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Abstract: The predation strategy for predators and the avoidance strategy of prey are important topics
in ecology and evolutionary biology. Both prey and predators adjust their behaviours in order to gain
the maximal benefits and to increase their biomass for each. In the present paper, we consider a
modified Leslie-Gower predator-prey model where predators cooperate during hunting and due to fear
of predation risk, prey populations show anti-predator behaviour. We investigate step by step the
impact of hunting cooperation and fear effect on the dynamics of the system. We observe that in
the absence of fear effect, hunting cooperation can induce both supercritical and subcritical Hopf-
bifurcations. It is also observed that fear factor can stabilize the predator-prey system by excluding the
existence of periodic solutions and makes the system more robust compared to hunting cooperation.
Moreover, the system shows two different types of bi-stabilities behaviour: one is between coexisting
equilibrium and limit cycle oscillation, and another is between prey-free equilibrium and coexisting
equilibrium. We also observe generalized Hopf-bifurcation and Bogdanov-Takens bifurcation in two
parameter bifurcation analysis. We perform extensive numerical simulations for supporting evidence
of our analytical findings.

Keywords: Leslie-Gower model; fear effect; cooperation; multiple limit cycles; bifurcation;
bi-stability

1. Biological background and formulation of the model

Dynamical complexities of interacting predator-prey model are extensively studied by several re-
searchers to understand the long-time behaviour of the species. Most of the predator-prey models are
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based upon classical Lotka-Volterra formalism, where the prey consumption rate of predators is the
growth rate of predators with a conversion factor. However, in this paper we confine ourselves with
Leslie-Gower model, whose main feature is logistic type growth function for predators [1]. Leslie [2]
introduced that the environmental carrying capacity (KP) of the predators is proportional to the number
of prey abundance (N) i.e. KP = kN, for some positive constant k, which is the conversion factor of
prey into predators. Also, a positive constant term added with KP to avoid a mathematical singularity
when prey population becomes zero. From a biological point of view, for the case of severe scarcity
of prey, predators can switch over other populations (alternative food), but its growth will be restricted
due to non availability of its favorite food. Also, adding this type of positive constant introduces a
maximum decrease rate, which stands for environment protection.

Thus we consider the following modified Leslie-Gower model within homogeneous environment
with Holling functional response of type-II corresponds to the prey consumption rate of predators:

dN
dT

= N
[
b0 − d0 − a0N −

ρP
1 + hρN

]
,

dP
dT

= P
[
c0 −

P
kN + m0

]
,

(1.1)

where all variables and parameters are positive, and they are defined in Table 1.

Table 1. Interpretation of variables and parameters used in the model (1.1).

Variable/

Parameters
Interpretation

N Prey population density
P Predator population density
T Time
b0 Per capita birth rate of prey
d0 Per capita death rate of prey
a0 Intra-specific competition parameter
ρ Encounter rate of predators with their prey
h Predator handling time of a prey individual
c0 Growth rate of predator
k Conversion factor of prey biomass into predator

biomass
m0 A positive constant related to alternative food

Many authors studied the Leslie-Gower type predator-prey model and its modified version. Aziz-
Alaoui and Okiye [3] showed the global stability of the positive interior equilibrium point in a modified
Leslie-Gower model. Nindjin et al. [4] analyzed the modified Leslie-Gower model with time delay.
Gupta and Chandra [5] studied the modified Leslie-Gower model with Michaelis-Menten type prey
harvesting and show rich complex-dynamical behaviours. Zhu and Wang [6] showed the global attrac-
tive behaviour of positive periodic solutions for the modified Leslie-Gower model, where predator-prey
interaction follows Holling type-II scheme.

Now, we consider two different aspects to describe the predator-prey interactions:
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1. Predators cooperate during hunting and as a result, success of capturing a prey increases with
predator density.

2. Due to fear of predation risk, the birth rate of prey population reduces.

The role of mutual beneficial interactions (e.g. cooperation) among social animals is a rapidly
growing research field in population dynamics and conservation biology. Cooperative hunting is the
most widely distributed form of cooperative behaviour in animals. Cooperative hunting is widespread
among vertebrates (e.g., lions [7], African wild dogs [8], chimpanzees [9], wolves [10]), birds [11],
primates [12] etc.

Different animals adopt different strategies for making a group. For instance, wolves have the
strategies to enclose the prey and catch it, for the acquisition of larger and faster prey [13]. Group
hunting in lionesses generally involves a formation whereby some lionesses circle prey while others
wait for prey to move towards them [7]. For wild chimpanzees, when a large prey is subdued, all the
chimpanzees scream with excitement and trying to reach it [9]. Painted dog forms a rally, rousing one
another and getting each other for group hunting [14]. Bailey et al. [15] discussed different strategies
of cooperative hunting, mutual benefit for living in a social group and how predators form a cooperative
group with active individuals.

In general, animals of same species compete with each other for resources, but because of some
specific mechanism is at work, they help each other for mutual benefit and show cooperative behaviour.
Two main constraints that lead to cooperative behaviour of the individuals are need for assistance in
hunting and killing large prey, and the need for defence against attack by other predators [16, 17].
There are several benefits of group hunting, such as the probability of capturing large prey increases
[18], rate of hunting success increases with the number of adults [8], chasing distance decreases [8],
locate food more quickly with increasing group size [19], helps to prevent the carcass from being
stolen by other predators [20, 21] etc. Packer and Ruttan [22] enlisted 61 species of mammals, birds,
vertebrates and invertebrates, their hunting strategy, which prey or types of prey to predate, single or
multiple preys to predate at a time and percentage of their hunting success, from different sources.

Predators can impact the ecology and evolution of their prey directly by eating them, but also
indirectly by influencing the behaviour and physiology of survivors [23]. This types of behavioural and
physiological changes due to the fear of predation are more powerful and longer-lasting evolutionary
consequence compared to direct predation [23, 24]. For example, birds respond to the sounds of
predators with anti-predator defences and flee from their nests at the first sign of danger [24]. Mule
deer spends less time for foraging due to the predation risk of mountain lions [25]. Creel et al. [26]
observed that reproductive physiology of elk changes due to the predation risk of wolves.

Many experimental studies show that manipulation of fear is strong enough to affects the popula-
tion dynamics of ecological systems. Zanette et al. [27] manipulated fear of song sparrows during the
entire breeding season by eliminating direct predation and observed that perception of predation risk
alone reduces the number of offspring produced per year by 40%. Hua et al. [28] observed that percep-
tion of predation risk negatively affect blue bird’s reproduction by manipulating the vocal cues of their
predators. Suraci et al. [29] experimentally showed that manipulation of fear of large carnivore’s vo-
calization in free living mesocarnivores reduces their foraging, which is beneficial for mesocarnivore’s
prey. This type of anti-predator behaviour although beneficial for increasing the probability of survival
but driving long-term costs on reproduction that may affect population numbers [24]. However, very
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recently, Peers et al. [30] argued that predator cue experiments may not be realistically comparable
to those of the prey’s natural sensory environment, and the understanding of fear effects will continue
to rely on untested assumptions in the wild. How prey population sustains potentially risky activities
such as feeding or mating against anti-predator demands, has been a major issue in modern behavioural
ecology [31, 32, 33]. In the presence of predators, prey change their behaviour due to predation risk.
These behavioural responses to predation risk include reduce foraging time [34], increase vigilance
[35], reduce movement [36], retreat to low-risk areas or refuge [37] and change in group size [38].

In mathematical modelling approach, many authors investigated the impact of hunting cooperation
[39, 40, 41, 42, 43] and the impact of fear [44, 45, 46, 47, 48] in the predator-prey systems separately. In
the context of hunting cooperation, Duarte et al. [39] investigated population dynamics of cooperative
hunting in a McCann-Yodzis model by considering a fraction of predators cooperates during hunting.
Berec [40] studied predators foraging facilitation or hunting cooperation in a Rosenzweig-MacArthur
model and proposed a family of functional responses by considering attack rate and handling time
of predators varies with predator density, in a Holling type-II functional response. Teixeira Alves
and Hilker [41] showed that cooperative hunting in predators enhances the stability scenario of the
coexistence steady state and it produces oscillatory dynamics in a predator-prey model, which is not
possible in the absence of hunting cooperation. Recently, Pal et al. [43] investigated a discrete-time
predator-prey model with hunting cooperation and observed that hunting cooperation has the potential
to modify the well-known period-doubling route to chaos by reverse period-halving bifurcations
and makes the system stable, but very high hunting cooperation can be detrimental for the system
since it ultimately leads to extinction. On the other hand, recently, few researchers have investigated
the impact of fear effect in a predator-prey system with the help of mathematical modeling. In this
context, Wang et al. [44] first proposed a mathematical model by incorporating fear of the predator
on prey, where the cost of fear reduces in the birth rate of prey. Their mathematical analysis suggests
that high levels of fear can stabilize the predator-prey dynamics by excluding the existence of periodic
solution. Wang and Zhou [45] investigated a predator-prey model with maturation delay for prey
under the cost of fear and adaptive avoidance of predators. Their numerical findings showed that
both strong adaptation of adult prey and the large cost of fear destabilize the predator-prey dynamics
but higher population density stabilize the system. Panday et al. [46] studied a three-species food
chain model, by considering the growth rate of prey and middle predator reduced due to the cost
of fear of middle predator and top predator, respectively. Their numerical findings showed that
fear has the potential to stabilize a chaotic system. Pal et al. [48] studied the impact of fear in a
predator-prey model with Beddington-DeAngelis functional response and observed that the model
exhibits multiple Hopf-bifurcations. Sasmal [47] studied ecological and epidemiological models with
strong Allee effect and cost of fear in prey reproduction. Recently, Sha et al. [49] investigated an
eco-epidemiological system with fear effects and observed that fear can produce backward bifurcation
and chaotic oscillations in a simple eco-epidemic model.

In the present paper, we are interested to observe the dynamics of the such system where predators
show cooperative behaviour during hunting and also create fear upon their prey [50, 51, 52]. For
example, wolves cooperate during hunting, and when wolves are present, elk used anti-predator
strategies and avoided areas frequented by the wolves [53]. Elk responds in the presence of wolves by
altering patterns of aggregation, habitat selection, vigilance, foraging, and sensitivity to environmental
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conditions [38, 54, 55, 56]. Lioness shows cooperative behaviours during hunting [7]. Due to the
fear of predation risk, zebras reached areas where the encounter with lionesses less frequent [51].
Thus by both killing and frightening, predators could have a dual impact upon their prey. The above
observations motivate us to study the dynamics of predator-prey system including cooperative hunting
by predators and a reduction of prey birth rate due to fear of predation risk. To the best of our
knowledge, the effect of hunting cooperation and fear in the predator-prey system simultaneously has
not yet been studied, and is the first attempt in this direction. The main focus of our present study is to
explore the following ecological issues:
1. How does cooperative hunting impact (stabilize or destabilize) on the dynamics of a modified
Leslie-Gower system?
2. Can fear effect stabilize the predator-prey system?
3. Can cooperative hunting and fear effect simultaneously promote species persistence and enhance
ecosystem stability?

To incorporate the cooperative behaviour of predators in the system (1.1), we briefly outline Berec’s
approach for cooperative behaviours among predators [40]. Berec discussed cooperative phenomena
in a Holling type-II functional response with two different approaches.
Firstly, when encounter rate of predators (ρ) increases with increasing predator density and handling
time (h) is constant i.e.

ρ(P) =
ρ0

(e + P)w , h(P) = h, e ≥ 0 and w < 0,

then type-II functional response with this ρ and h is called encounter-driven functional response.
Secondly, if the encounter rate of predators ρ is constant and handling time h decreases with increasing
predator density i.e.

ρ(P) = ρ, h(P) = h0(e + P)w, e ≥ 0 and w < 0,

then type-II functional response with this ρ and h is called handling-driven functional response.
In this paper, we confine ourselves with Berec’s encounter-driven functional response. In particular,

we choose w = −1 and so ρ(P) = ρ0(e + P) = µ+ νP, where µ corresponds to ρ0e and ν corresponds to
ρ0. Also for the Leslie-Gower model (1.1), positive constant k which is stated earlier as the conversion
factor of prey into predators, affected with the predator density. Thus we consider k = k0(µ + νP).

In Leslie-Gower or modified Leslie-Gower model, the carrying capacity of the predator population
is variable and grows linearly with prey population density. However, in the present paper, we assume
that the environment carrying capacity of the predator grows with both prey and predators abundances.
In terms of foraging theory, resource supply rates likely increase due to cooperative foraging, such as
reduced search costs and increased encounter rates [57]. So, due to cooperation, predators can consume
more prey, which can increase the carrying capacity for the predator population. Zhang [58] theoreti-
cally demonstrated that cooperation or mutualism can promote the competitive ability of competitors
through increasing their carrying capacities. Hamilton et al. [59] suggested a new mechanism for
the biogeographic expansion of modern humans by a modified density-dependent model with varying
intraspecific competition for finite resources. They showed that cooperative behaviors reduce intraspe-
cific competition and increase population carrying capacity. They also suggested that cooperation and
sociality in modern humans led to increased regional carrying capacities of humans.
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Following the above observations, while formulating the following mathematical model, we use the
formalism of increasing the cooperative behavior of predator increases its carrying capacity. Therefore,
the model (1.1) with the Berec’s encounter-driven functional response becomes:

dN
dT

= N
[
b0 − d0 − a0N −

(µ + νP)P
1 + h(µ + νP)N

]
,

dP
dT

= P
[
c0 −

P
k0(µ + νP)N + m0

]
.

(1.2)

It is to be noted that in the absence of hunting cooperation (ν = 0), the above model (1.2) will be
exactly same as the modified Leslie-Gower model (1.1).

Our second assumption is that birth rate of prey population is reduced due to fear induced by preda-
tors. To incorporate the fear phenomenon, we multiply the reproduction term i.e., birth rate (b0) of prey

population with a decreasing function of the predator population size, φ(τ, P) =
1

(1 + τP)
. Similar fear

function was considered by many authors [44, 46, 47, 60]. The parameter τ(> 0) represents the level
of fear that reduces the growth rate of prey. Expression of φ(τ, P) is appropriate since it satisfies the
following biological assumptions:

1. φ(0, P) = 1 : if there is no anti-predator behaviours of prey, then the birth rate of prey remains
unchanged.

2. φ(τ, 0) = 1 : if the predator population becomes zero, then no reduction in prey reproduction due
to anti-predator behaviours.

3. limτ→∞ φ(τ, P) = 0 : when anti-predator behaviour is very large and predator density P > 0, then
prey reproduction decreases and ultimately becomes zero .

4. limP→∞ φ(τ, P) = 0 : when predator population is very large and strength of fear τ > 0, then prey
reproduction decreases and ultimately becomes zero, due to large anti-predator behaviours.

5. ∂φ(τ,P)
∂τ

< 0 : the reproduction of prey decreases with the increasing of anti-predator behaviours.

6. ∂φ(τ,P)
∂P < 0 : the reproduction of prey decreases with the increasing of predator populations.

Thus the model (1.2) with fear phenomena becomes
dN
dT

= N
[

b0

1 + τP
− d0 − a0N −

(µ + νP)P
1 + h(µ + νP)N

]
,

dP
dT

= P
[
c0 −

P
k0(µ + νP)N + m0

]
.

(1.3)

To reduce the number of parameters, we rescale the variables and parameters and the system (1.3) gets
transformed to 

dx
dt

= x
[

b
1 + βy

− d − x −
(1 + αy)y

p + (1 + αy)x

]
≡ x f (x, y),

dy
dt

= y
[
1 −

qy
r + (1 + αy)x

]
≡ yg(x, y),

(1.4)

This is the model we will analyze in the following. The new variables and parameters are given as
follows: x = a0

c0
N , y = a0

hc2
0
P , t = c0T , b = b0

c0
, d = d0

c0
, α =

νhc2
0

µa0
, β =

hc2
0τ

a0
, p = a0

µhc0
, q = h

µk0
, r = m0a0

µc0k0
.
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2. Mathematical preliminaries

In this section, we present some basic results, such as positivity, boundedness and permanence of
the solutions of system (1.4).

2.1. Positivity and boundedness of the solutions

To prove positivity of the model (1.4), we follow the theorem given in H.R. Thieme’s book [61].
From the standpoint of ecological meaning, we consider the following region R2

+ = {(x, y) : x ≥
0, y ≥ 0}. Now the function F1(x, y) = x f (x, y) and F2(x, y) = yg(x, y) of the system (1.4) are con-
tinuously differentiable and locally Lipschitz in R2

+ = {(x, y) : x ≥ 0, y ≥ 0}. Therefore, Theorem
A.4, page 423 in H. R. Thieme’s book [61] implies that the solutions of the initial value problem with
non-negative initial conditions exist on the interval [0, S ) and unique, where S is a sufficiently large
number.

In theoretical ecology, boundedness of the system (1.4) implies that the system is well behaved.
Boundedness of the solutions entails that none of the interacting species grow abruptly or exponentially
for a long-time interval. The number/abundance of each species is bounded due to limited resource.
To prove the boundedness of the system (1.4), we state the following lemma whose proof is given in
[62].

Lemma 2.1. Assume that ξ, η > 0 with u(0) > 0. Then for the differential inequation du
dt ≤ u(t)(ξ −

ηu(t)),

lim sup
t→∞

u(t) ≤
ξ

η
,

and also for the differential inequation du
dt ≥ u(t)(ξ − ηu(t)),

lim inf
t→∞

u(t) ≥
ξ

η
.

Proposition 2.2. Assume that b > d and q > α(b − d + ε1), where ε1 > 0 is a arbitrary small number.
Then all the solutions (x(t), y(t)) of the system (1.4) with initial conditions x(0) > 0, y(0) > 0 are
bounded.

Proof. From the first equation of the system (1.4)

dx
dt

= x
[

b
1 + βy

− d − x −
(1 + αy)y

p + (1 + αy)x

]
=⇒

dx
dt
≤ x(b − d − x).

Assume that b > d. Now applying the Lemma 2.1, we have

lim sup
t→∞

x(t) ≤ b − d. (2.1)

Thus for arbitrary small ε1 > 0, there exists a positive real number T1 > 0 such that

x(t) ≤ b − d + ε1, ∀ t > T1.
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Also, the second equation of the system (1.4) can be written as

dy
dt

=
y
[
r + (1 + αy)x − qy

]
r + (1 + αy)x

.

Thus, for all t > T1, we have

dy
dt
≤

y
r
[
r + b − d + ε1 − (q − α(b − d + ε1))y

]
.

Assume that q > α(b − d + ε1). Then again applying the Lemma 2.1, we have

lim sup
t→∞

y(t) ≤
r + b − d + ε1

q − α(b − d + ε1)
. (2.2)

Thus, for arbitrary small ε2 > 0, there exist a positive real number T2 > T1 such that

y(t) ≤
r + b − d + ε1

q − α(b − d + ε1)
+ ε2, ∀ t > T2.

Therefore, the solutions of the system (1.4) are bounded. �

2.2. Permanence:

Geometrically, uniform permanence means the existence of a region in the phase plane at a non-zero
distance from the boundary in which population species enter and must lie ultimately that ensures the
long time survival of species in biological sense. Analytically the system (1.4) is said to be permanent
if there exist positive constants m and M such that each positive solution (x(t, x0, y0), y(t, x0, y0)) of the
system (1.4) with initial condition (x0, y0) ∈ int(R2

+) satisfies

min
{
lim inf

t→∞
x(t, x0, y0), lim inf

t→∞
y(t, x0, y0)

}
≥ m,

max
{

lim sup
t→∞

x(t, x0, y0), lim sup
t→∞

y(t, x0, y0)
}
≤ M.

Proposition 2.3. The system (1.4) with initial conditions x(0) > 0, y(0) > 0 is permanent if b
1+βM2

− d−
(1+αM2)M2

p > 0.

Proof. From the prey equation of the system (1.4), we have

dx
dt ≥ x

[
b

1+βM2
− d − x − (1+αM2)M2

p

]
,

≥ x(w0 − x), where M2 is the upper bound of y population and w0 = b
1+βM2

− d − (1+αM2)M2
p .

Assume that w0 > 0. Then by applying the Lemma 2.1, we have

lim inf
t→∞

x(t) ≥ w0.

Also, from the predator equation of system (1.4), we have

dy
dt
≥ y −

qy2

r
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= y
(
1 −

qy
r

)
.

Again, by applying the Lemma 2.1, we get the following result

lim inf
t→∞

y(t) ≥
r
q
.

Choose m = min{w0,
r
q } and from (2.1) and (2.2), choose M = max{b − d, r+b−d+ε1

q−α(b−d+ε1) }. Then the
condition of permanence of the system (1.4) follows. �

3. Equilibria & stability analysis

The equilibria of the system (1.4) occur at the intersection of prey nullclines and predator nullclines
governed by the following equations:

x f (x, y) = 0;

yg(x, y) = 0.

The non-trivial prey nullcline f (x, y) = 0 represents a cubic equation of x and y and non-trivial predator
nullcline g(x, y) = 0 represents a hyperbolic curve of the form(

x −
q
α

) (
y +

q
α

)
= −

( r
α

+
q
α2

)
.

The predator-prey model (1.4) has following trivial and boundary equilibria:

(i) Trivial equilibrium point E0 = (0, 0).

(ii) Prey only equilibrium point E1 = (b − d, 0).

(iii) Predator only equilibrium point E2 = (0, r
q ).

Now, the positive interior equilibrium points of the system (1.4) are the solution of the following system
of equations: 

b
1 + βy

− d − x −
(1 + αy)y

p + (1 + αy)x
= 0,

1 −
qy

r + (1 + αy)x
= 0.

(3.1)

Let (x̄, ȳ) be a positive solution of the system of equations (3.1). Then we have

x̄ =
qȳ − r
1 + αȳ

, (3.2)

and ȳ is a positive root of the equation

σ0y4 + σ1y3 + σ2y2 + σ3y + σ4 = 0, (3.3)

where

σ0 =α2β, σ1 = α2 + 2αβ + βq2 + αβqd,
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σ2 =2α + β + q2 + βpq − 2βqr + (α + β)qd + αβd(p − r) − bqα,

σ3 =1 + (p − r)(q − βr − bα) + d(α + β)(p − r) + q(d − r − b),
σ4 =(p − r)(d − r − b).

Here σ0 and σ1 are positive, so the above equation (3.3) can have atmost three positive roots depending
on the sign of σ2, σ3 and σ4.

Now using the linearized stability analysis, we can obtain the local stability criteria of the above
mentioned equilibrium points. The community matrix at E0 = (0, 0), E1 = (b − d, 0) and E2 = (0, r

q )
are respectively given by

JE0 =

(
b − d 0
0 1

)
, JE1 =

(
d − b (d − b)(bβ + b−d

p+b−d )
0 1

)
and JE2 =

 bq
βr+q − d − r(αr+q)

pq2 0
αr+q

q2 −1

 .
Thus the equilibrium points E0 = (0, 0) and E1 = (b−d, 0) both are unstable. The prey free equilibrium
point E2 = (0, r

q ) is locally asymptotically stable if the cooperation strength α greater than the threshold

value bpq3

r2(βr+q)−
dpq2

r2 −
q
r , or equivalently, the fear strength β greater than the threshold value bpq3

r2(αr+q)+dpq2r−
q
r . Also the community matrix at Ē = (x̄, ȳ) is given by

JĒ =

 −x̄ +
x̄ȳ(1+αȳ)2

(qȳ+p−r)2 −
bβx̄

(1+βȳ)2 −
(qȳ−r)(p+x̄+αx̄ȳ)+pαx̄ȳ

(qȳ+p−r)2

1+αȳ
q

αx̄
q − 1

 . (3.4)

The trace and determinant value of the above community matrix are given by

T (x̄, ȳ) = trace(JĒ) = −1 − x̄ + αx̄
q +

x̄ȳ(1+αȳ)2

(qȳ+p−r)2 ,

D(x̄, ȳ) = det(JĒ) = (αx̄
q − 1)

[
−x̄ +

x̄ȳ(1+αȳ)2

(qȳ+p−r)2

]
+ (1+αȳ

q )
[

bβx̄
(1+βȳ)2 +

(qȳ−r)(p+x̄+αx̄ȳ)+pαx̄ȳ
(qȳ+p−r)2

]
.

Both of T and D can be positive or negative. So the stability of interior equilibrium point depends on
both the trace and determinant value of the community matrix. Therefore, by using Routh-Hurwitz
criterion, the interior equilibrium Ē(x̄, ȳ) is locally asymptotically stable if T (x̄, ȳ) < 0 and D(x̄, ȳ) > 0.

4. Hopf-bifurcation and existence of multiple limit cycles

Nonlinear mathematical models of interacting populations show rich and complex dynamical be-
haviours even when system complexity is low (two or three species). Oscillating behaviour is a most
frequent dynamical behaviours in population dynamics. Oscillating behaviour or the existence of limit
cycle lead to the Hopf-bifurcation of the system. Hopf-bifurcation is defined as the appearance or dis-
appearance of a periodic orbit through a local change in the stability properties of an equilibrium point.
Here we explore the possibility of occurrence of Hopf-bifurcation and the direction of Hopf-bifurcation
around the interior equilibrium point Ẽ(x̃, ỹ) with respect to bifurcating parameter α.

4.1. Hopf-bifurcation

The following theorem gives the necessary and sufficient condition for Hopf-bifurcation of the
system (1.4).
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Theorem 4.1. The necessary and sufficient conditions for the system (1.4) undergoes Hopf-bifurcation
at α = αh around the interior equilibrium point Ẽ are that D(x̃(α), ỹ(α)) > 0 and d

dαT (x̃(α), ỹ(α)) , 0
at α = αh.

Proof. Consider the community matrix (3.4) evaluated at Ẽ. For Hopf-bifurcation, the matrix JẼ must
have a pair of purely imaginary eigenvalues. At a critical value α = αh, T (x̃(α), ỹ(α)) = 0. So the
characteristic equation of the community matrix becomes

λ2 + D(x̃(α), ỹ(α))|α=αh = 0.

The above equation must have a pair of purely imaginary roots λ1,2 = ±iθ0, where θ0 =√
D(x̃(α), ỹ(α))|α=αh , if D(x̃(α), ỹ(α)) > 0 at α = αh.

Now we check the transversality condition which confirms that the eigenvalues crosses the imagi-
nary axis of the complex plane with non-zero speed. For this, let at any neighbouring point α of
αh, the eigenvalues of the community matrix are λ1,2 = χ(α) ± iθ(α), where χ(α) =

T (x̃(α),ỹ(α))
2 and

θ(α) =

√
D(x̃(α), ỹ(α)) − T 2(x̃(α),ỹ(α))

4 . Now,

d
dα
χ(α)

∣∣∣∣
α=αh

=
1
2

[
d

dα
T (x̃(α), ỹ(α))

]
α=αh

.

Thus, the transversality condition satisfied if d
dαT (x̃(α), ỹ(α)) , 0 at α = αh.

Therefore, the system (1.4) undergoes Hopf-bifurcation at α = αh. �

4.2. Direction of Hopf-bifurcation

Here, we discuss the direction and stability properties of the bifurcating periodic solutions originat-
ing from the coexisting equilibrium point Ẽ(x̃, ỹ) via Hopf-bifurcation. To investigate the stability and
direction of Hopf-bifurcation, we calculate the 1st Lyapunov coefficient by using the results given in
[63].
First, we transform the equilibrium point Ẽ(x̃, ỹ) of the system (1.4) into the origin by letting
z1 = x − x̃, z2 = y − ỹ. Then the system (1.4) becomes

dz1

dt
=

b(z1 + x̃)
1 + β(z2 + ỹ)

− d(z1 + x̃) − (z1 + x̃)2 −
(1 + α(z2 + ỹ))(z1 + x̃)(z2 + ỹ)

p + (1 + α(z2 + ỹ))(z1 + x̃)
,

dz2

dt
= (z2 + ỹ) −

q(z2 + ỹ)2

r + (1 + α(z2 + ỹ))(z1 + x̃)
.

Expanding Taylor’s series of the above system at (z1, z2) = (0, 0) up to terms of order 3 produces the
following system: 

ż1 = p10z1 + p01z2 + p20z2
1 + p11z1z2 + p02z2

2 + p30z3
1

+p21z2
1z2 + p12z1z2

2 + p03z3
2 + O(|z|4),

ż2 = q10z1 + q01z2 + q20z2
1 + q11z1z2 + q02z2

2 + q30z3
1

+q21z2
1z2 + q12z1z2

2 + q03z3
2 + O(|z|4),

(4.1)
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where(
p10 p01

q10 q01

)
= JẼ, p20 = −1 +

pỹ(1 + αỹ)2

(p + x̃ + αx̃ỹ)3 ,

p11 = −
bβ

(1 + βỹ)2 −
1 + 2αỹ

p + x̃ + αx̃ỹ
+

x̃(1 + αỹ)(p + x̃ + 3αx̃ỹ + 4pαỹ + 2α2 x̃ỹ2)
(p + x̃ + αx̃ỹ)3 ,

p02 =
bβ2 x̃

(1 + βỹ)3 −
αx̃

p + x̃ + αx̃ỹ
+
αx2(p + x̃ + 2pαỹ + 2αx̃ỹ + α2 x̃ỹ2)

(p + x̃ + αx̃ỹ)3 ,

p30 = −
pỹ(1 + αỹ)3

(p + x̃ + αx̃ỹ)4 , p21 =
(1 + αỹ)(1 + 3αỹ)

(p + x̃ + αx̃ỹ)2 −
x(1 + αỹ)2(1 + 6αỹ)

(p + x̃ + αx̃ỹ)3 +
3αx̃2ỹ(1 + αỹ)
(p + x̃ + αx̃ỹ)4 ,

p12 =
bβ2

(1 + βỹ)3 −
α

p + x̃ + αx̃ỹ
+

αx̃(3 + 5αỹ)
(p + x̃ + αx̃ỹ)2 −

αx̃2(1 + αỹ)(2 + 5αỹ)
(p + x̃ + αx̃ỹ)3 +

α2 x̃2ỹ(1 + αỹ)(x̃ − 2p + αx̃ỹ)
(p + x̃ + αx̃ỹ)4 ,

p03 = −
β3bx̃

(1 + βỹ)4 +
α2 x̃2

(p + x̃ + αx̃ỹ)2 −
α2 x̃3(1 + 2αỹ)
(p + x̃ + αx̃ỹ)3 +

α3 x̃4ỹ(1 + αỹ)
(p + x̃ + αx̃ỹ)4 ,

q20 = −
qỹ2(1 + αỹ)2

(r + x̃ + αx̃ỹ)3 , q11 =
qỹ(2 + 3αỹ)

(r + x̃ + αx̃ỹ)2 −
2qαx̃ỹ2(1 + αỹ)
(r + x̃ + αx̃ỹ)3 ,

q02 = −
q

(r + x̃ + αx̃ỹ)
+

qαx̃ỹ(2r + 2x̃ + αx̃ỹ)
(r + x̃ + αx̃ỹ)3 , q30 =

qỹ2(1 + αỹ)3

(r + x̃ + αx̃ỹ)4 ,

q12 =
q(1 + 3αỹ)

(r + x̃ + αx̃ỹ)2 −
2qαx̃ỹ(2 + 3αỹ)
(r + x̃ + αx̃ỹ)3 +

3qα2 x̃2ỹ2(1 + αỹ)
(r + x̃ + αx̃ỹ)4 ,

q21 = −
2qỹ(1 + αỹ)(1 + 2αỹ)

(r + x̃ + αx̃ỹ)3 +
3qαx̃ỹ2(1 + αỹ)2

(r + x̃ + αx̃ỹ)4 , q03 =
qαx̃(r + x̃ − αx̃ỹ)

(r + x̃ + αx̃ỹ)3 +
qα3 x̃3ỹ2

(r + x̃ + αx̃ỹ)4 .

By neglecting the higher order terms of degree 4 and above, the system (4.1) can be written as

Ż = JẼZ + A(Z), (4.2)

where

Z =

(
z1

z2

)
and A =

(
A1

A2

)
=

(
p20z2

1 + p11z1z2 + p02z2
2 + p30z3

1 + p21z2
1z2 + p12z1z2

2 + p03z3
2

q20z2
1 + q11z1z2 + q02z2

2 + q30z3
1 + q21z2

1z2 + q12z1z2
2 + q03z3

2

)
.

The eigenvector ṽ of community matrix JẼ corresponding to the eigenvalue iθ0 at α = αh is ṽ =

(p01, iθ0 − p10)T . Now define

Q = (Re(ṽ),−Im(ṽ)) =

(
p01 0
−p10 −θ0

)
.

Let Z = QU or U = Q−1Z, where U = (u, v)T . Under this transformation, system (4.2) becomes

U̇ = (Q−1JẼQ)U + Q−1A(QU).

This can be written as, (
u̇
v̇

)
=

(
0 −θ0

θ0 0

) (
u
v

)
+

(
S 1(u, v;α = αh)
S 2(u, v;α = αh)

)
, (4.3)
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where S 1 and S 2 are non-linear in u and v given by,

S 1(u, v;α = αh) =
1

p01
A1, S 2(u, v;α = αh) = −

1
θ0 p01

(p10A1 + p01A2),

with

A1 = (p20 p2
01 − p11 p01 p10 + p02 p2

10)u2 + θ0(2p02 p10 − p11 p01)uv + θ2
0 p02v2 + (p12 p01 p2

10
−p03 p3

10 + p30 p3
01 − p21 p2

01 p10)u3 + θ0(2p12 p10 p01 − p21 p2
01 − 3p03 p2

10)u2v
+θ2

0(p12 p01 − 3p03 p10)uv2 − θ3
0 p03v3,

A2 = (q20 p2
01 − q11 p01 p10 + q02 p2

10)u2 + θ0(2q02 p10 − q11 p01)uv + θ2
0q02v2 + (q30 p3

01 + q12 p01 p2
10

−q21 p2
01 p10 − q03 p3

10)u3 + θ0(2q12 p01 p10 − q21 p2
01 − 3q03 p2

10)u2v
+θ2

0(q12 p01 − 3q03 p10)uv2 − θ3
0q03v3.

Now, we calculate the 1st Lyapunov coefficient, based on the normal form (4.3), which determines
the stability and direction of periodic solution. The 1st Lyapunov coefficient is

l1 =
1
16

[
S 1

uuu + S 1
uvv + S 2

uuv + S 2
vvv

]
+

1
16θ0

[
S 1

uv

(
S 1

uu + S 1
vv

)
− S 2

uv

(
S 2

uu + S 2
vv

)
− S 1

uuS 2
uu + S 1

vvS
2
vv
]
,

where all the partial derivatives are calculated at the bifurcation point, i.e., (u, v;α) = (0, 0;αh).
By applying the result given in [63] (see equation (20.2.14), page 385), Hopf-bifurcation is supercritical
if l1 < 0 and it is subcritical if l1 > 0. It is to be noted that when l1 = 0, the system (1.4) exhibits
generalized Hopf-bifurcation (or, Bautin bifurcation) at which the interior equilibrium has a pair of
purely imaginary eigenvalues. The generalized Hopf-bifurcation point separates branches of subcritical
and supercritical Hopf-bifurcations in the parameter plane.

5. Bogdanov-Takens bifurcation

In this section, we discuss Bogdanov-Takens (BT) bifurcation of the system (1.4) in a small neigh-
bourhood of the interior equilibrium point Ẽ(x̃, ỹ). BT bifurcation is a bifurcation of an equilibrium
point in a two-parameter family of autonomous system and occurs for a system when the community
matrix evaluated at the equilibrium has a zero eigenvalue of algebraic multiplicity 2. In such a situation

the community matrix is similar to the Jordan block of the form
(
0 1
0 0

)
. We follow the techniques and

steps of Kuznetsov’s book [64] to derive a normal form by using a series of transformations. Now we
consider the system (1.4) and choose α and p as an arbitrary family of parameters and keeping all the
other parameters are fixed. Without loss of generality, we define x̃(α, p) ≡ x̃ and ỹ(α, p) ≡ ỹ. It is to be
noted that BT bifurcation may occur for other parameters also. Since the all the parameters are positive
and y is non-negative, so the functions F1(x, y) = x f (x, y) and F2(x, y) = yg(x, y) in the system of equa-
tions (1.4) are smooth function of x and y. Assume that at α = αbt and p = pbt, T (x̃, ỹ) = 0,D(x̃, ỹ) = 0.
Then the community matrix in (3.4) evaluated at Ẽ(x̃, ỹ) has a zero eigenvalue of algebraic multiplicity
2. Now we consider the following parametric region

Ω̄ =

{
(b, β, d, α, p, q, r) ∈ R7

+ : T (x̃, ỹ) = 0,D(x̃, ỹ) = 0
}
.
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Mathematically, the surface represented by Ω̄ is called a BT surface. In the following, we reduce
the system (1.4) in the canonical form of a BT bifurcation by employing a series of C∞ change of
coordinates [64] in a small neighborhood of (0, 0). For these, first we use the transformation x = u1 + x̃
and y = u2 + ỹ, so that the equilibrium point of the system (1.4) shifted to the origin. Then the model
system (1.4) can be written as

du1

dt
= (u1 + x̃)

[
b

1 + β(u2 + ỹ)
− d − (u1 + x̃) −

(1 + α(u2 + ỹ))(u2 + ỹ)
p + (1 + α(u2 + ỹ))(u1 + x̃)

]
,

du2

dt
= (u2 + ỹ)

[
1 −

q(u2 + ỹ)
r + (1 + α(u2 + ỹ))(u1 + x̃)

]
.

(5.1)

Taking the small perturbation of the model (5.1) at α = αbt and p = pbt, we get
du1

dt
= (u1 + x̃)

[
b

1 + β(u2 + ỹ)
− d − (u1 + x̃) −

(1 + (αbt + δ1)(u2 + ỹ))(u2 + ỹ)
(pbt + δ2) + (1 + (αbt + δ1)(u2 + ỹ))(u1 + x̃)

]
,

du2

dt
= (u2 + ỹ)

[
1 −

q(u2 + ỹ)
r + (1 + (αbt + δ1)(u2 + ỹ))(u1 + x̃)

]
,

where δ = (δ1, δ2) is a parameter vector vary in a small neighborhood of (0, 0). Expanding the Taylor’s
series of the above system at (u1, u2) = (0, 0) up to the terms of order 2, produces the following system:

du1

dt
= a00(δ) + a10(δ)u1 + a01(δ)u2 + a20(δ)u2

1 + a11(δ)u1u2 + a02(δ)u2
2 + O(|u|3),

du2

dt
= b00(δ) + b10(δ)u1 + b01(δ)u2 + b20(δ)u2

1 + b11(δ)u1u2 + b02(δ)u2
2 + O(|u|3),

(5.2)

where

a00 =
bx̃

1 + βỹ
− dx̃ − x̃2 −

(1 + (αbt + δ1)x̃ỹ)ỹ
(pbt + δ2) + (1 + (αbt + δ1)ỹ)x̃

,

a10 =
b

1 + βy
− d − 2x̃ −

ỹ + (α + δ1)ỹ2

(p + δ2) + x̃ + (α + δ1)x̃ỹ
+

x̃ỹ(1 + (α + δ1)ỹ)
((p + δ2) + x̃ + (α + δ1)x̃ỹ)2 ,

a01 = −
bβx̃

(1 + βy)2 −
x̃ + 2(α + δ1)x̃ỹ

(p + δ2) + x̃ + (α + δ1)x̃ỹ
+

2x̃2ỹ(α + δ1)(1 + (α + δ1)ỹ)
((p + δ2) + x̃ + (α + δ1)x̃ỹ)2 ,

a20 = − 1 +
rỹ(1 + (α + δ1)ỹ)2

((p + δ2) + x̃ + (α + δ1)x̃ỹ)3 ,

a11 = −
bβ

(1 + βỹ)2 −
1 + 2(α + δ1)ỹ

(p + δ2) + x̃ + (α + δ1)x̃ỹ
+

x̃(1 + (α + δ1)ỹ)
((p + δ2) + x̃ + (α + δ1)x̃ỹ)2

+
2x̃2ỹ(α + δ1)(1 + (α + δ1)ỹ)(2(p + δ2) + 1 + (α + δ1)ỹ)

((p + δ2) + x̃ + (α + δ1)x̃ỹ)3 ,

a02 =
bβ2 x̃

(1 + βỹ)3 −
(α + δ1)x̃

(p + δ2) + x̃ + (α + δ1)x̃ỹ
+

(α + δ1)x̃2

((p + δ2) + x̃ + (α + δ1)x̃ỹ)2

+
x̃2ỹ(α + δ1)(2(p + δ2) + x̃ + (α + δ1)x̃ỹ)

((p + δ2) + x̃ + (α + δ1)x̃ỹ)3 ,

b00 =ỹ −
qỹ2

r + (1 + (αbt + δ1)ỹ)x̃
, b10 =

qỹ2(1 + (α + δ1)ỹ)
(r + x̃ + (α + δ1)x̃ỹ)2 , b01 = 1 −

qỹ(2r + 2x̃ + (α + δ1)x̃ỹ)
(r + x̃ + (α + δ1)x̃ỹ)3 ,
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b20 = −
qỹ2(1 + (α + δ1)ỹ)2

(r + x̃ + (α + δ1)x̃ỹ)3 , b11 =
qỹ(2 + 3(α + δ1)ỹ)

(r + x̃ + (α + δ1)x̃ỹ)2 −
2q(α + δ1)x̃ỹ2(1 + (α + δ1)ỹ)

(r + x̃ + (α + δ1)x̃ỹ)3 ,

b02 = −
q

(r + x̃ + (α + δ1)x̃ỹ)
+

q(α + δ1)x̃ỹ(2r + 2x̃ + (α + δ1)x̃ỹ)
(r + x̃ + (α + δ1)x̃ỹ)3 .

Here note that a00(0) = 0 = b00(0) and

a10(0) + b01(0) = 0, a10(0)b01(0) − a01(0)b10(0) = 0.

Now we introduce affine transformation

v1 = u1,

v2 = a10u1 + a01u2,

which reduce the system (5.2) to
dv1

dt
= a00(δ) + v2 + c20(δ)v2

1 + c11(δ)v1v2 + c02(δ)v2
2 + O||v||3),

dv2

dt
= d00(δ) + d10(δ)v1 + d01(δ)v2 + d20(δ)v2

1 + d11(δ)v1v2 + d02(δ)v2
1 + O(||v||3),

(5.3)

where
c20(δ) = a20 −

a11a10
a01

+
a02a2

10
a2

01
, c11(δ) = a11

a01
−

2a10a02
a2

01
,

c02(δ) = a02
a2

10
, d00(δ) = a10a00 + a01b00,

d10(δ) = a01b10 − a10b01, d01(δ) = a10 + b01,

d20(δ) = a10a20 −
a11a2

10
a01

+
a02a3

10
a2

01
+ a01b20 − a10b11 +

b02a2
10

a01
,

d11(δ) = b11 + a11a10
a01
−

2a2
10a02

a2
01
−

2a10b02
a01

, d02(δ) = a10a02
a2

01
+ b02

a01
.

Next, under the following C∞ change of coordinates in a small neighbourhood of (0, 0)

x1 = v1,

x2 = d00(δ) + d10(δ)v1 + d01(δ)v2 + d20(δ)v2
1 + d11(δ)v1v2 + d02(δ)v2

1 + O(||v||3),

the system (5.3) becomes
dx1

dt
= x2,

dx2

dt
= e00(δ) + e10(δ)x1 + e01(δ)x2 + e20(δ)x2

1 + e11(δ)x1x2 + e02(δ)x2
2 + O(||x||3),

(5.4)

where

e00(δ) = d00(δ) − a00(δ)d01(δ) + a2
00(δ)(d02(δ) − c02(δ)d01(δ)) − 2a00(δ)c02(δ)(d00(δ) − a00(δ)d01(δ)) + · · · ,

= d00(δ) − a00(δ)d01(δ) + a2
00(δ)c02(δ)d01(δ) + a2

00(δ)d02(δ) + · · · ,

e10(δ) = d10(δ) + a00(δ)c11(δ)d01(δ) − a00(δ)d11(δ) + c11(δ)(d00(δ) − a00(δ)d01(δ)) − 2a00(δ)c02(δ)d10(δ) + · · · ,

= d10(δ) + c11(δ)d00(δ) − a00(δ)d11(δ) − 2a00(δ)c02(δ)d10(δ) + · · · ,

e01(δ) = d01(δ) − a00(δ)c11(δ) + 2a00(δ)c02(δ)d01(δ) − 2a00(δ)d02(δ) + 2c02(δ)d00(δ) + · · · ,
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e20(δ) = d20(δ) + c11(δ)d10(δ) − d01(δ)c20(δ) + · · · ,

e11(δ) = −c11(δ)d01(δ) + d11(δ) + 2c20(δ) + c11(δ)d01(δ) + 2c02(δ)d10(δ)
= d11(δ) + 2c20(δ) + 2c02(δ)d10(δ) + · · · ,

e02(δ) = d02(δ) − c02(δ)d01(δ) + c11(δ) + 2c02(δ)d01(δ) + · · · .

It is easily observed that e00(0) = 0 = e10(0) = e01(0), since d00(0) = 0 = d10(0) = d01(0) and

e20(0) = d20(0), e11(0) = d11(0) + 2c20(0), e02(0) = d02(0) + c11(0).

We now use the following parameter-dependent shift of coordinates in the x1-direction to annihilate
the x2 term on the RHS of the second equation of (5.4)

x1 = y1 + φ(δ),
x2 = y2.

Using the above transformation system (5.4) reduces to
dy1

dt
= y2,

dy2

dt
= f00(δ) + f10(δ)y1 + f01(δ)y2 + f20(δ)y2

1 + f11(δ)y1y2 + f02(δ)y2
2 + O(||y||3),

(5.5)

where

f00 = e00 + e10φ + e20φ
2 + · · · , f10 = e10 + 2e20φ + · · · , f01 = e01 + e11φ + · · · ,

f20 = e20 + · · · , f11 = e11 + · · · , f02 = e02 + · · · .

Assume that
e11(0) = d11(0) + 2c20(0) , 0. (BT.1)

Using standard arguments based on the Implicit Function Theorem gives local existence of a smooth
function

φ = φ(δ) ≈ −
e01(δ)
e11(0)

annihilating the term proportional to y2 in the 2nd equation of (5.5). Here we note that φ(0) = 0, thus
f00(0) = 0 = f10(0) = f01(0), f11(0) = e11(0) and f20(0) = e20(0). Now we introduce a new time scale,
defined by dt = (1+Λz1)dθ, where Λ = Λ(δ) is a smooth function to be defined later. Also the direction
of time is preserved near the origin for small ||δ||. This transformation reduces the system (5.5) to

dy1

dθ
= y2 + Λy1y2,

dy2

dθ
= f00 + ( f10 + f00Λ)y1 + ( f20 + f10Λ)y2

1 + f11y1y2 + f02y2
2 + O(||y||3).

(5.6)

Now assuming z1 = y1, z2 = y2(1 + Λy1), the system (5.6) becomes
dz1

dθ
= z2,

dz2

dθ
= f00 + ( f10 + 2 f00Λ)z1 + ( f20 + 2 f10Λ + f00Λ

2)z2
1 + f11z1z2 + ( f02 + Λ)z2

2 + O(||z||3).
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To remove the z2
2 term we specify the time reparametrization as Λ(δ) = − f02(δ). Consequently, we have

dz1

dθ
= z2,

dz2

dθ
= f00(δ) + L(δ)z1 + M(δ)z2

1 + N(δ)z1z2 + O(||z||3),
(5.7)

where

L(δ) = f10(δ) − 2 f00(δ) f02(δ), M(δ) = f20(δ) − 2 f10(δ) f02(δ) + f00(δ) f 2
02(δ), N(δ) = f11(δ).

We now introduce a new time scale and denote it by t again as follows t = |
N(δ)
M(δ) |θ. Since N(0) =

f11(0) = e11(0) , 0 due to (BT.1), the time scaling above will be well defined if we further assume

M(0) = f20(0) − 2 f10(0) f02(0) + f00(0) f 2
02(0) = f20(0) = e20(0) = d20(0) , 0. (BT.2)

Simultaneously, we introduce new variables χ =
N2(δ)
M(δ) z1, ψ = sign

(
N(δ)
M(δ)

)
N3(δ)
M2(δ)z2, which takes the system

(5.7) into the following form
dχ
dt

= ψ,

dψ
dt

= β1 + β2χ + χ2 + sχψ + O((χ, ψ)3),
(5.8)

where

β1(δ) =
N4(δ)
M3(δ)

f00(δ), β2(δ) =
N2(δ)
M2(δ)

L and

s = sign
(

N(0)
M(0)

)
= sign

(
d11(0) + 2c20(0)

d20(0)

)
= ±1.

In order to define an invertible smooth change of parameters near the origin, we assume that
rank(∂β

∂δ
)
∣∣∣∣
δ=0

= 2, i.e., at δ = (δ1, δ2) = (0, 0) ∣∣∣∣∣∣∂β1
∂δ1

∂β1
∂δ2

∂β2
∂δ1

∂β2
∂δ2

∣∣∣∣∣∣ , 0. (BT.3)

The system (5.8) is called normal form of Bogdanov-Takens bifurcation. Thus under the assumptions
of non-degeneracy conditions (BT.1), (BT.2) and (BT.3), the system (1.4) can be reduced to the system
(5.8). Also by using Lemma 8.8, page 324 in [64], the system (5.8) is locally topologically equivalent
near the origin to the system 

dχ
dt

= ψ,

dψ
dt

= β1 + β2χ + χ2 ± χψ.
(5.9)

Thus the system (1.4) undergoes BT bifurcation by choosing α and p as a bifurcation parameter when
the parameters δ1 and δ2 vary in a small neighbourhood of the origin.
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6. Numerical simulations

To justify our analytical findings and to depict the effect of cooperation and fear on the dynamics of
the system (1.4), we perform extensive numerical simulations. In the present paper, all the numerical
findings are performed in Matlab by using ode45 method and Matcont package with suitably chosen
small time steps. In order to understand the role of cooperation and fear on the stability and bifurcation
of the coexistence equilibrium point, first we consider the system (1.4) without hunting cooperation
(α = 0) and without fear effect (β = 0). We choose the parameter values as

b = 5, d = 0.7, p = 5, q = 1, r = 1, (6.1)

with initial condition (x0, y0) = (4, 1). First, we observe that the system (1.4) for the above set of
parameter choice shows stable dynamics (Figure 1).
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Figure 1. Figure illustrating the stable behaviour of the system (1.4), around the unique in-
terior equilibrium point Ẽ(x̃, ỹ) = (3.7568, 4.7568), where α = 0, β = 0 and other parameters
are given in (6.1).

6.1. Multiple Hopf-bifurcations and existence of limit cycles

Now, our aim is to investigate the dynamics of the system with hunting cooperation (α , 0) but with-
out fear effect (β = 0). We observe that an increase in the strength of hunting cooperation makes the
system unstable, and both the predator and prey populations show periodic oscillations (Figure 2). The
system (1.4) loses its stability via Hopf-bifurcation at α = 0.512218 (αl). We also observe that further
increase of the strength of α, the system (1.4) undergoes another Hopf-bifurcation at α = 6.510087 (αu)
and becomes stable. However, for very large values of α (α > αe = 20.5) prey population goes to ex-
tinction due to overexploitation by the predator population (Figure 3). Therefore, the system (1.4)
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undergoes multiple Hopf-bifurcations at αl = 0.512218 and αu = 6.510087, and shows periodic os-
cillation when strength of hunting cooperation is in the range αl < α < αu. We notice that there is
a hump-shaped relationship between predator density at the equilibrium and the parameter α (Figure
3). The predator density increases when the strength of hunting cooperation low, but declines when
the strength of hunting cooperation large due to overexploitation of prey by the predators. Such type
of relationship between predator density at the equilibrium (ỹ) and the cooperation strength (α) was
also observed by Teixeira Alves and Hilker [41] in a Lotka-Volterra predator-prey model with hunting
cooperation among predators. The biological implications for predator population increases for small
values of α because of predators better forage on prey, but for large values of α predator population
decreases as decrease in prey density. Also, due to overexploitation of predators, extinction of prey
population occurs at the threshold value α = 20.5 (Figure 4).
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Figure 2. Figure depicts that cooperative behaviour of predators destabilize the predator-
prey dynamics of the system (1.4), where α = 1, β = 0 and other parameters are given
in (6.1). In the right figure, black asterisk denotes the unique interior equilibrium point
Ẽ(x̃, ỹ) = (0.6840, 5.3298).
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Figure 3. The system (1.4) exhibits multiple Hopf-bifurcations at α = 0.512218 (αl) and at
α = 6.510087 (αu) respectively, where β = 0 and other parameters are given in (6.1).
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Figure 4. Figure depicts the extinction of prey population of the system (1.4) at α = 20.5,
where β = 0 and other parameters are given in (6.1).
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6.2. Supercritical Hopf-bifurcation

A supercritical Hopf-bifurcation means that the stable periodic solution overlaps an unstable equi-
librium point. In the Subsection 4.2, we have obtained the sufficient condition for supercritical Hopf-
bifurcation of the system (1.4) theoretically. Now for the set of parameter values (6.1), we calculate
the 1st Lyapunov coefficient corresponding to the threshold value α = αl. The 1st Lyapunov coefficient
is Ll = −0.072533, which confirms that the limit cycle obtained in our system is stable i.e. the trajecto-
ries starting from different initial conditions converge to the same limit cycle. We draw the limit cycle
when α = 1 and observe that the stable interior equilibrium point becomes unstable and a stable limit
cycle is born (Figure 5). Therefore, the system undergoes supercritical Hopf-bifurcation.
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unstable equilibrium

stable limit cycle

Figure 5. Existence of stable limit cycle of the system (1.4), where α = 1, β = 0 and other
parameters are given in (6.1). Blue and magenta trajectories start from two different initial
conditions (4, 1) and (2, 4), respectively. Red asterisk denotes the unstable equilibrium
point (0.6840, 5.3298).

6.3. Subcritical Hopf-bifurcation

A subcritical bifurcation means that the unstable periodic solution overlaps a stable equilibrium
point. Now, we calculate the first Lyapunov coefficient for the system (1.4) at the threshold value α =

αu. The first Lyapunov coefficient is Lu = 0.069969, which confirms that there exists a subcritical Hopf-
bifurcation. We draw the solution trajectories when α = 6.7 and observe that the unstable equilibrium
point becomes stable and there is an unstable limit cycle present around the stable equilibrium point
(0.0635, 1.8501) (Figure 6). We also observe that the system shows a stable limit cycle outside of
the unstable limit cycle. So, the system (1.4) also exhibits subcritical Hopf-bifurcation and hunting
cooperation can change the stability property of the limit cycle. The subcritical Hopf- bifurcation leads
to a significant domain of bi-stability, where stable steady state and time-periodic state coexist. Here,
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the prey and predator population tend to the interior equilibrium point, if the initial populations start
inside the unstable limit cycle and if the initial populations start outside the unstable limit cycle, then
the prey and predator population converge to the stable limit cycle. So, in the absence of fear effect
(β = 0) the system (1.4) shows stable dynamics and limit cycle (stable/unstable) oscillations depending
on the strength of hunting cooperation α.

x
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stable limit cycle

unstable limit cycle

stable equilibrium

Figure 6. Multiple limit cycles (both stable and unstable) of the system (1.4), where α = 6.7,
β = 0 and other parameters are given in (6.1). Green trajectory start from the initial con-
dition (0.2, 2.73). Blue and magenta trajectories start from two different initial conditions
(0.6, 6.6) and (0.6, 4), respectively. Red asterisk denotes the stable equilibrium point
(0.0635, 1.8501).

6.4. Fear induced stabilization

Now, we are going to investigate the impact of fear effect on the dynamics of the system (1.4).
We observe that for a fixed value of α, if we increase the strength of fear parameter (β), then the
system (1.4) remains stable or becomes stable. Here, we choose two different values of α, where in the
absence of fear effect (β = 0) the system (1.4) shows stable focus (α = 0.1) and periodic oscillations
(α = 1). Now, if we incorporate fear phenomenon into the system with fear strength β = 0.1, then stable
system remains stable and oscillating system becomes stable (Figure 7). We also draw two parametric
bifurcation diagram in α−β parametric space and observe that fear factor (β) has a stabilizing effect on
the dynamics of the system (Figure 8). It is also observed that the system (1.4) exhibits GH bifurcation
(generalized Hopf bifurcation) at the threshold value α = 4.7255712(≡ αgh) and β = 0.062264(≡ βgh),
where the 1st Lyapunov coefficient becomes zero. Further, for large values of hunting cooperation (α)
and fear factor (β), the prey population goes to extinction from the system whereas predator population
converges to a fixed value (Figure 9).
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Figure 7. Figure shows the system (1.4) with fear phenomenon is more stable than the system
without fear phenomenon. Red curves denote the solution trajectories of the system without
fear effect and green curves denote the solution trajectories of the system with fear effect.
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Figure 8. Figure depicts the two parametric bifurcation diagram in α − β parametric space.
Blue curve denotes the Hopf-bifurcation curve of the system (1.4), where the switching of
stability occurs. Other parameters are same as in (6.1).
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Figure 9. Figure shows region of survival and extinction of prey population of the system
(1.4) in α-β parametric space, where other parameters are same as in (6.1).

6.5. Bi-stability

Previously, we have observed the bi-stability behaviour between coexistence equilibrium and peri-
odic oscillations. Here, we also observe bi-stability behaviour between prey-free equilibrium point and
coexistence equilibrium point. First, we draw the bifurcation diagram of the system (1.4) with respect
to the parameter α (Figure 10), where p = 0.3, β = 0.1 and other parameters are same as in (6.1).
Here, we draw black curve for stable branch and magenta curve for unstable branch of the interior
equilibrium, respectively. We also draw green line for stable branch and red line for unstable branch of
the prey-free equilibrium, respectively. We observe that there exists an interval (0.1536 < α < 0.2212),
where both the interior equilibrium point and the prey-free equilibrium point are stable (Figure 10).
Further, by considering parameters from the bistable region, we draw the basin of attraction of the prey-
free and interior attractors. We observe that for initial conditions in the black region, the trajectories
converge to the interior equilibrium point (1.1371, 2.7662) and for initial conditions in green region the
trajectories converge to the prey-free equilibrium point (0, 1) (Figure 11 (a)). For better visualization,
we also draw phase portrait of the system (1.4) by considering different initial conditions from green
and black regions (Figure 11 (b)).
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Figure 10. Figure shows bifurcation diagram of the system (1.4) with respect to the bifurca-
tion parameter α. Here, p = 0.3, β = 0.1 and other parameters are same as in (6.1). Black
curve and green line denote the stable branches of coexisting equilibrium point and prey-free
equilibrium (PFE) point, respectively.
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Figure 11. Figure depicts the bi-stability behaviour of the system (1.4). Left figure shows
basin of attraction of two different attractors. In the right figure, green trajectories converge
to the prey-free equilibrium point (0, 1) and black trajectories converge to the coexisting
equilibrium point (1.1371, 2.7662). Here, α = 0.2, p = 0.3, β = 0.1 and other parameters are
same as in (6.1).
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6.6. Bogdanov-Takens bifurcation

The Bogdanov-Takens bifurcation (BT bifurcation) is a two-parametric bifurcation of an equilib-
rium point and at the bifurcation point, the community matrix evaluated at the interior equilibrium point
has a zero eigenvalue of algebraic multiplicity two. In the neighbourhood of the bifurcation point, the
system has two equilibrium points (one saddle and other non-saddle), which will collide and disappear
via a saddle-node bifurcation. The non-saddle equilibrium undergoes Hopf-bifurcation, which degen-
erates into an orbit homoclinic to the saddle and disappears via a saddle homoclinic bifurcation. We
draw two parametric bifurcation diagram in α− p parametric space, when β = 0.1 and other parameters
are same as in (6.1). We observe that the system undergoes BT bifurcation at α = 0.8993835(≡ αbt)
and p = 0.4800637(≡ pbt) (Figure 12). It is also observed that when both the eigenvalues are zero
at (αbt, pbt), there exists interior equilibrium point (0.0878, 1.1810), which is a cusp of codimension 2
(Figure 13).
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Figure 12. Figure shows the system (1.4) undergoes Bogdanov-Taken bifurcation in α − p
parametric space, where β = 0.1 and other parameters are given in (6.1).

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5146–5179



5172

x

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

y

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x-nullcline

equilibrium point

y-nullcline

Figure 13. Figure shows that the interior equilibrium of the system (1.4) is a cusp of codi-
mension 2, where both the eigenvalues becomes zero. Here, α = αbt = 0.8993835 and
p = pbt = 0.4800637, β = 0.1 and other parameters are given in (6.1).

6.7. Oscillation to stable

Again, we consider the parameter values as

b = 5, d = 1, p = 0.5, q = 0.25, r = 0.25, (6.2)

so that the system (1.4) without hunting cooperation (α = 0) and without fear effect (β = 0) shows
periodic oscillations (Figure 14). First, we draw the bifurcation diagram of the system (1.4) w.r.t.
cooperation parameter α (with β = 0) and observe that hunting cooperation alone can stabilize the
oscillating system via Hopf-bifurcation (Figure 15). Again, we draw the bifurcation diagram of the
system (1.4) w.r.t. fear parameter β (α = 0) and observe that fear phenomenon alone can also stabilize
the oscillating system via Hopf-bifurcation (Figure 16). It is also observed that fear factor (β) has more
stabilizing effect compare to hunting cooperation (α).
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Figure 14. Figure shows periodic oscillation of the system (1.4) for α = 0, β = 0 and the
other parameters are given in (6.2). Black asterisk denotes the unique interior equilibrium
point Ẽ(x̃, ỹ) = (0.7808, 4.1231).
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Figure 15. Bifurcation diagram shows that hunting cooperation (α) can stabilize the system
(1.4), where β = 0 and other parameters are given in (6.2).
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Figure 16. Bifurcation diagram shows that fear factor (β) can stabilize the system (1.4),
where α = 0 and other parameters are given in (6.2).

7. Discussion

In ecology and evolutionary biology, the mechanism of predator-prey interaction is a central topic.
Both prey and predators use different strategies to maximize their biomass. To increase the success
rate of catching a prey, many predators cooperate during hunting. On the other hand, due to fear of
predation, prey populations show different types of anti-predator behaviours as their survival strategies.
Prey population show anti-predator defences such as changes its habitat zone, forage less, increase
vigilance, adjust their reproductive strategies etc. Such type of anti-predator behaviour, reduces the
birth rate of prey populations.

In the present paper, we have considered a modified Leslie-Gower model with hunting cooperation
and fear. Our main assumptions are: (i) predators can cooperate during hunting which increases their
effectual consumption and therefore increases the carrying capacity of the predator population; (ii) fear
of predation can reduce the birth rate of prey population. We investigated the model step by step by
considering different strengths of hunting cooperation and fear factor. To study the impact of hunting
cooperation and fear in the predator-prey system, we considered two situations where the ecosystem
showed stable dynamics and unstable (limit cycle oscillations) dynamics. Then we gradually increased
the strength of hunting cooperation and the cost of fear and explored the impact of cooperation and
fear in the ecological system. We observed that in the absence of fear if we increase the strength of
hunting cooperation, then the system becomes unstable around the interior equilibrium and undergoes
multiple Hopf-bifurcations, where the first Hopf-bifurcation is supercritical and the second one is a
subcritical. So, the coexisting equilibrium point may lose stability via supercritical Hopf-bifurcation
with an intermediate value of hunting cooperation and regain stability via subcritical Hopf-bifurcation
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if the strength of hunting cooperation is large. We have also observed the existence of multiple limit
cycles and bi-stability phenomena via subcritical Hopf-bifurcation. Here, we found that the solution
trajectories tend to a coexisting equilibrium point or oscillate periodically depending on the initial
population size. We also investigated the impact of hunting cooperation and fear on the dynamics of
the system when the system shows limit cycle oscillations around the interior equilibrium. We observed
that if we increase the strength of hunting cooperation or cost of fear, then the population oscillations
will be replaced by stable focus. Further, we have demonstrated the impact of the fear phenomenon that
can have in the predator-prey interactions, when predators show cooperative behaviour during hunting.
We have observed that fear factor has a stabilizing effect and with fear effect, the stable system remains
stable and the oscillating system becomes stable by excluding the existence of periodic solutions. We
also found that fear factor has more stabilizing effect compared to hunting cooperation and makes the
system more robust. It is interesting to note that with increase in hunting cooperation and fear factor,
the density of both prey and predator populations eventually will decrease. From the two parametric
bifurcation diagram, we observed that for any cooperation strength, if the fear parameter is increased,
then the system becomes stable. However, for low level of fear, if the cooperation level is increased then
the system switches it’s dynamics from stable to limit cycle oscillation and from limit cycle oscillation
to stable focus. It is also to be noted that when the strengths of hunting cooperation and fear factor are
very high, prey population goes to extinction due to overexploitation by the predators.

Cooperative hunting is a form of foraging facilitation, whose special feature is that it generates
strong Allee effect in predators [40, 41] in Lotka-Volterra model. Recently, in another manuscript, we
have modified the Lotka-Volterra model by assuming that cooperation among predators induces fear
in prey population [65]. We have observed strong demographic Allee phenomenon among predators,
backward bifurcation and many complex dynamical behaviors. In the present paper, since we have
considered a modified Leslie-Gower model (logistic-type growth for predators), Allee phenomenon is
not possible in our model, although the predators show cooperative behaviour during hunting. We like
to point out that in Lotka-Volterra model, hunting cooperation among predators enhances the growth
rate of predator whereas in the modified Leslie-Gower model, predator hunting cooperation has a
positive effect on the carrying capacity of predator. Allee phenomenon has ecological significance
on the perspective of the persistence of the species. In Lotka-Volterra model with predator hunting
cooperation Allee phenomenon is common [40, 41, 65] whereas for modified Leslie-Gower model this
is not obvious. Thus from a predator persistence point of view modified Leslie-Gower model is more
robust compared to Lotka-Volterra model. The system with hunting cooperation and fear phenomena
exhibits rich dynamical behaviours including both supercritical and subcritical Hopf-bifurcation,
bi-stability between steady state and limit cycle, bi-stability between prey-free equilibrium point and
coexisting equilibrium point, generalized Hopf-bifurcation, Bogdanov-Takens bifurcation. So, hunting
cooperation and fear effect are important factors and play vital roles in determining the long-term
population dynamics of ecosystems stability.
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