρR,

dI
dt

= η1E − η2I,

dR
dt

= η2I − ρR,

dXe

dt
= rXm − γ1Xe − d1Xe,

dXr

dt
= γ1Xe − γ2Xr − d2Xr,

dXi

dt
= γ2Xr − α2XiI − γ3Xi − d3Xi,

dXm

dt
= γ3Xi − β2XmI − d4X2

m,

dYi

dt
= α2XiI − γ4Yi − d3Yi,

dYm

dt
= γ4Yi + β2XmI − d4Ym.

(2)

From biological considerations, we study (2) in the closed set Γ = {(S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym) ∈
R10 | S , E, I,R ≥ 0, S +E + I +R = 1, Xe, Xr, Xi, Xm,Yi,Ym ≥ 0}, which is invariant set under nonnegative
initial conditions. It is easy to proof the boundedness of the solutions of system (2). We omit it.

The system (2) always exists a disease-free equilibrium (DFE) P0 = (S 0, 0, 0, 0, X0
e , X

0
r , X

0
i , X

0
m, 0, 0),

where

S 0 = 1, X0
e =

r
γ1 + d1

X0
m, X0

r =
rγ1

(γ1 + d1)(γ2 + d2)
X0

m,

X0
i =

rγ1γ2

(γ1 + d1)(γ2 + d2)(γ3 + d3)
X0

m, X0
m =

rγ1γ2γ3

(γ1 + d1)(γ2 + d2)(γ3 + d3)d4
.

2.2. The basic reproductive number R0

The basic reproductive number R0 of an infectious disease is a fundamental concept in the study of
disease transmissions. It represents the average number of secondary cases produced, in a completely
susceptible population, by a typical infective individual [28]. If R0 < 1, then on average an infected
individual produces less than one new infected individual over the course of its infectious period, and
the infection cannot grow. Conversely, if R0 > 1, then each infected individual produces, on average,
more than one new infection, and the disease can invade the population [29]. Diekmann et al. [29]
define R0 as the spectral radius of the next generation matrix. That is, we rewrite the vector field of (2)
as

dxi

dt
= Fi(x) − Vi(x), i = 1, 2, ..., 10.
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and Vi(x) = V −
i(x) − V +

i(x), where x = (E, I,R,Yi,Ym, S , Xe, Xr, Xi, Xm),

F (x) =



α1YiS + β1YmS + (1 − f )ρR
0
0

α2XiI
β2XmI

0
0
0
0
0



and V (x) =



η1E
η2I − η1E
ρR − η2I
γ4Yi + d3Yi

d4Ym − γ4Yi

α1YiS + β1YmS − fρR
γ1Xe + d1Xe − rXm

γ2Xr + d2Xr − γ1Xe

α2XiI + γ3Xi + d3Xi − γ2Xr

β2XmI + d4X2
m − γ3Xi



.

F,V are defined as

F =

(
∂Fi

∂x j
(P̂0)

)
1≤i, j≤5

, V =

(
∂Vi

∂x j
(P̂0)

)
1≤i, j≤5

,

where P̂0 =
(
0, 0, 0, 0, 0, S 0, X0

e , X
0
r , X

0
i , X

0
m

)
. Thus

F =



0 0 (1 − f )ρ α1 β1

0 0 0 0 0

0 0 0 0 0

0 α2X0
i 0 0 0

0 β2X0
m 0 0 0


and V =



η1 0 0 0 0

−η1 η2 0 0 0

0 −η2 ρ 0 0

0 0 0 γ4 + d3 0

0 0 0 −γ4 d4


.

Obviously, −V is cooperative. By simple computation, we get

FV−1 =



1 − f 1 − f 1 − f
α1

γ4 + d3
+

β1γ4

(γ4 + d3)d4

β1

d4

0 0 0 0 0

0 0 0 0 0

α2X0
i

η2

α2X0
i

η2
0 0 0

β2X0
m

η2

β2X0
m

η2
0 0 0



.

The eigenvalues of FV−1 are determined by

λ3
[
λ2 − (1 − f )λ −

(
α1

γ4 + d3
+

β1γ4

(γ4 + d3)d4

)
α2X0

i

η2
−
β2X0

m

η2

β1

d4

]
= 0. (3)
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It is easy to obtain that the spectral radius of FV−1 is:

ρ(FV−1) = R0 =
1 − f

2
+

√
(1 − f )2

4
+ R1 + R2 ,

where

R1 =

(
α1

γ4 + d3
+

β1γ4

(γ4 + d3)d4

)
α2

η2
X0

i and R2 =
β1β2

η2d4
X0

m. (4)

3. Main results

3.1. An equivalent threshold quantity T0

In order to give a more reasonable biological interpretation, we give an equivalent threshold quantity
as

T0 = R1 + R2 + 1 − f ,

where R1 and R2 are defined in (4). The biological meaning of quantity T0 can be explained as follows.
Suppose that a single infected tree in stage E is introduced into a completely susceptible grove. The
average number of secondary infections resulting from the psyllid in stage Xi (that is susceptible 3rd

through 5th nymph) contact infected tree is,

R1 =

(
α1

γ4 + d3
+

β1γ4

(γ4 + d3)d4

)
α2

η2
X0

i .

Further, the average number of secondary infections resulting from the psyllid in stage Xm (that is
susceptible adult psyllid) contact infected tree is,

R2 =
β1β2

η2d4
X0

m.

The citrus tree will necessarily be removed in the R stage and will on average produce 1 − f newly
infected E trees. Thus the expected number of secondary infections is exactly T0. In the following, we
will prove the equivalence of T0 and R0 for the local stability of the DFE P0.

Theorem 3.1. (i) R0 < 1 if and only if T0 < 1.
(ii) T0 < 1 if and only if all eigenvalues of the Jacobian matrix of system (2) evaluated at DFE P0 have
negative real parts.
Proof. It follows from (3) that the basic reproductive number R0 is the largest positive root of

ρ(λ) = λ2 − (1 − f )λ −
(

α1

γ4 + d3
+

β1γ4

(γ4 + d3)d4

)
α2X0

i

η2
−
β2X0

m

η2

β1

d4
= λ2 − (1 − f )λ − R1 − R2 = 0.

Clearly, the leading coefficient of ρ(λ) is positive, and thus R0 < 1 if and only if

ρ(1) = f − R1 − R2 > 0.
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Therefore, ρ(1) > 0 is equivalent to T0 < 1 and the first assertion holds.
Next, we want to prove the second assertion. Calculating the Jacobian matrix of system (2) at the

DFE P0:

J(P0) =



η1 0 (1 − f )ρ α1 β1 0 0 0 0 0

η1 η2 0 0 0 0 0 0 0 0

0 η2 ρ 0 0 0 0 0 0 0

0 α2X0
i 0 γ4 + d3 0 0 0 0 0 0

0 β2X0
m 0 γ4 d4 0 0 0 0 0

0 0 fρ −α1 −β1 0 0 0 0 0

0 0 0 0 0 0 γ1 + d1 0 0 r

0 0 0 0 0 0 γ1 γ2 + d2 0 0

0 −α2X0
i 0 0 0 0 0 γ2 γ3 + d3 0

0 −β2X0
m 0 0 0 0 0 0 γ3 2d4X0

m



.

Clearly, J(P0) can be seen as a block matrix of 2 × 2 and each block is a 5 × 5 matrix. The eigenvalues
are determined by the following characteristic equation of J(P0) :

p(λ) = λ(λ + γ1 + d1)(λ + γ2 + d2)(λ + γ3 + d3)(λ + γ4 + d3)(λ + d4)(λ + 2d4X0
m)

×
[
(λ + η1)(λ + η2)(λ + ρ) − η1η2(1 − f )ρ

]
− 2η1rγ1γ2γ3λ(λ + ρ)

×
[
β1γ4α2X0

i − α1α2X0
i (λ + d4) − β1β2X0

m(λ + d4)(λ + γ4 + d3)
]

= 0.

Any root λ of p(λ) with Re(λ) ≥ 0 is also a root of q(λ) defined by

q(λ) =
p(λ)

λ(λ + η1)(λ+η2)(λ+ρ)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+d4)(λ+2d4X0
m)

= 1−
2η1β1rγ1γ2γ3γ4α2X0

i

(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+d4)(λ+2d4X0
m)

−
2η1α1rγ1γ2γ3α2X0

i

(λ + η1)(λ + η2)(λ + γ1 + d1)(λ + γ2 + d2)(λ + γ3 + d3)(λ + γ4 + d3)(λ + 2d4X0
m)

−
2η1β1rγ1γ2γ3β2X0

m

(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+2d4X0
m)
−

η1η2(1 − f )ρ
(λ+η1)(λ+η2)(λ+ρ)

.

Obviously, q(λ) is monotone increasing in λ when λ > 0. It follows from that, since the leading
coefficient of p(λ) is positive, we know that p(λ) has no positive real roots if and only if q(0) > 0,
which is equivalent to (

α1

γ4+d3
+

β1γ4

(γ4+d3)d4

)
α2

η2
X0

i +
β1β2

η2d4
X0

m+1− f <1,
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that is, T0 < 1. Next, we need to prove all complex eigenvalues of J(P0) have negative real parts.
Suppose the contrary. Then we define G(λ) = 1 − q(λ) and suppose p(λ) = 0 with Re(λ) ≥ 0 and
Im(λ) , 0. Then G(λ) = 1 where

G(λ) =
2η1β1rγ1γ2γ3γ4α2X0

i

(λ+η1)(λ+η2)(λ+γ1 + d1)(λ+γ2+d2)(λ+γ3+d3)(λ+γ4+d3)(λ+d4)(λ+2d4X0
m)

+
2η1α1rγ1γ2γ3α2X0

i

(λ + η1)(λ + η2)(λ + γ1 + d1)(λ + γ2 + d2)(λ + γ3 + d3)(λ + γ4 + d3)(λ + 2d4X0
m)

+
2η1β1rγ1γ2γ3β2X0

m

(λ+η1)(λ+η2)(λ+γ1+d1)(λ+γ2+d2)(λ+γ3+d3)(λ+2d4X0
m)

+
η1η2(1 − f )ρ

(λ+η1)(λ+η2)(λ+ρ)
.

(5)

We claim |G(λ)| < G(Re(λ)). From (5), we have

|G(λ)|

≤
2η1β1rγ1γ2γ3γ4α2X0

i

|λ + η1||λ + η2||λ + γ1 + d1||λ + γ2 + d2||λ + γ3 + d3||λ + γ4 + d3||λ + d4||λ + 2d4X0
m|

+
2η1α1rγ1γ2γ3α2X0

i

|λ + η1||λ + η2||λ + γ1 + d1||λ + γ2 + d2||λ + γ3 + d3||λ + γ4 + d3||λ + 2d4X0
m|

+
2η1β1rγ1γ2γ3β2X0

m

|λ + η1||λ + η2||λ + γ1 + d1||λ + γ2 + d2||λ + γ3 + d3||λ + 2d4X0
m)

+
η1η2(1 − f )ρ

|λ + η1||λ + η2||λ + ρ|

<
2η1β1rγ1γ2γ3γ4α2X0

i

Υ(Re(λ) + γ1+d1)(Re(λ)+γ2+d2)(Re(λ)+γ3+d3)(Re(λ)+γ4+d3)(Re(λ)+d4)(Re(λ)+2d4X0
m)

+
2η1α1rγ1γ2γ3α2X0

i

Υ(Re(λ) + γ1 + d1)(Re(λ) + γ2 + d2)(Re(λ) + γ3 + d3)(Re(λ) + γ4 + d3)(Re(λ) + 2d4X0
m)

+
2η1β1rγ1γ2γ3β2X0

m

Υ(Re(λ) + γ1 + d1)(Re(λ) + γ2 + d2)(Re(λ) + γ3 + d3)(Re(λ) + 2d4X0
m)

+
η1η2(1 − f )ρ
Υ(Re(λ) + ρ)

= G(Re(λ)),

where Υ = (Re(λ) + η1)(Re(λ) + η2), and the second inequality is strict since Im(λ) , 0. Then we
get T0 < 1 ⇔ q(0) > 0 ⇔ G(0) < 1, which implies G(Re(λ)) < 1 since G is decreasing in λ. Thus
|G(λ)| < G(Re(λ)) < 1. This contradicts G(λ) = 1. �

3.2. Extinction of the disease when R0 < 1

Theorem 3.2. If R0 < 1, then the DFE P0 of system (2) is globally attractive.

Proof. Note that R0 < 1 implies that f > 0. Suppose lim supt→∞ E(t) = m > 0. Then for every ε > 0
there exists τ1 > 0, such that

E(t) ≤ m + ε, for all t ≥ τ1. (6)

It follows from the third equation of system (2) and (6) that

dI(t)
dt
≤ η1(m + ε) − η2I2(t),

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5180–5205



5189

for all t ≥ τ1. Then there exists τ2 > τ1 such that

I(t) ≤
η1(m + ε)

η2
+ ε, (7)

for all t ≥ τ2. It follows from the fourth equation of system (2) and (7) that

dR(t)
dt
≤ η2

(
η1(m + ε)

η2
+ ε

)
− ρR(t).

for all t ≥ τ2. Thus there exists τ3 > τ2 such that

R(t) ≤
η2

ρ

(
η1(m + ε)

η2
+ ε

)
+ ε, for all t ≥ τ3. (8)

Further, from system (2), we have

dXe

dt
= rXm − γ1Xe − d1Xe,

dXr

dt
= γ1Xe − γ2Xr − d2Xr,

dXi

dt
≤ γ2Xr − γ3Xi − d3Xi,

dXm

dt
≤ γ3Xi − d4X2

m.

(9)

Considering the auxiliary system of (9):

dX̃e

dt
= rX̃m − γ1X̃e − d1X̃e,

dX̃r

dt
= γ1X̃e − γ2X̃r − d2X̃r,

dX̃i

dt
= γ2X̃r − γ3X̃i − d3X̃i,

dX̃m

dt
= γ3X̃i − d4X̃2

m.

(10)

Clearly, (10) is a quasi-monotone system, and the unique positive equilibrium (X0
e , X

0
r , X

0
i , X

0
m) of sys-

tem (10) is globally asymptotically stable if R0 < 1. By comparison theorem in differential equations,
we obtain that there exists τ4 > τ3 such that

Xe(t) ≤ X0
e + ε, Xr(t) ≤ X0

r + ε, Xi(t) ≤ X0
i + ε, Xm(t) ≤ X0

m + ε, (11)

for all t ≥ τ4. Substituting (7) and (11) into the ninth equation of system (2), we have that

dYi(t)
dt
≤ α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
− (γ4 + d3)Yi(t),
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for all t ≥ τ4. Then there exists τ5 > τ4 such that

Yi(t) ≤
α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
γ4 + d3

+ ε. (12)

for all t ≥ τ5. Substituting (7), (11) and (12) into the last equation of system (2), we get that

dYm(t)
dt

≤ γ4


α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
γ4 + d3

+ ε

 + β2(X0
m + ε)

(
η1(m + ε)

η2
+ ε

)
− d4Ym(t)

for all t ≥ τ5. Thus there exists τ6 > τ5 such that

Ym(t) ≤

γ4


α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
γ4 + d3

+ ε

 + β2(X0
m + ε)

(
η1(m + ε)

η2
+ ε

)

d4
+ ε.

(13)

for all t ≥ τ6. Now, substituting (8), (12) and (13) into the second equation of system (2), we get that
for t ≥ τ6

dE(t)
dt
≤ α1


α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
γ4 + d3

+ ε



+β1



γ4


α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
γ4 + d3

+ ε

 + β2(X0
m + ε)

(
η1(m + ε)

η2
+ ε)

)

d4
+ ε


− η1E(t)

+(1 − f )ρ
(
η2

ρ

(
η1(m + ε)

η2
+ ε

)
+ ε

)
.
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Then there exists τ7 > τ6 such that

E(t) ≤
α1

η1


α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
γ4 + d3

+ ε



+
β1

η1



γ4


α2(X0

i + ε)
(
η1(m + ε)

η2
+ ε

)
γ4 + d3

+ ε

 + β2(X0
m + ε)

(
η1(m + ε)

η2
+ ε)

)

d4
+ ε


+(1 − f )

ρ

η1

(
η2

ρ

(
η1(m + ε)

η2
+ ε

)
+ ε

)
.

(14)

for all t ≥ τ7. Letting ε→ 0, the inequality (14) becomes

E(t) ≤
α1

η1

α2X0
i η1m

η2(γ4 + d3)
+
β1

η1

(
γ4α2X0

i η1m
η2(γ4 + d3)d4

+
β2X0

mη1m
η2d4

)
+ (1 − f )

η2

η1

η1m
η2

=

(
α1α2X0

i

η2(γ4 + d3)
+

β1α2γ4X0
i

η2d4(γ4 + d3)
+
β1β2X0

m

η2d4
+ 1 − f

)
m

= T0m

It follows from Theorem 3.1 that, R0 < 1 implies T0 < 1. Thus lim supt→∞ E(t) < m, a contra-
diction. So m = 0. Following (7), (8), (12)-(14) and the nonnegativity of the solutions, we have
limt→∞ E(t) = limt→∞ I(t) = limt→∞ R(t) = limt→∞ Yi(t) = limt→∞ Ym(t) = 0. By the theory of asymp-
totically autonomous semiflows (see [30]), we have

lim
t→∞

S (t) = S 0, lim
t→∞

Xe(t) = X0
e , lim

t→∞
Xr(t) = X0

r , lim
t→∞

Xi(t) = X0
i , lim

t→∞
Xm(t) = X0

m.

Therefore all nonnegative solutions converge to the DFE P0. �

3.3. Persistence of the disease when R0 > 1

It follows from Theorem 3.1 that DFE is locally asymptotically stable as R0 < 1, while DFE is
unstable as R0 > 1. Theorem 3.2 in subsection 3.2 illustrates the global stable result of DEF for the
case R0 < 1.

Theorem 3.3. If R0 > 1, then the disease is uniformly persistent for system (2). That is, there is a
positive constant ε0 > 0, such that

lim inf
t→∞

E(t) > ε0, lim inf
t→∞

I(t) > ε0, lim inf
t→∞

R(t) > ε0, lim inf
t→∞

Yi(t) > ε0, lim inf
t→∞

Ym(t) > ε0. (15)
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Proof. Denote K̃ = {(S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym) ∈ R10
+ }, K0 = {(S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym) ∈

K̃ : S ≥ 0, E > 0, I > 0,R > 0, Xe ≥ 0, Xr ≥ 0, Xi ≥ 0, Xm ≥ 0,Yi > 0,Ym > 0}, and
∂K0 = K̃\K0. Let u(t, t0, x0) be the unique solution of system (2) with the initial value x0 =

(S 0, E0, I0,R0, Xe0, Xr0, Xi0, Xm0,Yi0,Ym0) at time t0.
Define poincaré map P : K̃ → K̃ associated with system (2) as follows:

P(x0) = u(t0 + 1, x0), ∀x0 ∈ K̃.

Set
M∂ = {x0 ∈ ∂K0 | Pm(x0) ∈ ∂K0, ∀m ∈ Z+}.

We claim that

M∂ = {(S , 0, 0, 0, Xe, Xr, Xi, Xm, 0, 0) | S ≥ 0, Xe ≥ 0, Xr ≥ 0, Xi ≥ 0, Xm ≥ 0}.

Obviously, {(S , 0, 0, 0, Xe, Xr, Xi, Xm, 0, 0) | S ≥ 0, Xe ≥ 0, Xr ≥ 0, Xi ≥ 0, Xm ≥ 0} ⊆ M∂. Next, We
want to show

M∂\{(S , 0, 0, 0, Xe, Xr, Xi, Xm, 0, 0) | S ≥ 0, Xe ≥ 0, Xr ≥ 0, Xi ≥ 0, Xm ≥ 0} = ∅. (16)

If (16) does not hold, then there exists a point (S 0, E0, I0,R0, Xe0, Xr0, Xi0, Xm0,Yi0,Ym0) ∈
M∂\{(S , 0, 0, 0, Xe, Xr, Xi, Xm, 0, 0) | S ≥ 0, Xe ≥ 0, Xr ≥ 0, Xi ≥ 0, Xm ≥ 0}. Next, for the five ini-
tial values E0, I0,R0,Yi0, and Ym0, we divided into four cases to discuss.

Case (i) One initial value is equal to zero, and the others are lager than zero. Without loss of
generality, we choose E0 = 0, I0 > 0,R0 > 0,Yi0 > 0 and Ym0 > 0. It is obvious that S (t) > 0,Yi(t) >
0,Ym(t) > 0 and R(t) > 0 for any t > t0. Then from the second equation of system (2), we get
dE(t)

dt |t=t0 = α1Yi(t0)S (t0)+β1Ym(t0)S (t0)+(1− f )ρR(t0) > 0. Thus, (S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym) < ∂K0

for 0 < t − t0 � 1. This is a contradiction. The other subcases can be similarly proved.
Case (ii) Two initial values are equal to zero, and the others are larger than zero. Let E0 = I0 =

0,R0 > 0,Yi0 > 0 and Ym0 > 0. It is obvious that S (t) > 0,Yi(t) > 0,Ym(t) > 0, and R(t) > 0 for any
t > t0. From the second equation of system (2), we get dE(t)

dt |t=t0 = α1Yi(t0)S (t0) + β1Ym(t0)S (t0) + (1 −
f )ρR(t0) > 0. So E(t) > 0 for 0 < t − t0 � 1. This implies that I(t) > 0 for 0 < t − t0 � 1. Therefore,
we have (S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym) < ∂K0 for 0 < t − t0 � 1. This is a contradiction. Similarly,
we can prove the other subcases.

Case (iii) Three initial values are equal to zero, and the others are larger than zero. Set E0 = I0 =

R0 = 0,Yi0 > 0 and Ym0 > 0. Clearly, S (t) > 0,Yi(t) > 0 and Ym(t) > 0, for any t > t0. It follows from
the second equation of system (2) that dE(t)

dt |t=t0 = α1Yi(t0)S (t0) + β1Ym(t0)S (t0) > 0. So E(t) > 0 for
0 < t − t0 � 1. It follows from the third and fourth equations of system (2) that I(t) > 0 and R(t) > 0
for 0 < t − t0 � 1. Therefore, (S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym) < ∂K0 for 0 < t − t0 � 1. This is a
contradiction. Similarly, we can prove the other subcases.

Case (iv) Four initial values are equal to zero, and the other is larger than zero. Set E0 = I0 =

R0 = Yi0 = 0 and Ym0 > 0. It is easy to see that S (t) > 0 and Ym(t) > 0 for all t > t0. From the second
equation of system (2), we can get dE(t)

dt |t=t0 = α1Yi(t0)S (t0) > 0, for 0 < t − t0 � 1. So E(t) > 0 for
0 < t− t0 � 1. It follows from the third, fourth and ninth equations of system (2) that I(t) > 0, R(t) > 0
and Yi(t) > 0 for 0 < t − t0 � 1. Thus, (S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym) < ∂K0 for 0 < t − t0 � 1. This
is a contradiction. Similarly, we can prove the other subcases.
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Thus
M∂ = {(S , 0, 0, 0, Xe, Xr, Xi, Xm, 0, 0) | S ≥ 0, Xe ≥ 0, Xr ≥ 0, Xi ≥ 0, Xm ≥ 0}.

In the following, we proceed by contradiction to prove that there exists ξ > 0 such that

lim sup
m→∞

d ( Pm(x0), P0 ) ≥ ξ, ∀x0 ∈ K0,m ∈ Z+. (17)

where P0 = (S 0, 0, 0, 0, X0
e , X

0
r , X

0
i , X

0
m, 0, 0).

It follows from Theorem 2 in [31] that R0 > 1 ⇐⇒ ρ(FV−1) > 1 ⇐⇒ ρ(exp (F − V)) > 1.
Therefore, if R0 > 1, we can choose ε1 > 0 sufficiently small such that

ρ(exp (F − V − Mε1)) > 1, (18)

where

Mε1 =



0 0 0 α1ε1 β1ε1

0 0 0 0 0

0 0 0 0 0

0 α2ε1 0 0 0

0 β2ε1 0 0 0


.

If (17) does not hold, then for any ζ > 0, we have

lim sup
m→∞

d ( Pm(x0), P0 ) < ζ, for some x0 ∈ K0.

Without loss of generality, suppose that

d(Pm(x0), P0) < ζ, ∀ζ > 0,∀m ∈ Z+.

By the continuity of the solution with respect to initial values, we have that there exists sufficiently
small ε1 > 0 such that

‖u(t, Pm(x0)) − u(t, P0)‖ ≤ ε1, ∀t ∈ [t0, t0 + 1],∀m ∈ Z+. (19)

For any t ≥ t0, there exists an integer l ∈ Z+ such that t − t0 = l + t̂ , where t̂ ∈ [0, 1). It follows from
(19) that

‖u(t, Pm(x0)) − u(t, P0)‖ = ‖u(t0 + t̂, Pm+l(x0)) − u(t0 + t̂, P0)‖ ≤ ε1.

Therefore, we have

S (t)≥S 0−ε1, Xi(t) ≥ X0
i −ε1, Xm(t)≥X0

m−ε1, for all t ≥ t0. (20)
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From system (2) and inequality (20), we get

dE(t)
dt

≥ α1Yi(S 0 − ε1) + β1Ym(S 0 − ε1) − η1E + (1 − f )ρR,

dI(t)
dt

= η1E − η2I,

dR(t)
dt

= η2I − ρR,

dYi(t)
dt

≥ α2(X0
i − ε1)I − γ4Yi − d3Yi,

dYm(t)
dt

≥ γ4Yi + β2(X0
m − ε1)I − d4Ym.

(21)

Obviously, system (21) is a quasi-monotonic system. Consider the following comparison system:

dẐ(t)
dt

= (F − V − Mε1)Ẑ(t), (22)

where Ẑ(t) = (Ê(t), Î(t), R̂(t), Ŷi(t), Ŷm(t))T and

F − V − Mε1 =



−η1 0 (1 − f )ρ α1(S 0 − ε1) β1(S 0 − ε1)

η1 −η2 0 0 0

0 η2 −ρ 0 0

0 α2(X0
i − ε1) 0 −(γ4 + d3) 0

0 β2(X0
m − ε1) 0 γ4 −d4


By [32], we know that there exists a positive vector v such that Ẑ(t) = v exp(ηt) is a solution of

system (22), where η = ln ρ(exp (F − V − Mε1)). From (18), we can get η > 0 and thus Ẑ(t) → ∞ as
t → ∞, that is, Ê(t) → ∞, Î(t) → ∞, R̂(t) → ∞, Ŷi(t) → ∞ and Ŷm(t) → ∞ as t → ∞. According to
the comparison theorem in differential equations, we can easily obtain that

E(t)→ ∞, I(t)→ ∞, R(t)→ ∞, Yi(t)→ ∞, Ym(t)→ ∞, as t → ∞

This contradicts with the boundedness of the solutions. Thus, we have proved that (17) holds and P is
weakly uniformly persistent with respect to (K0, ∂K0).

Obviously, the poincaré map P has a global attractor P0. P0 is an isolated invariant set in K̃ and
WS (P0)

⋂
K0 = ∅, and it is acyclic in M∂. Every solution in M∂ converges to P0. According to Zhao

[33], we derive that P is uniformly persistent with respect to (K0, ∂K0). This implies that the solution
of system (2) is uniformly persistent with respect to (K0, ∂K0), that is, (15) holds. �

4. Optimal control problem

Optimal control theory has been used to explore optimal control strategies for various infectious
diseases [34, 35, 36]. The purpose of this section is to seek an optimal integrated strategy to prevent

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5180–5205



5195

the spread of citrus HLB. In the following, we begin with the presentation of the optimal control
problem for the transmission dynamics of HLB in order to derive nutrient solution injection, removal
of infected trees and insecticide spraying strategies with minimal implementation cost. We will show
that it is possible to implement control techniques while minimizing the cost of implementation of such
measures.

In the host citrus trees population, the associated force of infections are reduced by factors of (1 −
u1), where u1 measures the precaution effort of nutrient solution injection. The control variable u2

represents the removing of infected trees. The control variable u3 shows the eradication effort of
insecticide spraying. It follows that the reproduction rate of psyllid population (including egg, nymph,
adult stages) is reduced by a factor of (1 − u3). Based on the assumptions and extensions mentioned
above, system (2) with control strategy can be improved as following forms:

dS
dt

= f (ρR + u2I) − α1(1 − u1)YiS − β1(1 − u1)YmS ,

dE
dt

= α1(1 − u1)YiS + β1(1 − u1)YmS − η1(1 − u1)E + (1 − f )(ρR + u2I),

dI
dt

= η1(1 − u1)E − η2I − u2I,

dR
dt

= η2I − ρR,

dXe

dt
= r(1 − u3)Xm − γ1Xe − d1Xe − r0u3Xe,

dXr

dt
= γ1Xe − γ2Xr − d2Xr − r0u3Xr,

dXi

dt
= γ2Xr − α2XiI − γ3Xi − d3Xi − r0u3Xi,

dXm

dt
= γ3Xi − β2XmI − d4X2

m − r0u3Xm,

dYi

dt
= α2XiI − γ4Yi − d3Yi − r0u3Yi,

dYm

dt
= γ4Yi + β2XmI − d4Ym − r0u3Ym,

(23)

subject to nonnegative initial conditions, here r0 is a conversion rate.
For the optimal control problem of (23), we consider the control variables u(t) = (u1, u2, u3) ∈ U

relative to the state variables S , E, I, R, Xe, Xr, Xi, Xm, Yi, Ym where control variables are bounded
and measured with

U =
{
(u1, u2, u3) | ui is Lebsegue measurable, 0 ≤ ui(t) ≤ 1, t ∈ [0,T ], i = 1, 2, 3

}
, (24)

where T represents the control period. Let V be the total number of psyllid population, that is, V =

Xe + Xr + Xi + Xm + Yi + Ym. For the control problem, we now define the objective functional as

J(u1, u2, u3) =

∫ T

0

(
A1I + A2R + A3V +

B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3

)
dt. (25)
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subject to the control system (23). The objective is to minimize the cost functional (25). That is, the
goal is minimizing the number of infected trees, dead trees and psyllid populations and the cost of
implementing the control, by using possible minimal control variables ui(t) (i = 1, 2, 3). We choose
to model the control efforts via a linear combination of quadratic terms, u2

i (t) (i = 1, 2, 3). Further, the
constants A1, A2, A3 and B1, B2, B3 represent a measure of the relative cost of the interventions over the
interval [0,T ]. In order to find an optimal control, u∗1, u∗2, u∗3 such that

J(u∗1, u
∗
2, u

∗
3) = min

U
J(u1, u2, u3). (26)

where U is defined in (24) and subject to control system (23) with nonnegative initial conditions.
Next, we use Pontryagin’s Maximum Principle to solve this optimal control problem.

4.1. Existence of the control problem

Following the idea of [37], we prove firstly the existence of the optimal control problem.

Theorem 4.1. For the objective functional J(u1, u2, u3) =
∫ T

0
(A1I + A2R + A3V +

B1

2
u2

1 +
B2

2
u2

2 +

B3

2
u2

3)dt, associated with model (23) defined in U, then there exists an optimal control u∗ = (u∗1, u
∗
2, u

∗
3),

such that J(u∗1, u
∗
2, u

∗
3) = min

U
J(u1, u2, u3).

Proof. By Theorem III.4.1 from [37], we only need to check the following assumptions:
(H1) The set of controls and corresponding state variables is nonempty.
(H2) The control set U is convex and closed.
(H3) Right hand side of each equation in control problem (23) is continuous, bound above by a

sum of the bounded control and state, and can be written as a linear function of U with coefficients
depending on time and the state.

(H4) There exist constants C1,C2 > 0 and β > 1 such that the integrand of the objective functional
L(y, u, t) is concave and satisfies

L(y, u, t) ≥ C1(|U1|
2 + |U2|

2 + |U3|
2)

β
2 −C2.

Obviously, the state variables and the set of control are bounded and nonempty which confirm
(H1). Note that the solutions are bounded, so the admissible control set is bounded and convex, which
confirms (H2). The system is bilinear in control variables, so it confirms (H3) (since the solutions are
bounded). The hypothesis (H4) can be verified as

A1I + A2R + A3V +
1
2

(B1u2
1 + B2u2

2 + B3u2
3) ≥ C1(|U1|

2 + |U2|
2 + |U3|

2)
β
2 −C2,

where C1,C2 > 0, A1, A2, A3, B1, B2, B3 > 0, B4 > 0 and β > 0. In view of the result given by Lukes
[38], we have that there exists an optimal control strategy (u∗1, u

∗
2, u

∗
3) minimizing J(u1, u2, u3). �

Next we explore the minimal value of J(u1, u2, u3). To accomplish this, we define the Lagrangian L
and Hamiltonian H for the optimal control problem (23) as

L(I,R,V, u1, u2, u3) = A1I + A2R + A3V +
1
2

(
B1u2

1 + B2u2
2 + B1u2

3

)
,
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and

H(X,U, λ) = L(I,R,V, u1, u2, u3) + λ1[ f (ρR + u2I) − α1(1 − u1)YiS − β1(1 − u1)YmS ]
+λ2[α1(1 − u1)YiS + β1(1 − u1)YmS − η1(1 − u1)E + (1 − f )(ρR + u2I)]
+λ3[η1(1 − u1)E − η2I − u2I] + λ4[η2I − ρR] + λ5[r(1 − u3)Xm − γ1Xe − d1Xe − r0u3Xe]
+λ6[γ1Xe − γ2Xr − d2Xr − r0u3Xr]) + λ7[γ2Xr − α2XiI − γ3Xi − d3Xi − r0u3Xi]
+λ8[γ3Xi − β2XmI − d4X2

m − r0u3Xm] + λ9[α2XiI − γ4Yi − d3Yi − r0u3Yi]
+λ10[γ4Yi + β2XmI − d4Ym − r0u3Ym],

(27)

where X = (S , E, I,R, Xe, Xr, Xi, Xm,Yi,Ym), U = (u1, u2, u3) and λ = (λ1, λ2, λ3, ..., λ10).

4.2. Optimal control solution

In this subsection, by using Pontryagin’s Maximum Principle [39], we will obtain the optimal solu-
tion of the control system (23).

Let u∗1, u
∗
2 and u∗3 represent the optimal solution of the control problem (26), then there exists a

nontrivial vector function λ(t) = (λ1(t), λ2(t), λ3(t), ..., λ10(t)) satisfying three equalities:

(i) the state equation

dx
dt

=
∂H(t, u∗1, u

∗
2, u

∗
3, λ(t))

∂λ
,

(ii) the optimality condition

0 =
∂H(t, u∗1, u

∗
2, u

∗
3, λ(t))

∂u
,

(iii) the adjoint equation

dλ
dt

= −
∂H(t, u∗1, u

∗
2, u

∗
3, λ(t))

∂X
.

Now, we apply the necessary conditions to the Hamiltonian H given by (27). Following the results in
[39], we can obtain the following conclusions.

Theorem 4.2. Let ŷ∗ = (Ŝ ∗, Ê∗, Î∗, R̂∗, X̂∗e , X̂
∗
r , X̂

∗
i , X̂

∗
m, Ŷ

∗
i , Ŷ

∗
m) be an optimal solution associated with

the optimal control strategy u∗(t) = (u∗1(t), u∗2(t), u∗3(t)) for the optimal control problem (26), then there
exists adjoint variables λi, (i = 1, 2, ..., 10) satisfying
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dλ1(t)
dt

= (λ1 − λ2)[α1(1 − u1)Yi + β1(1 − u1)Ym]

dλ2(t)
dt

= (λ2 − λ3)η1(1 − u1)

dλ3(t)
dt

= −A1 − f u2λ1 − (1 − f )u2λ2 + (η2 + u2)λ3 − η2λ4 + α2Xiλ7

+ β2Xmλ8 − α2Xiλ9 − β2Xmλ10

dλ4(t)
dt

= −A2 − fρλ1 − (1 − f )ρλ2 + ρλ4

dλ5(t)
dt

= −A3 + (γ1 + d1 + γ0u3)λ5 − γ1λ6

dλ6(t)
dt

= −A3 + (γ2 + d2 + γ0u3)λ6 − γ2λ7

dλ7(t)
dt

= −A3 + (α2I + γ3 + d3 + γ0u3)λ7 − γ3λ8 − α2Iλ9

dλ8(t)
dt

= −A3 − r(1 − u3)λ5 + (β2I + 2d4Xm + γ0u3)λ8 − β2Iλ10

dλ9(t)
dt

= −A3 + (λ1 − λ2)α1(1 − u1)S + (γ4 + d3 + γ0u3)λ9 − γ4λ10

dλ10(t)
dt

= −A3 + (λ1 − λ2)β1(1 − u1)S + (d4 + γ0u3)λ10

with transversality conditions
λi(T ) = 0, i = 1, 2, ..., 10.

Further, the control u∗1, u
∗
2, u

∗
3 are given by

u∗1 = max

min

1,
(λ2 − λ1)(α1Ŷ∗i Ŝ ∗ + β1Ŷ∗mŜ ∗) + (λ3 − λ2)η1Ê∗

B1

 , 0
 ,

u∗2 = max
{

min
{

1,
(λ2 − λ1) f Î∗ + (λ3 − λ2)Î∗

B2

}
, 0

}
,

u∗3 = max

min

1,
rX̂∗mλ5 + γ0X̂∗eλ5 + γ0X̂∗rλ6 + γ0X̂∗i λ7 + γ0X̂∗mλ8 + γ0Ŷ∗i λ9 + γ0Ŷ∗mλ10

B3

 , 0
 .

(28)

Proof. To determine the adjoint equations and the transversality conditions we use the Hamiltonian
(27). The adjoint system results from Pontryagin’s Maximun Principle [39].

dλ1(t)
dt

= −
∂H
∂S

,
dλ2(t)

dt
= −

∂H
∂E

, ...,
dλ10(t)

dt
= −

∂H
∂Ym

,

with λi(T ) = 0 (i = 1, 2, · · · , 10).

To obtain the characterization of the optimal control given by (28), solving the equations
∂H
∂u1

= 0,
∂H
∂u2

= 0,
∂H
∂u3

= 0,

on the interior of the control set and applying the property of the control space U, we can derive (28)
holds. �
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5. Numerical simulations

In this section, we use firstly the model (2) to simulate the data on the number of infected citrus
trees of Yuan Orchard from June, 2015 to December, 2015. Yuan Orchard is located in Ganzhou,
China, which is one of our monitoring sites for citrus HLB. The infected rates of trees I(t) are given in
Table 1. Numerical simulation of I(t) is shown in Figure 2. In order to carry out the numerical simula-
tions, we need to estimate the model parameters. We get these parameter values in three ways: some
parameter values (η1, η2, r, γ1, γ2, γ3, d1, d2, d3, d4, r0) are obtained from the literature; some parameter
values (ρ, f ) are estimated; and other parameter values (α1, α2, β1, β2) are fitted by the MATLAB tool
fminsearch, which is fitted by calculating the minimum sum of square (MS S ) (see [40]):

MS S =

11∑
i=1

(I(datai) − I(i))2.

Table 1. The values of I(t).

Date 06/30 07/30 08/30 09/15 09/30 10/15
I(t) 0.0318 0.053 0.1327 0.1946 0.215 0.2778

Date 10/30 11/15 11/30 12/15 12/30
I(t) 0.354 0.354 0.3717 0.3716 0.407

Figure 2. The little circle curves represent the values of the actual infected rates of trees I(t).
The solid curves are simulated by using the model (2). The values of parameters are given in
Table 2.

By using the parameter values in Table 1, we can obtain α1 = 0.00494 month−1, α2 =

0.00043 month−1, β1 = 0.0097 month−1 and β2 = 0.002258 month−1 by fitting in simulations. All
parameter values of the model are given in Table 2.
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Table 2. Parameter values for the model (2).

Parameter Value Unit Reference Parameter Value Unit Reference
η1 0.1667 month−1 [41] d3 1.612 month−1 [9]

η2 0.002258 month−1 [2] d4 0.788 month−1 [9, 42]

ρ 0.0791 - Estimation f 0.067 month−1 Estimation

r 62 month [9, 42] α1 0.00494 month−1 Fitting

γ1 5.49625 month−1 [9] α2 0.00043 month−1 Fitting

γ2 5.376 month−1 [9] β1 0.0097 month−1 Fitting

γ3, γ4 2.188 month−1 [9] β2 0.002258 month−1 Fitting

d1 2.494 month−1 [9] r0 6 - [43]

d2 4.867 month−1 [9]

Next, we numerically examine the effect of the optimal control strategy on the spread of citrus HLB
in a population of trees and psyllids. In this simulation without control population is labeled with bold
line and the control by a dashed line. The weight constant values in the objective functional are A1 =

800; A2 = 2000; A3 = 2; B1 = 200; B2 = 1; B3 = 50. The control u1, u2 and u3 are all used to optimize
the objective function J. Figures 3 and 4 showed that the control strategy resulted in a decrease in the
number of infected citrus trees I, dead citrus trees R, psyllids at each stage, Xe, Xr, Xi, Xm,Yi and Ym

while an increase is observed in the number of susceptible citrus trees S . In Fig. 5, we can observe
that the optimal control profile for u1, u2 and u3. Note that parameter values used in the numerical
simulations are given in Table 1, and the initial conditions are taken as S (0) = 0.6, E(0) = 0.1, I(0) =

0.2,R(0) = 0.1, Xe(0) = 100, Xr(0) = 60, Xi(0) = 60, Xm(0) = 50,Yi(0) = 30,Ym(0) = 20.

6. Conclusion

In this paper, based on the mechanism and characteristics of citrus HLB transmission, we proposed
a vector-borne plant disease model with stage structure in psyllids and studied the effect of interven-
tion strategy in controlling the spread of HLB. We calculated the basic reproduction ratio R0 for the
epidemic model, and showed that the disease would die out when R0 < 1, and the disease would be
endemic when R0 > 1.

Moreover, by using the optimal control theory, we analyzed the intervention strategy, nutrient solu-
tion injection, removal of infected trees and insecticide spraying, to determine the optimal integrated
strategy. Using the Pontryagin’s Maximum Principle, we investigated the existence of the optimal con-
trol problem. In addition, we minimized the number of infected citrus trees, dead citrus trees and the
total number of psyllid population, by using three control variables. Numerical simulations illustrated
the effectiveness of the proposed control problem.
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Figure 3. The plot represents population of susceptible, exposed, infected and dead citrus
trees both with control and without control.

Figure 4. The plot represents different stages population of psyllid both with control and
without control.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5180–5205



5202

Figure 5. The plot represents the controls u1, u2 and u3.
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