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Abstract: On the basis of recent work by Cardin and Teixeira on ordinary differential equations with
more than two time scales, we devise a coordinate-independent reduction for systems with three time
scales; thus no a priori separation of variables into fast, slow etc. is required. Moreover we consider
arbitrary parameter dependent systems and extend earlier work on Tikhonov-Fenichel parameter values
– i.e. parameter values from which singularly perturbed systems emanate upon small perturbations –
to the three time-scale setting. We apply our results to two standard systems from biochemistry.
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1. Introduction and overview

Ordinary differential equations involving a small parameter appear frequently in mathematics and
in science. Their principal use in chemistry and biochemistry – which is the main topic of the present
paper – is to find certain (attracting) invariant sets and to achieve reduction of dimension. The
mathematical basis is singular perturbation theory, originally due to Tikhonov [1] and Fenichel [2],
for systems with one small parameter ε (or, in other words, for systems with two time scales).

While Tikhonov’s and Fenichel’s theory is concerned with first order approximations in ε, there
exist approaches to include higher order terms in ε, e.g. to improve accuracy in the approximation of
invariant manifolds; see for instance the critical survey in Kaper and Kaper [3]. More recently, Noel
et al. [4], Radulescu et al. [5], Samal et al. [6, 7] developed an algorithmic method to compute
slow-fast scenarios in chemical reaction networks, using tropical geometry. Concerning the existence
(or persistence) of invariant sets obtained by such (a priori formal) calculations one may invoke
hyperbolicity properties; for instance Theorem 4.1 in Chicone [8] is very useful in this respect. A
direct method for chemical reaction networks involving different orders of a single small parameter,
given certain properties of the system, is due to Cappeletti and Wiuf [9].
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A different perspective is the consideration of systems with more than two time scales by
introducing, cum grano salis, several small parameters ε1, ε2, . . . , and to obtain invariant manifolds
and reduction on this basis. (One has the option to set all parameters equal in the end.)

Recently Cardin and Teixeira [10] generalized Fenichel’s fundamental theorems, proving results on
invariant sets and reductions of systems with more than two time scales. Here, the differential equation
systems are assumed to have variables separated into blocks of fast, slow, “very slow” ones, and so on.

The present paper is based, on the one hand, on Cardin and Teixeira [10]. On the other hand, we
extend earlier work [11, 12] that is concerned with coordinate-independent reduction (not requiring
an a priori separation of slow and fast variables), as well as with the basic question of finding – in
arbitrary parameter dependent systems – critical parameter values from which singular perturbation
reductions emanate.

We will focus on the three time-scale setting, essentially to keep notation manageable, and will
only briefly sketch extensions to more than three time scales. Furthermore we will mostly consider
systems that satisfy not only the normal hyperbolicity conditions from [10] but have the stronger feature
of exponential attractivity. One reason for this restriction lies in our interest in chemical reaction
networks. But beyond this practical consideration, the algorithm to compute critical parameter values
for singular perturbation scenarios indeed requires this additional property.

The paper is organized as follows. In Section 2 we review the work by Cardin and Teixeira [10].
Section 3 generalizes the coordinate-independent reduction algorithm from [11] to three-time scale
systems. In Section 4 we start from a general parameter dependent system and extend the work
from [12] on critical parameter values (Tikhonov-Fenichel parameter values) to three time scales
(resp. two “small parameters”), and in Section 5 we discuss two classical examples (cooperativity
with two complexes, competitive inhibition) from biochemistry in detail. Section 6 contains a few
remarks about more than three time scales, and finally, for the reader’s convenience, we prove some
essentially known facts in an Appendix.

2. Separated fast and slow variables

In this section we review and specialize results from Cardin and Teixeira [10] for a parameter
dependent ordinary differential equation system

ẋ1 = dx1
dt = f1(x, ε1, ε2)

ẋ2 = dx2
dt = ε1 f2(x, ε1, ε2)

ẋ3 = dx3
dt = ε1ε2 f3(x, ε1, ε2)

; briefly ẋ = f (x, ε1, ε2). (2.1)

Here x = (x1, x2, x3)tr ∈ Rn with x1 ∈ R
n1 , x2 ∈ R

n2 , and x3 ∈ R
n3 , and f is smooth on an open

neighborhood of U × [0, δ1) × [0, δ2), with U ⊆ Rn open and nonempty, and δ1 > 0, δ2 > 0.
We define

M1 := {x ∈ U; f1(x, 0, 0) = 0} (2.2)

and
M2 := {x ∈ U; f1(x, 0, 0) = f2(x, 0, 0) = 0} , (2.3)

and we will assume throughout that these sets are nonempty. Cardin and Teixeira require some
hyperbolicity conditions, which we state here in slightly stronger versions, for the sake of simplicity:
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• First hyperbolicity condition: For every x ∈ M1, all the eigenvalues of Dx1 f1(x, 0, 0)∗ have
nonzero real parts.
For sufficiently small ε1, ε2 this condition implies local solvability of the implicit equation
f1(x, ε1, ε2) = 0 in the form x1 = g(x2, x3, ε1, ε2), and one may furthermore write

f̃2(x2, x3, ε1, ε2) := f2(g(x2, x3, ε1, ε2), x2, x3, ε1, ε2).

• Second hyperbolicity condition: For every x ∈ M2, all the eigenvalues of Dx2 f̃2(x, 0, 0) have
nonzero real parts.†

By suitable choice of U, δ1 and δ2 we may assume thatM1 andM2 are submanifolds.
Continuing to follow [10] we introduce the auxiliary system

0 = dx1
dτ2

= f1(x, 0, ε2)
ẋ2 = dx2

dτ2
= f2(x, 0, ε2)

ẋ3 = dx3
dτ2

= ε2 f3(x, 0, ε2)
(2.4)

on
M

ε2
2 := {x ∈ U; f1(x, 0, ε2) = 0} ,

and the intermediate reduced system

0 = dx1
dτ2

= f1(x, 0, 0)
ẋ2 = dx2

dτ2
= f2(x, 0, 0)

ẋ3 = dx3
dτ2

= 0
(2.5)

on M1. Thus in both equations (2.4) and (2.5) above the dot denotes differentiation with respect to
τ2 := ε1t. By suitable choice of δ2 we may also assume that everyMε2

2 is a submanifold of Rn.
Finally we define the completely reduced system

0 = dx1
dτ3

= f1(x, 0, 0)
0 = dx2

dτ3
= f2(x, 0, 0)

ẋ3 = dx3
dτ3

= f3(x, 0, 0)
(2.6)

onM2, hence the dot in (2.6) denotes differentiation with respect to τ3 := ε1ε2t. From here on we will
follow [10] by just using dots for differentiations, with the appropriate time scale evident from the
context.

We replace the hyperbolicity conditions from [10] by stronger requirements, since in our
applications we focus on attracting invariant manifolds.

Definition 1. We say that system (2.1) satisfies the hyperbolic attractivity condition (HA) if
Dx1 f1(x, 0, 0) has only eigenvalues with negative real part onM1 and if furthermore Dx2 f̃2(x, 0, 0) has
only eigenvalues with negative real part onM2.

∗For a smooth function g = g(x, y, . . .) we denote the partial derivatives by Dxg, Dyg etc.
†In [10] the second hyperbolicity condition is erroneously written for f2 rather than f̃2. The authors are aware of this and will publish

a corrigendum.
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Our starting point is the following theorem, specialized from Cardin and Teixeira [10], Theorems
A, B and Corollary A. Some of our statements are informal; for rigorous statements and pertinent
definitions we refer to [10].

Theorem 1. Let system (2.1) be given, with (HA) satisfied.

(a) Let N ⊆ M2 be a compact submanifold (with nonempty interior in the relative topology, and
possibly with boundary). Then for all sufficiently small ε1, ε2 there exists a locally invariant
manifold Nε1,ε2 for system (2.1) which is O(ε1 + ε2) close to N , diffeomorphic to N and locally
exponentially attracting. Given the appropriate time scales, solutions of (2.1) on Nε1,ε2 converge
to solutions of (2.6) on N .

(b) Let ε2 be sufficiently small and let L ⊆ Mε2
2 be a compact submanifold (with nonempty interior in

the relative topology, and possibly with boundary). Then for all sufficiently small ε1 there exists
a locally invariant manifold Lε1,ε2 for system (2.1) which is O(ε1 + ε2) close to L, diffeomorphic
to L and locally exponentially attracting. Given the appropriate time scales, solutions of (2.1) on
Lε1,ε2 converge to solutions of (2.5) on L.

Note that the passage from (2.1) to (2.6) may be seen as a singular perturbation reduction for two
time scales. From this perspective, system (2.5) indeed represents an intermediate step. For systems
with two time scales this leads to the question whether intermediates exist.
As given, the part regarding f̃2 in condition (HA) is not ready to use in applications. We provide two
equivalent versions.

Proposition 1. Condition (HA) is equivalent to either of the following conditions.

(i) Dx1 f1(x, 0, 0) has only eigenvalues with negative real parts onM1, and

B1(x) := −Dx1 f2(x, 0, 0)Dx1 f1(x, 0, 0)−1Dx2 f1(x, 0, 0) + Dx2 f2(x, 0, 0)

has only eigenvalues with negative real parts onM2.

(ii) Dx1 f1(x, 0, 0) has only eigenvalues with negative real parts onM1, and for all sufficiently small
ε > 0 the matrix

B2(x, ε) :=
(

Dx1 f1(x, 0, 0) Dx2 f1(x, 0, 0)
εDx1 f2(x, 0, 0) εDx2 f2(x, 0, 0)

)
has only eigenvalues with negative real parts onM2.

Proof. We use the notions introduced with the hyperbolicity condition (H) and Definition 1. From

f1(g(x2, x3, ε1, ε2), x2, x3, ε1, ε2) = 0

one gets by the chain rule

Dx2g(x2, x3) = −Dx1 f1(x, , ε1, ε2)−1Dx2 f1(x, , ε1, ε2)

when f1(g(x2, x3, ε1, ε2), x2, x3, ε1, ε2) = 0, and a further application of the chain rule shows the
equivalence of (HA) and (i). The equivalence of (i) and (ii) follows from Lemma 3 in the Appendix.

�
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Remark 1. (a) One may rewrite systems (2.1) through (2.6) to some extent, with no effect on the
reductions. Using Hadamard’s lemma, one may restate (2.1) as

ẋ1 = f̂1(x, ε2) +ε1 f̂1,1(x, ε1) +ε1ε2 f̂1,2(x, ε1, ε2)
ẋ2 = ε1 f̂2(x, ε1) +ε1ε2 f̂2,2(x, ε1, ε2)
ẋ3 = ε1ε2 f̂3(x, ε1, ε2)

with only the f̂i remaining in the subsequent reductions. Thus the auxiliary system becomes

0 = f̂1(x, ε2)
ẋ2 = f̂2(x, 0)
ẋ3 = ε2 f3(x, 0, ε2)

and there are analogous modifications for the intermediate and the fully reduced system.

(b) The passage from (2.1) to the completely reduced system (2.6) can evidently be obtained in the
following manner: Fix ε1 > 0 and reduce (2.1) with respect to the small parameter ε2 (in time
scale ε2t). Then let ε1 → 0, rescaling time once more to τ3. We will use this observation later on.

3. Coordinate-free reduction

In the present section we generalize the coordinate-independent reduction procedure from [11, 13]
to the three-time scale setting. The first task is to intrinsically characterize those systems which admit
a transformation to “standard form” (2.1). Reversing matters, applying a (local) smooth coordinate
transformation to Eq (2.1) yields a smooth system

ẋ = g(0,0)(x, ε1, ε2) + ε1

(
g(1,0)(x, ε1, ε2) + ε2g(1,1)(x, ε1, ε2)

)
(3.1)

on an open neighborhood of Ũ × [0, δ1) × [0, δ2) ⊆ Rn × R × R (Ũ ⊆ Rn open), evidently satisfying the
following conditions:

(i) For all sufficiently small ε1 ≥ 0, ε2 ≥ 0, the zeros of g(0,0)(x, ε1, ε2) form a submanifold M̃1 ⊆ Ũ,
of codimension n1, 1 ≤ n1 < n. Given any compact submanifold P1 ⊆ M̃1, there exists θ1 > 0
such that at every y ∈ P1 the derivative Dxg(y, ε1, ε2) admits the eigenvalue zero with algebraic
and geometric multiplicity n − n1, and the remaining eigenvalues have real parts ≤ −θ1.

(ii) For all sufficiently small ε1 > 0, ε2 ≥ 0 the zeros of

g(0,0)(x, ε1, ε2) + ε1g(1,0)(x, ε1, ε2)

form a submanifold M̃2 ⊆ Ũ, of codimension n1 +n2, 1 ≤ n2 < n−n1. Moreover, for any compact
submanifold P2 ⊆ M̃2 there exists a θ2 > 0 with the following property: At every y ∈ P2 the
derivative Dxg(0,0)(y, ε1, ε2) + ε1Dxg(1,0)(y, ε1, ε2) admits the eigenvalue zero with algebraic and
geometric multiplicity n − n1 − n2, and the remaining eigenvalues have real parts ≤ −θ2ε1.

By Remark 1 one may assume that system (3.1) is in the special form

ẋ = g(0,0)(x, ε2) + ε1

(
g(1,0)(x, ε1) + ε2g(1,1)(x)

)
+ O(ε2(ε1 + ε2)), (3.2)

adjusting conditions (i) and (ii) accordingly. Conditions (i) and (ii) are certainly necessary for (3.1) or
(3.2) to be a transformed version of (2.1). The first part of the next lemma shows sufficiency.
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Lemma 1. (a) There exists a local diffeomorphism transforming system (3.2) to a system of type (2.1)
with condition (HA) if and only if conditions (i) and (ii) above hold.

(b) Condition (i) for system (3.2) is equivalent to the following: For any y ∈ M̃1 there exist a
neighborhood U1,y, a smooth map P1 : U1,y → R

n×n1 such that P1(y, ε2) has rank n1, and a smooth
map µ1 : U1,y → R

n1 such that Dxµ1(y, ε2) has rank n1, yielding a decomposition

g(0,0)(x, ε2) = P1(x, ε2)µ1(x, ε2),

and moreover there is a θ1 > 0 such that

A1(x, ε2) := Dµ1(x, ε2)P1(x, ε2)

has only eigenvalues with real part ≤ −θ1, for all x ∈ U1,y.

(c) In presence of condition (i), condition (ii) for system (3.2) is equivalent to the following: For
every (sufficiently small) ε1 > 0 and any y ∈ M̃2 there exist a neighborhood U2,y, a smooth
map P2 : U2,y → R

n×n2 such that (P1(y, ε2), ε1P2(y, ε1)) has rank n1 + n2, and a smooth map
µ2 : U2,y → R

n2 such that (Dxµ1(y, ε2),Dxµ2(y, ε2))tr has rank n1 + n2, yielding a decomposition

g(0,0)(x, ε2) + ε1g(1,0)(x, ε1) = P1(x, ε2)µ1(x, ε2) + ε1P2(x, ε1)µ2(x, ε1),

and moreover there is a θ2 > 0 such that

A2(x, ε1, ε2) :=
(
Dµ1(x, ε2)
Dµ2(x, ε1)

) (
P1(x, ε2) ε1P2(x, ε1)

)
has only eigenvalues with real part ≤ −θ2ε1, for all x ∈ U2,y.

Proof. The nontrivial assertion of part (a) follows from the existence of n−n1 independent first integrals
of g(0,0) in a neighborhood of y, which was noted by Fenichel [2], Lemma 5.3 for smooth vector fields,
and shown in [13], Proposition 2.2 for the analytic setting, and likewise from the existence of n−n1−n2

independent first integrals of g(0,0) + ε1g(1,0) in a neighborhood of y. These first integrals determine
slow and “very slow” variables. Parts (b) and (c) are straightforward applications of [11], Theorem 1,
Remark 4 and Remark 2. �

Remark 2. The existence of the decomposition g(0,0) = P1 µ1 in part (b) (as well as the decomposition
in part (c)) is a consequence of the implicit function theorem in the smooth or analytic case. For
polynomial or rational vector fields there exists a decomposition with rational functions as entries of
P1 and µ1, and there is an algorithmic approach to its computation. See [11] for details.

Next we use the decompositions to compute reductions.

Proposition 2. (a) In arbitrary coordinates the reduction corresponding to the passage from system
(2.1) to the auxiliary system may be obtained as follows:
Given ε2 ≥ 0, determine the projection matrix

Q1(x, ε2) := In − P1(x, ε2)A1(x, ε2)−1Dxµ1(x, ε2).

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5062–5091.
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The auxiliary system (2.4) for ε2 > 0 then corresponds to

ẋ = Q1(x, ε2)
(
g(1,0)(x, 0) + ε2g(1,1)(x)

)
on the local invariant manifold defined by µ1(x, ε2) = 0. The equation corresponding to the
intermediate reduced system (2.5) is obtained by setting ε2 = 0.

(b) In arbitrary coordinates the reduction corresponding to the passage from system (2.1) to the
completely reduced system (2.6) may be obtained as follows:
Given ε1 > 0, determine the projection matrix

Q̃2(x, ε1) := In −
(
P1(x, 0), ε1P2(x, 0)

)
A2(x, ε1, 0)−1

(
Dxµ1(x, 0)
Dxµ2(x, 0)

)
.

Then Q̃2(x, ε1) extends smoothly to a matrix valued function Q2(x) at ε1 = 0. The equation
corresponding to the completely reduced system in arbitrary coordinates is given by

ẋ = Q2(x) g(1,1)(x)

on the local invariant manifold defined by µ1(x, 0) = µ2(x, 0) = 0.

Proof. Part (a) is a direct application of [11], Theorem 1. For part (b) this theorem is also applicable,
but there is a technical problem involving Q̃2 as ε1 → 0, since A2(x, 0) is non-invertible. To resolve
this difficulty, recall that Q̃2(x, ε1) is the projection map onto the kernel of

Dxg(0,0)(x, 0) + ε1Dxg(1,0)(x, ε1)

along the image, for x ∈ M̃2 (see [11], Remark 1). With the conditions given in Lemma 1 (c) the image
is equal to the column space of (P1, ε1P2), which in turn equals the column space W1 of (P1, P2). The
latter matrix has full rank at ε1 = 0, and its entries depend smoothly on ε1 and x. Moreover the kernel
is equal to the kernel of (Dxµ1, Dxµ2)tr, and we may assume w.l.o.g. that(

Dxµ1

Dxµ2

)
=

(
M1 M2

)
with invertible M1, whence the kernel is equal to the column space W2 of the matrix(

−M−1
1 M2

I

)
with entries depending smoothly on ε1. Thus there remains to verify that the matrix of the projection
onto W2 along W1 depends smoothly on ε1. For the sake of completeness we give a proof of this fact
in Lemma 4, Appendix. �

We note that the reduction also works, including convergence properties, under the weaker
assumption corresponding to (H) rather than (AH) for A1 and A2 in Lemma 1.

Remark 3. While Proposition 2 provides the reduced equations, one also needs initial values for these,
which may be obtained from an initial value y of system 3.2 with the help of the first integrals noted in
the proof of Lemma 1(a); see [11], Proposition 2:
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• Assuming that y is sufficiently close to M̃1 , the corresponding initial value (up to an error of
order ε1 + ε2) for the auxiliary system and for the intermediate reduced system is the (locally
unique) intersection of M̃1 and the level sets of n−n1 independent first integrals of ẋ = g(0,0)(x, 0)
which contain y.
• Assuming that y is sufficiently close to M̃2 , the corresponding initial value (up to an error of

order ε1 + ε2) for the auxiliary system and for the intermediate reduced system is the (locally
unique) intersection of M̃2 and the level sets of n − n1 − n2 independent common first integrals
of ẋ = g(0,0)(x, 0) and ẋ = g(1,0)(x, 0, 0) which contain y. (A direct application of Proposition 2
in [11] would lead to simultaneous first integrals of ẋ = g(0,0)(x, 0) + ε1g(1,0)(x, ε1, 0) for all ε1.
This is equivalent to the condition stated.)

To illustrate the procedure with an example, we recall the competitive inhibition network with
substrate S , enzyme E, inhibitor I and two complexes C1, C2; see for instance Keener and Sneyd [14].
The reaction scheme is given by

E + S
k1


k−1

C1
k2
⇀ E + P,

E + I
k3


k−3

C2

which leads (with the usual assumptions of mass action kinetics, spatial homogeneity and constant
thermodynamical parameters) to the differential equation system

ṡ = k−1c1 − k1s(e0 − c1 − c2)
ċ1 = k1s(e0 − c1 − c2) − (k−1 + k2)c1

ċ2 = k3(e0 − c1 − c2)(i0 − c2) − k−3c2

(3.3)

for the concentrations. (The original system is five dimensional; the two linear first integrals e + c1 + c2

and i + c2 yield reduction to dimension three.) There is a familiar two time scale reduction for this
system, viz. the quasi-steady state (QSS) reduction for both complexes; see Eqs (1.51–1.52) in Keener
and Sneyd [14]. As was shown in [15], section 3.2 this QSS reduction is (up to irrelevant higher order
terms) identical to the singular perturbation reduction with small parameter e0 = εe∗0, hence Tikhonov
guarantees its validity. (It is not generally true that QSS reductions amount to Tikhonov-Fenichel
reductions. A sufficient condition is stated in [16], Prop. 5, and a list of possible QSS reductions
for competitive inhibition - including a characterization which correspond to singular perturbation
reductions - is given in section 5.2 of that paper.)

Example 1. In system (3.3) set x = (s, c1, c2)tr and assume k2 = ε1ε2k∗2, k3 = ε1k∗3 and k−3 = ε1k∗
−3.

(Colloquially speaking, binding to the inhibitor and degradation from the inhibitor complex are slow,
while degradation from the substrate complex to enzyme and product is very slow. The related two time
scale reduction to a one dimensional equation corresponds to slow formation of enzyme and complex.)
This is of the type (3.2), with

g(0,0)(x) =


k−1c1 − k1s(e0 − c1 − c2)
k1s(e0 − c1 − c2) − k−1c1

0

 ,
Mathematical Biosciences and Engineering Volume 16, Issue 5, 5062–5091.
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g(1,0)(x, ε1) =


0
0

k∗3(e0 − c1 − c2)(i0 − c2) − k∗
−3c2

 ,
g(1,1)(x, ε1, ε2) =


0
−k∗2c1

0

 .
Moreover M̃2 is contained in the common zero set of

µ1 = k−1c1 − k1s(e0 − c1 − c2) and µ2 = k∗3(e0 − c1 − c2)(i0 − c2) − k∗−3c2,

M̃1 is contained in the zero set of µ1, and we have

P1(x, ε2) =


1
−1
0

 , P2(x, ε1) =


0
0
1

 .
We determine the auxiliary system and the intermediate reduced system. With

Dµ1 = (−k1(e0 − c1 − c2, k1s + k−1, k1s)

one has
Dµ1P1 = −k1(e0 − c1 − c2 − (k1s + k−1) =: −ν1

and furthermore

Q1 = I3 + 1
ν1


∗ k1s + k−1 k1s
∗ −(k1s + k−1) −k1s
0 0 0


= 1

ν1


∗ k1s + k−1 k1s
∗ k1(e0 − c1 − c2) −k1s
0 0 ν1

 .
Application to

g(1,0) + ε2g(1,1) = µ2


0
0
1

 − ε2k∗2c1


0
0
1


yields the auxiliary system (in time scale ε1t) on M̃1:

ṡ
ċ1

ċ2

 =
µ2

ν1


k1s
−k1s
ν1

 − ε2
k∗2c1

ν1


k1s + k−1

k1(e0 − c1 − c2)
0

 .
Setting ε2 = 0 one obtains the intermediate reduced system.
When the initial values for system (3.3) are given by (s0, c1,0, c2,0), to obtain the approximate initial
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values (s∗0, c
∗
1,0, c

∗
2,0) on M̃1 one uses (according to Remark 3) the two first integrals s + c1 and c2 of

g(0,0) and the defining equation for M̃1, thus the system

s + c1 = s0 + c1,0

c2 = c2,0

k−1c1 − k1s(e0 − c1 − c2) = 0

which leads to quadratic equations for s and c1.

To find the fully reduced system one first computes

Dµ2 =
(
0, −k∗3(i0 − c2), −k∗3(e0 + i0 − c1 − 2c2) − k∗−3

)
and

A2 =

(
Dµ1

Dµ2

) (
P1, ε1P2

)
=

(
−k1(e0 − c1 − c2) − k1s − k−1 ε1 · k1s

k∗3(i0 − c2) −ε1 · (k∗3(e0 + i0 − c1 − 2c2) + k∗
−3)

)
.

The computation of the projection matrix is straightforward (although a software system is helpful) but
the output is sizeable. We just record the fully reduced system (in time scale ε1ε2t). It is given by

ẋ =
1
ν2
·


ξ1

ξ2

ξ3


with

ν2 =sc1k1k∗3 + sc2k1k∗3 − se0k1k∗3 − c2
1k1k∗3 − 3c1c2k1k∗3 + 2c1e0k1k∗3 + c1i0k1k∗3 − 2c2

2k1k∗3
+ 3c2e0k1k∗3 + c2i0k1k∗3 − e2

0k1k∗3 − e0i0k1k∗3 − sk∗−3k1 + c1k∗−3k1 + c1k−1k∗3 + c2k∗−3k1

+ 2c2k−1k∗3 − e0k∗−3k1 − e0k−1k∗3 − i0k−1k∗3 − k∗−3k−1

and

ξ1 =k∗2(se0k∗−3k1 + c1e0k−1k∗3 − c1i0k−1k∗3 + c2
2k−1k∗3 − c2e0k−1k∗3 − c2i0k−1k∗3

+ e0i0k−1k∗3 − c2k∗−3k−1),

ξ2 =
k1k∗2
k∗3

(c3
1(k∗3)2 − 2c2

1e0(k∗3)2 + 2c2
1i0(k∗3)2 + c1e2

0(k∗3)2 − 2c1e0i0(k∗3)2

+ c1i2
0(k∗3)2 + c3

2(k∗3)2 − c2
2e0(k∗3)2 − 2c2

2i0(k∗3)2 + 2c2e0i0(k∗3)2 + c2i2
0(k∗3)2 − e0i2

0(k∗3)2

− c2
1k∗−3k∗3 + c1e0k∗−3k∗3 + 2c1i0k∗−3k∗3 − 3c2

2k∗−3k∗3 + 2c2e0k∗−3k∗3 + 3c2i0k∗−3k∗3
− 2e0i0k∗−3k∗3 + 2c2(k∗−3)2),

ξ3 = −
k∗
−3k1k∗2

k∗3
(c1i0k∗3 − c2

2k∗3 + c2e0k∗3 + c2i0k∗3 − e0i0k∗3 + c2k∗−3)

restricted to the invariant curve M̃2.
Finally, given initial values (s0, c1,0, c2,0) for system (3.3), approximate initial values for the fully
reduced system may be determined by solving the algebraic equations s + c1 = s0 + c1,0, µ1 = 0 and
µ2 = 0.
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4. Critical parameter values

Typically in applications one starts with a general parameter dependent system, rather than a system
of type (2.1) or (3.1) with pre-assigned “small parameters”. Therefore the first task is to determine
critical parameter values, for which small perturbations lead to singular perturbation scenarios. Thus
we consider Tikhonov-Fenichel parameter values, as defined in [12] for two time scales, and extend
the notion to the three time scale setting.

4.1. Tikhonov-Fenichel parameter values

Tikhonov-Fenichel parameter values (TFPV) were introduced in [12] for polynomial (or rational)
parameter dependent systems

ẋ = h(x, π), x ∈ Rn, π ∈ Π ⊆ Rm. (4.1)

A TFPV π̂ is characterized by the property that small perturbations π = π̂ + ερ + · · · along a smooth
curve in parameter space Π give rise to a singular perturbation reduction for

ẋ = h(x, π̂ + ερ + · · · ) = h(x, π̂) + εDπh(x, π̂)ρ + · · ·

with locally exponentially attracting critical manifold. (The definition extends easily to smooth
systems but the algorithmic approach relies on the stronger assumption.) There exists an intrinsic
characterization of TFPV’s, see [12] Lemmas 1 and 2, for which the characteristic polynomial

χ(τ, x, π) = τn + σn−1(x, π)τn−1 + · · · + σ1(x, π)τ + σ0(x, π) (4.2)

of the Jacobian Dxh(x, π) is relevant. We recall:

Lemma 2. Given 0 < s < n, a parameter value π̂ is a TFPV with locally exponentially attracting
critical manifold Zs (depending on π̂) of dimension s, and x0 ∈ Zs, if and only if the following hold:

• h(x0, π̂) = 0.
• The characteristic polynomial χ(τ, x, π) from (4.2)) satisfies

(i) σ0(x0, π̂) = · · · = σs−1(x0, π̂) = 0;

(ii) all roots of χ(τ, x0, π̂)/τs have negative real parts.

• The system ẋ = h(x, π̂) admits s independent local analytic first integrals at x0.

All the conditions in the lemma can be represented by polynomial equations and inequalities. The
condition on the roots of χ(τ, x0, π̂)/τs is characterized by inequalities: There exist n − s Hurwitz
determinants (see e.g. Gantmacher [17], Ch. V, §6, Thm. 4 ff.) which must attain values > 0.
Moreover, the existence requirement for s independent first integrals leads to a series of polynomial
equations via degree by degree evaluation of Taylor expansions. While there are notable exceptions
for chemical reaction networks, with possible first integrals from stoichiometry, this condition is the
most problematic to verify in general. One may proceed as follows: For every d > 0 there is an
induced action of Dxh(x, π) on the space S 1 + · · · + S d of polynomials in n variables with zero
constant term and of degree ≤ d. Extending condition (i), the characteristic polynomial of this action
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(which coincides with (4.2) for d = 1) must have vanishing coefficients for all sufficiently small
powers of the indeterminate. No further inequalities appear, due to the structure of the eigenvalues for
this action, and thanks to Hilbert’s Basissatz, finitely many of these equations suffice. With increasing
dimension, one has to deal with feasibility problems. In applications the common procedure is step by
step, looking for simplifications at every stage. A full account is given in [12].

For the remainder of this section we assume that Π ⊆ Rm
+ is a semi-algebraic set, and that system

(4.1) admits the positively invariant subset Rn
+. Then, as was shown in [12], the Tikhonov-Fenichel

parameter values for dimension s, 1 ≤ s < n form a semi-algebraic subset Πs ⊆ R
m. We will denote

the Zariski closure of Πs by Ws. Thus the elements of Ws satisfy all defining equations for Πs but not
necessarily the defining inequalities.

4.2. Nested Tikhonov-Fenichel parameter values

Generalizing the approach to TFPV in [12]), and taking into account the special form of (3.1),
it seems reasonable to consider surfaces in parameter space. Thus consider a smooth surface of the
special form

γ(ε1, ε2) = π̂ + ε1 (ρ1(ε1) + ε2ρ2(ε1, ε2))

defined in some nighborhood of (0, 0). Substitute γ(ε1, ε2) for π in (4.1) to get

h (x, γ(ε1, ε2)) = h(x, π̂)︸ ︷︷ ︸
=:g(0,0)

+ h (x, γ(ε1, 0)) − h(x, π̂)︸                      ︷︷                      ︸
=:ε1·g(1,0)

+
(
h(x, γ(ε1, ε2)) − h(x, π̂)

)
−

(
h(x, γ(ε1, 0)) − h(x, π̂)

)︸                                                              ︷︷                                                              ︸
=:ε1ε2g(1,1)

(4.3)

with the g(i, j) smooth by Hadamard’s lemma. In order to obtain a system (3.1) that also satisfies the
conditions (i) and (ii) preceding Lemma 1, the following is necessary: There exist s > 0 and k > 0
such that π̂ ∈ Πs+k, and π̂ + ε1 · ρ1(ε1) ∈ Πs for all sufficiently small ε1 > 0. (Note that ε2 plays no role
in these conditions.) This observation gives rise to:

Definition 2. Given system (4.1) and s, k > 0 with s + k < n, let δ > 0 and let

β : (−δ, δ) −→ Π, ε1 7→ β(ε1)

be a smooth curve such that

(i) β(ε1) ∈ Πs for all ε1 > 0,

(ii) π̂ := β(0) ∈ Πs+k.

Then we call π̂ a Tikhonov-parameter value (for dimension s + k) nested in Πs.

We note some properties of nested TFPV.

Proposition 3. (a) Any TFPV π̂ ∈ Πs+k which is nested in Πs lies in the boundary of Πs relative to its
Zariski closure Ws.

(b) Let β as in Definition 2, and for ε1 > 0 consider the decomposition

h(x, β(ε1)) = P∗(x, ε1)µ∗(x, ε1)
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according to [11], Theorem 1. Then

det Dµ∗(x, 0) P∗(x, 0)) = 0

on the critical manifold.

Proof. Part (a) is a direct consequence of the definition. As for part (b), at ε1 = 0, with π̂ ∈ Πs+k and
x0 ∈ Zs+k (using notation from Lemma 2), the coefficient σs(x0, π̂) of the characteristic polynomial
(4.2) of

Dxh(x0, π̂) = P∗(x0, 0)Dµ∗(x0, 0)

must vanish. This is equivalent to non-invertibility of Dµ∗(x, 0) P∗(x, 0)); see e.g. [11], Remark 4.
�

Remark 4. Proposition 3 opens a starting point for the computation of nested TFPV: Start with system
(4.1) corresponding to “generic” parameter values in Πs, i.e. parameter values in the intersection of
Πs with an irreducible component of the Zariski closure Ws. In order to find nested parameters for
higher dimension one only needs to look at the boundary of Πs, and one can use part (b) in order to
obtain necessary conditions. Practically this may be realized by determining the decomposition P · µ
for generic π ∈ Πs and then looking at zeros of Dµ ·P, with parameters in the boundary. (The boundary
may also contain further parameter values in Πs.)

4.3. Special settings for chemical reaction networks

For chemical reaction networks (CRN) the parameter region is usually given by Π = Rm
+ , thus

π =


π1
...

πm

 ∈ Rm
+ ,

and for many such systems and given s, the irreducible components of Ws are just determined by the
vanishing of certain of the πi; see e.g. [12,16,18]. (The underlying reason for this fact is the subject of
forthcoming work.) Thus we have, for π in a given irreducible component:

(i) Upon relabelling, there is an `, 0 < ` < m such that πi = 0 for all i ∈ {` + 1, · · ·m};

(ii) the remaining parameters are nonnegative.

In other words, the intersection of Πs with the given irreducible component of Ws corresponds to
some subset of R`+, with boundary R`+ \ R`+. This leads to an obvious case-by-case analysis. Note that
boundary points may or may not be contained in Πs, but there is no loss in starting with “generic”
parameter values in the interior R`>0. We look at a particular example.
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Example 2. We again consider competitive inhibition; see Eq (3.3). Here the parameters are of the
form

π =



e0

k1

k−1

k2

i0

k3

k−3


∈ R7

+.

From [12], Proposition 8 (see also Goeke’s dissertation [18], section 9.3) we have the necessary
condition e0k1k2k−3 = 0 for a TFPV in Π1, with each of the four cases (e.g. e0 = 0 and all other
parameter values ≥ 0) yielding a singular perturbation reduction with attracting one dimensional
critical manifold. Hence W1 has four irreducible components. For the cases with some ki = 0, which
amount to a distinction of slow and fast reactions, the two time scale reductions may be obtained
using a computational procedure outlined in Heinrich and Schauer [19]; see also Stiefenhofer [22]. In
order to find nested TFPV’s for dimension 2 we perform a case-by-case investigation. We only
consider one case here; see Section 5 for the remaining ones.
For the case k2 = 0 the system is given by

ṡ = k−1c1 − k1se

ċ1 = k1se − k−1c1

ċ2 = k3ei − k−3c2,

where we have used the abbreviations e = e0 − c1 − c2 and i = i0 − c2; note that e ≥ 0 and i ≥ 0
by design of (3.3). By Remark 4, nested TFPV’s for dimension two and corresponding points in the
critical manifold necesarily satisfy det (Dµ · P) = 0, with

µ =

(
k−1c1 − k1se
k3ei − k−3c2

)
, P =


1 0
−1 0
0 1

 ,
Dµ =

(
−k1e k1s + k−1 k1s

0 −k3i −(k3i + k3e + k−3)

)
.

Proceeding according to Remark 4, we determine the vanishing set of

det
(
−(k1e + k1s + k−1) k1s

k3i −(k3i + k3e + k−3)

)
=k1k3ie + k1k3e2 + k1k−3e + k1k3se + k1k−3s + k−1k3i + k−1k3e + k−1k−3.

Since all the variables and parameters are nonnegative, this sum equals zero if and only if every
summand vanishes. In particular, k−1 · k−3 has to vanish for any nested TFPV. We look at the two
ensuing cases.
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(i) k−1 = 0: Then the remaining conditions are

k1k3ie = k1k3e2 = k1k−3e = k1k3se = k1k−3s = 0.

If k1 = 0 or k3 = k−3 = 0 we obtain a two dimensional variety of stationary points. Checking the
attractivity conditions (HA), one finds that these cases yield nested TFPV. If e = s = 0 holds then
we get e0 − c1 − c2 = 0 = s which corresponds to a one dimensional variety. In case e = k−3 = 0
we get c1 = 0 while c2 and s are arbitrary, thus we have a two dimensional (attracting) variety of
stationary points.

(ii) k−3 = 0: In this case there remains

k1k3ie = k1k3e2 = k1k3se = k−1k3i = k−1k3e = 0.

In view of case (i) we only have to check k3 = 0 or e = i = 0. In both cases we get a variety of
dimension two.

The case k3 = k−3 = 0 leads to system (3.3) with k3 = ε1k∗3, k−3 = ε1k∗
−3 and k2 = ε1ε2k∗2, the reduction

of which was discussed in Example 1.

5. Further examples

In this section we continue the discussion of the competitive inhibitor network, to some extent,
and furthermore present a fairly complete investigation of a cooperative system with two complexes,
following the strategy outlined in Remark 4. The mathematical analysis yields a rather large number
of possible reductions, with parameter conditions that allow an interpretation in a biochemical context.
It seems that most of these reductions have not been discussed before in the literature. Here one
should note that the principal interest in biochemistry (as in the monograph by Keener and Sneyd) lies
in identifying and discussing reaction velocities for given parameter constellations; thus the focus is
different from the one in the present paper. (Noel et al. [4], Radulescu et al. [5], Samal et al. [6, 7]
investigate questions related to those in the present paper.) Missing from a complete analysis are
some cases concerned with boundary points in Π1 ⊆ W1 which themselves belong to Π1, as well as
certain degenerate cases for Π2. Moreover we will not generally record routine calculations to verify
conditions such as (HA), and for ease of notation we will frequently use the term “critical manifold”
for the Zariski closure of this object, without mentioning the inequalities to be satisfied.

5.1. Competitive inhibition (cont.)

We continue to investigate the competitive inhibition network; see Eq (3.3), Examples 1 and 2.
The analysis of TFPV which was started in Example 2 will be finished here. For Π1 there are three
remaining cases, viz. e0 = 0, k1 = 0 and k−3 = 0.

(a) For e0 = 0, the system is given by

ṡ = (k1s + k−1)c1 + k1sc2

ċ1 = −(k1s + k−1 + k2)c1 − k1sc2

ċ2 = −k3ic1 − (k3i + k−3)c2

(5.1)
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We only consider the generic case for Π1, thus all the remaining parameters are > 0. Then the
(only possible) decomposition P · µ for the right hand side is given by

µ =

(
c1

c2

)
, P =


k1s + k−1 k1s

−(k1s + k−1 + k2) −k1s
−k3i −(k3i + k−3)

 .
For nested TFPV, a simple computation yields the necessary condition

0 = det(Dµ · P) = ik−1k3 + ik2k3 + sk−3k1 + k−3k−1 + k−3k2,

with all terms positive; thus every summand must vanish, and in particular

det(Dµ · P) = 0 ⇒ (k−1 + k2)k−3 = 0 ⇒ k−1 = k2 = 0 or k−3 = 0.

In case k−1 = k2 = 0 system (5.1) admits a two dimensional variety of stationary points, with
k1s , 0 only if c1 + c2 = 0. The intersection of this variety with the positive orthant is only one
dimensional, thus we do not obtain a two dimensional critical manifold. The cases with k1s = 0
translate to k1 = εk∗1 for the system with small parameters. (Otherwise the critical manifold would
be given by s = 0, which does not contain the line given by c1 = c2 = 0.) Moreover we have
e0 = ε1ε2e∗0, hence every term k1e0s is of the form ε2

1ε2 · (· · · ), and the completely reduced system
is necessarily trivial. Likewise, the case k−3 = 0 in system (5.1) leads to k1s = 0.
To summarize, for the case e0 = 0, which leads to the familiar QSS reduction in the two time scale
setting, there are no interesting reductions for the three time scale scenario: No parameter value
leads to an intermediate reduction to dimension two with nontrivial complete reduction.

(b) Next we consider the system with k1 = 0, i.e.

ṡ = k−1c1

ċ1 = −(k−1 + k2)c1

ċ2 = k3ei − k−3c2.

Because of Example 2 we may assume that k2 , 0, which yields c1 = 0 for stationary points.
In case k−3 = k3 = 0 we indeed have a two dimensional critical manifold. Turning to small
parameters we have k1 = ε1ε2k∗1, k3 = ε1k∗3 and k−3 = ε1k∗

−3, and (3.3) becomes
ṡ
ċ1

ċ2

 =


k−1c1

−(k−1 + k2)c1

0

 + ε1


0
0

k∗3ei − k∗
−3c2

 + ε1ε2k∗1es


−1
1
0

 (5.2)

We compute the reductions for this case. For the auxiliary system (on the critical variety defined
by c1 = 0) we obtain the decomposition

k−1c1

−(k−1 + k2)c1

0

 =


k−1

−(k−1 + k2)
0

︸          ︷︷          ︸
P1

· c1︸︷︷︸
µ1

,
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and a straightforward computation yields the projection matrix

Q1 =


1 k−1/(k−1 + k2) 0
0 0 0
0 0 1


and the auxiliary system 

ṡ
ċ1

ċ2

 =


0
0

k∗3ei − k−3∗c2

 + ε2
k∗1k2es

k−1 + k2


−1
0
0


on the variety defined by c1 = 0. (This is a QSS reduction for complex C1, according to [16],
Proposition 5.) The intermediate reduced system is obtained setting ε2 = 0.
Turning to the complete reduction, the decomposition of the “fast part” of (5.2) is given by

k−1 0
−(k−1 + k2) 0

0 ε1


(
c1

µ2

)
, with µ2 = k∗3ei − k∗−3c2.

One obtains

A2 =

(
−(k−1 + k2) 0
(k−1 + k2)k3i −ε1 (k3(e + i) + k−3c2)

)
and may continue as prescribed by Proposition 2. There are shortcuts, though: First note that the
critical manifold is given by c1 = 0, and c2 constant and equal to the smaller solution c̃2 of the
quadratic equation

0 = µ2(0, c2) = k∗3(e0 − c2)(i0 − c2) − k∗−3c2.

The completely reduced system will automatically yield ċ1 = 0 and ċ2 = 0, hence only the first
row of the projection matrix needs to be computed. As the final result of the reduction procedure
we get the equation

ṡ = −
k∗1k2

k−1 + k2
(e0 − c̃2)s,

with the dot denoting differentiation with respect to ε1ε2t.

(c) Finally, we deal with the case k−3 = 0, which does not automatically yield a one dimensional
variety of stationary points. System (3.3) becomes

ṡ = k−1c1 − k1se

ċ1 = k1se − (k−1 + k2)c1

ċ2 = k3ei.

We may assume that k1 , 0 and k2 , 0, otherwise one would arrive at (non-generic) subcases of
previously discussed systems. From this we obtain c1 = 0 and es = 0 as necessary conditions. Now
e = 0 and nonnegativity of varaibles imply e0 = 0; a previously discussed case, therefore every
stationary point satisfies s = 0. If k3 , 0 then i = 0 forces c2 = i0; the corresponding parameter

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5062–5091.



5079

values are not in Π1. So the only case remaining is k3 = k−3 = 0 (very slow binding to the inhibitor,
very slow degradation of the inhibitor complex), with system

ṡ = k−1c1 − k1se

ċ1 = k1se − (k−1 + k2)c1

ċ2 = 0.

To obtain a two dimensional variety of stationary points one has to check the boundary of Π1 for
nested TFPV, which splits into four cases. We only discuss the case k1 = 0 here, thus (3.3) with
small parameters becomes

ṡ
ċ1

ċ2

 =


k−1c1

−(k−1 + k2)c1

0

 + ε1k∗1es


−1
1
0

 + ε1ε2


0
0

k∗3ei − k∗
−3c2

 (5.3)

The computation of the auxiliary system runs similar to the reduction of (5.2) and yields
ṡ
ċ1

ċ2

 =
k∗1k2es

k−1 + k2


−1
0
0

 + ε2


0
0

k∗3ei − k−3∗c2

 ,
on the invariant variety given by c1 = 0. Finally, the completely reduced system lives on the variety
defined by c1 = s = 0 (a coordinate subspace), and therefore by [16], Proposition 5 the reduced
system may be directly obtained via “classical” QSS reduction; yielding

ċ2 = k∗3(e0 − c2)(i0 − c2) − k∗−3c2.

5.2. A cooperative system

In this subsection we study the standard cooperative system involving substrate S , two complexes
C1,C2, enzyme E and product P. The reaction scheme

S + E
k1


k−1

C1
k2
⇀ E + P

S + C1
k3


k−3

C2
k4
⇀ C1 + P

yields, with the usual assumptions and stoichiometry, the differential equation

ṡ = −k1e0s + (k−1 + k1s − k3s)c1 + (k1s + k−3)c2

ċ1 = k1e0s − (k−1 + k2 + k1s + k3s)c1 + (k−3 + k4 − k1s)c2

ċ2 = k3sc1 − (k−3 + k4)c2

(5.4)

where all appearing constants are non-negative; see Keener and Sneyd [14], equations (1.62–64),
where the QSS reduction for complexes C1 and C2 is discussed. A direct proof of validity via singular
perturbation theory - for two time scales - is given in Murray [21], Section 6.5 when e0 = εe∗0;
alternatively [16], Proposition 5 is applicable. In [16], subsection 5.4 a list of parameter conditions for
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various types of QSS is given, and their relation to Tikhonov-Fenichel reductions is discussed. Keener
and Sneyd also mention the (partial) equilibrium approximation, by which one generally determines
the product forming velocity given equilibrium in a certain subnetwork. In the present context [14],
section 1.7, Exercise 10 this means that k2 = εk∗2 and k4 = εk∗4 are small. The discussion in 5.2.4
shows, among other things, that these conditions are not compatible with singular perturbation
reductions. (One needs to add further “small parameters”, and the resulting reduction formulas are
more complicated.) Cooperative systems with three complexes are mentioned in [14], and the singular
perturbation reduction in the case of arbitrary many complexes, with small e0 = εe∗0, is derived
in [16], section 5.3. Now we turn to the three time scale setting.
According to Goeke [18], Kap. 9.4, necessary conditions for TFPV are given by

e0k1k2(k−3 + k4) = 0.

5.2.1. Case k1 = 0

When we substitute k1 = 0 in Eq (5.4) we obtain

ṡ = (k−1 − k3s)c1 + k−3c2

ċ1 = −(k−1 + k2 + k3s)c1 + (k−3 + k4)c2

ċ2 = k3sc1 − (k−3 + k4)c2.

Hence considering the generic case (all remaining parameters > 0) we obtain an irreducible component
of W1 given by k1 = 0, and the critical manifold is given by c1 = c2 = 0. We get a decomposition with

P =


−sk3 + k−1 k−3

−(sk3 + k−1 + k2) k−3 + k4

sk3 −(k−3 + k4)

 , µ =

(
c1

c2

)
,

and necessary conditions for nested TFPV from

0 = det Dµ · P = (k−1 + k2)(k−3 + k4)⇒ k−1 = k2 = 0 or k−3 = k4 = 0.

Thie first set of conditions does not, by itself, yield a two dimensional critical manifold, and we will
not pursue it further here. The second set, i.e. k−3 = k4 = 0, yields the two dimensional variety given
by c1 = 0.
Considering this setting, we introduce the small parameters in our original system by substituting
k1 = ε1ε2k∗1, k−3 = ε1k∗

−3, k4 = ε1k∗4 . Ordering the parameters as e0, k1, k−1, k2, , k3, k−3, k4 , we thus
consider the surface in parameter space given by

γ(ε1, ε2) =



e0

0
k−1

k2

k3

0
0


+ ε1 ·





0
0
0
0
0

k∗
−3
k∗4


+ ε2



0
k∗1
0
0
0
0
0




,
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and with x = (s, c1, c2)tr we get

h(x, ε1, ε2) = g(0,0)(x) + ε1 ·
(
g(1,0)(x, ε1) + ε2 · g(1,1)(x, ε1, ε2)

)
(5.5)

with

g(0,0)(x) =


(−sk3 + k−1)c1

−(sk3 + k−1 + k2)c1

k3sc1


g(1,0)(x, ε1) =


k∗
−3c2

(k∗
−3 + k∗4)c2

−(k∗
−3 + k∗4)c2


g(1,1)(x, ε1, ε2) =


sk∗1c1 + sk∗1c2 − k∗1e0s
−(sk∗1c1 + sk∗1c2 − k∗1e0s)

0

 .
For this system we compute the complete reduction on c1 = c2 = 0 and the intermediate reduction on
c1 = 0. In order to compute the completely reduced system, a factorization of g(0,0) + ε1g(1,0) is given
by (

P1, ε1P2

)
·

(
µ1

µ2

)
with µ1 = c1, µ2 = c2, and

P1 =


−sk3 + k−1

−(sk3 + k−1 + k2)
k3s

 , P2 =


k∗
−3

k∗
−3 + k∗4

−(k∗
−3 + k∗4)

 .
The projection matrix is

Q2 =


1 −

−sk3k∗4−k∗
−3k−1−k−1k∗4

k∗
−3k−1+k2k∗

−3+k−1k∗4+k2k∗4
−
−sk3k∗4−2k∗

−3k−1−k2k∗
−3−k−1k∗4

k∗
−3k−1+k2k∗

−3+k−1k∗4+k2k∗4
0 0 0
0 0 0

 ,
and the fully reduced system in very slow time on the invariant manifold c1 = c2 = 0 is given by the
equation

ṡ = −
k3k∗4s + k∗

−3k2 + k∗4k2

k∗
−3k−1 + k2k∗

−3 + k−1k∗4 + k2k∗4
· k∗1e0s.

Similarly one computes the intermediate system on the two dimensional variety given by c1 = 0 from
the decomposition P1 · µ1:

ṡ
ċ1

ċ2

 =
1

sk∗3 + k−1 + k2


−(sc2k3k∗4 + 2k−1c2k∗

−3 + k2k∗
−3c2 + c2k∗4k−1)

0
−(k−1c2k∗

−3 + k2k∗
−3c2 + c2k∗4k−1 + c2k2k∗4)

 .
In this context, a brief digression may be appropriate: In their discussion of reaction velocities, Keener
and Sneyd [14] also derive a Hill function in Eq (1.69)) with arguments that could a priori be interpreted
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as involving three time scales: They consider “k1 → 0 and k3 → ∞, with constant product k1k3”.
Rescaling time, one might think of this as a case of very small k1, with k3 of order one. One system
satisfying these conditions is (5.5), but the completely reduced equation manifestly does not follow
Hill kinetics. One might also consider the case when k3 is of order one, k1 is very small and all the
other ki are small. This corresponds to a degenerate (but a priori legitimate) subcase of “k−3 = k4 = 0”
discussed above, with the surface in parameter space now given by

γ(ε1, ε2) =



e0

0
0
0
k3

0
0


+ ε1 ·





0
0

k∗
−1
k∗2
0

k∗
−3
k∗4


+ ε2



0
k∗1
0
0
0
0
0




.

A straightforward analysis shows, however, that the resulting system does not satisfy the rank (or
eigenvalue) conditions from Lemma 1(c), hence Tikhonov-Fenichel reduction is not applicable. To
summarize: For the given cooperative network, a reaction velocity of Hill type cannot be obtained
from time scale arguments.

5.2.2. Case e0 = 0

From e0 = 0 one also obtains a component of W1, and system (5.4) specializes to

ṡ = (k−1 + k1s − k3s)c1 + (k1s + k−3)c2

ċ1 = −(k−1 + k2 + k1s + k3s)c1 + (k−3 + k4 − k1s)c2

ċ2 = k3sc1 − (k−3 + k4)c2.

The right hand side has a factorization P · µ with

µ =

(
c1

c2

)
, P =


sk1 − sk3 + k−1 sk1 + k−3

−sk1 − sk3 − k−1 − k2 −sk1 + k−3 + k4

sk3 −k−3 − k4

 ,
and in order to obtain nested TFPV we examine all variable-parameter configurations that satisfy

0 = det(Dµ · P) = sk1 · (sk3 + k−3 + k4) + (k−1 + k2) · (k−3 + k4).

The plane given by s = 0 is not a viable candidate for a two dimensional critical manifold since it does
not contain the line c1 = c2 = 0. This leaves the cases k1 = k−1 = k2 = 0, k1 = k−3 = k4 = 0 and
k3 = k−3 = k4 = 0.
The first of these yields a two dimensional variety (defined by k3sc1 − k−3c2 = 0) only under the
additional condition k4 = 0. The second case, whenever k1 , 0, yields a variety whose intersection
with the positive orthant has dimension one, hence is of no relevance. For the third case we obtain a
two dimensional variety only if k1 = 0 or k2 = 0.
With the exception of this very last case, the completely reduced system will always be trivial, due
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to k1 = ε1k∗1 and e0 = ε1ε2e∗0, which implies k1e0 = O(ε2
1ε2). We consider one special case, viz. the

intermediate reduction coresponding to the nested TFPV with k1 = k3 = k−3 = k4 = 0; here c1 = 0
defines the two dimensional critical manifold. Considering

γ (ε1, ε2) =



0
0

k−1

k2

0
0
0


+ ε1 ·





0
k∗1
0
0
k∗3
k∗
−3
k∗4


+ ε2



e∗0
0
0
0
0
0
0




,

we compute:

g(0,0) =


c1k−1

−(k−1 + k2)c1

0


g(1,0) =


(sk∗1 − sk∗3)c1 + (sk∗1 + k∗

−3)c2

−(sk∗1 + sk∗3)c1 + (−sk∗1 + k∗
−3 + k∗4)c2

k∗3sc1 − (k∗
−3 + k∗4)c2


g(1,1) =


−ε1k∗1e∗0s
ε1k∗1e∗0s

0

 .
The intermediate reduced system on the invariant variety c1 = 0 is then:

ṡ
ċ1

ċ2

 =


(
sc2k∗1k2 + 2c2k∗

−3k−1 + c2k∗
−3k2 + c2k−1k∗4

)
(k−1 + k2)

0
−(k∗

−3 + k∗4)c2

 .
5.2.3. Case k−3 = k4 = 0

These conditions define a component of W1, and generically the critical manifold is given by s =

c1 = 0. System (5.4) is given by

ṡ = −k1e0s + (k−1 + k1s − k3s)c1 + k1sc2

ċ1 = k1e0s − (k−1 + k2 + k1s + k3s)c1 − k1sc2

ċ2 = k3sc1

and the product decomposition (which we do not write down here) yields

0 = det Dµ · P = k1(e0 − c2)(k2 + 2k3s).

as necessary conditions for nested TFPV. One possible case is k1 = 0 with critical manifold c1 = 0.
The remaining cases are:

(i) k2 = k−1 = 0 with variety s = 0;

(ii) k2 = k3 = 0 with variety k1(e0 − c1 − c2)s − k−1c1 = 0.

Note that the condition e0 − c2 = 0 does not yield a two dimensional critical variety.
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5.2.4. Case k2 = 0

In this situation system (5.4) simplifies to

ṡ = −k1e0s + (k−1 + k1s − k3s)c1 + (k1s + k−3)c2

ċ1 = k1e0s − (k−1 + k1s + k3s)c1 + (k−3 + k4 − k1s)c2

ċ2 = k3sc1 − (k−3 + k4)c2.

The condition k2 = 0 by itself does not define an irreducible component of W1; in other words it
does not guarantee the existence of a one dimensional variety of stationary points. Therefore we first
investigate sufficient conditions, using the observation ṡ + ċ1 + 2ċ2 = −k4c2.

(a) For k4 , 0 this observation implies that any stationary point satisfies c2 = 0, and the remaining
condition is k3sc1 = 0.

(i) In case k3 , 0 we have either s = 0, with the variety of stationary points given by s = c2 = 0;
in turn this yields the parameter configuration

k−1 = k2 = 0.

(ii) Alternatively we have c1 = 0, the variety is given by c1 = c2 = 0, and one must have k1e0 = 0.
We obtain the possible parameter configurations

k1 = k2 = 0 or e0 = k2 = 0.

(b) In case k4 = 0 the remaining system is

ṡ = −k1es + k−1c1 − k3sc1 + k−3c2

ċ1 = k1es − k−1c1 + k3sc1 + k−3c2

ċ2 = k3sc1 − k−3c2.

Adding the first two equations for stationary points shows that k−3c2 = 0, and combining this with
the third equation yields k3sc1 = 0; in addition one has k1es − k−1c1 = 0. Thus there are further
conditions for the existence of a one dimensional critical variety.

(i) Given that k3 , 0 and k−3 , 0, the variety is given either by c2 = s = 0, which yields the
parameter conditions

k2 = k−1 = k4 = 0;

or the variety is given by c1 = c2 = 0, with parameter conditions

k2 = k4 = k1 = 0 or k2 = k4 = e0 = 0;

all of these are special cases from (a).

(ii) In case k3 = 0 we obtain the one dimensional variety given by c2 = 0 and k1(e0−c1)s−k−1c1 =

0; thus we have the parameter condition

k2 = k3 = k4 = 0

which defines a component of W1.
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(iii) In case k−3 = 0 one obtains the variety s = c1 = 0, with parameter conditions

k2 = k4 = k−3 = 0.

For all these parameters the next task is to discuss conditions for embedded TFPV. We will only do
so for two cases.

1. In the case k−1 = k2 = 0 one has a decomposition
−k1e − k3c1 k−3

k1e − k3c1 k−3 + k4

k3c1 −(k−3 + k4)

 ·
(

s
c2

)
which yields

det Dµ · P = k1(k−3 + k4)e + k3k4c1.

We take a closer look at the case k1 = k3 = 0, with critical variety c2 = 0. The surface in parameter
space

γ (ε1, ε2) =



e0

0
0
0
0

k−3

k4


+ ε1 ·





0
k∗1
0
0
k∗3
0
0


+ ε2



0
0

k∗
−1
k∗2
0
0
0




yields

g(0,0) =


c2k−3

(k−3 + k4)c2

−(k−3 + k4)c2


g(1,0) =


−k∗1e0s + (sk∗1 − sk∗3)c1 + sk∗1c2

k∗1e0s − (k∗1s + k∗3s)c1 − k∗1sc2

k∗3sc1


g(1,1) =


k∗
−1c1

−(k∗
−1 + k∗2)c1

0

 .
The intermediate reduced system is as follows:

ṡ =
sc1k−3k∗1 + k4k∗1c1s − sc1k∗3k4 − k∗1e0sk−3 − k∗1e0sk4

k−3 + k4

ċ1 = −sc1k∗1 + k∗1e0s

ċ2 = 0,

and the completely reduced system (on s = c2 = 0) is given by:

ċ1 =
−c1(c1k−3k∗1k∗2 − c1k∗

−1k∗3k4 + c1k∗1k∗2k4 − c1k∗2k∗3k4 − e0k−3k∗1k∗2 − e0k∗1k∗2k4)
c1k−3k∗1 + c1k∗1k4 − c1k∗3k4 − e0k∗1k−3 − e0k∗1k4
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2. In the case k2 = k3 = k4 = 0 we have the one dimensional critical manifold

k1s · (e0 − c1) − k−1c1 = 0, c2 = 0

and the right hand side of the system at k2 = k3 = k4 = 0 can be decomposed into P · µ, with

P =


1 sk1 + k−3

−1 −sk1 + k−3

0 −k−3


µ =

(
k1s · (e0 − c1) − k−1c1

c2

)
.

This yields
det(Dµ · P) = (k1(e0 − c1) + k1s + k−4) · k−3.

We investigate the case k−3 = 0. Additionally setting k−3 = 0 we obtain the two dimensional
critical manifold defined by

µ2 := −k1e0s + (k−1 + k1s)c1 + k1sc2 = 0.

Following the usual procedure we consider the surface

γ (ε1, ε2) =



e0

k1

k−1

0
0
0
0


+ ε1 ·





0
0
0
0
0

k∗
−3
0


+ ε2



0
0
0
k∗2
k∗3
0
k∗4




in parameter space, and thus

g(0,0) =


−k1e0s + (sk1 + k−1)c1 + k1sc2

k1e0s − (sk1 + k−1)c1 + −k1sc2

0


g(1,0) =


k∗
−3c2

k∗
−3c2

−k∗
−3c2


g(1,1) =


−sk∗3c1

−(sk∗3 + k∗2)c1 + k∗4c2

sk∗3c1 − k∗4c2

 .
Here the intermediate reduced system is given by

ṡ =
1

sk1 + k1(e0 − c1 − c2) + k−1
·
(
sc2k∗−3k1 + 2c2k∗−3k−1

)
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ċ1 =
1

sk1 + k1(e0 − c1 − c2) + k−1
·
(
sc2k∗−3k1 − 2k1c2k∗−3c1 − 2k1k∗−3c2

2 + 2e0k1k∗−3c2

)
ċ2 = −c2k∗−3

on µ2 = 0, and the fully reduced system is given by

ṡ =
1

sk1 + k1(e0 − c1) + k−1
·
(
−se0k1k∗2

)
ċ1 =

1
sk1 + k1(e0 − c1) + k−1

·
(
k1k∗2c2

1 − k∗2e0k1c1

)
ċ2 = 0.

6. More time scales

In this section we give a brief outline on extending the coordinate-free approach to more than three
time scales. Thus let N ≥ 3 and first consider a system with N − 1 small parameters of the form

ẋi =

∏
1≤ j<i

ε j

 · fi(x, ε1, . . . , εN−1), 1 ≤ i ≤ N; briefly ẋ = f (x, ε) (6.1)

with separated variables. By a smooth coordinate transformation this becomes

ẋ = g(0,...,0) + ε1

(
g(1,0,...0) + ε2

(
g(1,1,0,...,0) + ε3 (· · · )

))
(6.2)

with the very last term in the embedded brackets being εN−1g(1,...,1). Here all g(i1,...,iN−1) are functions of
(x, ε1, . . . , εN−1). Moreover conditions (i), (ii) preceding Lemma 1 generalize in an obvious manner to
the vanishing sets of

g(0,...,0)

g(0,...,0) + ε1g(1,0,...0)

g(0,...,0) + ε1

(
g(1,0,...0) + ε2g(1,1,0,...,0)

)
etc.

and as in Proposition 2 one obtains decompositions

g(0,...,0) = P1µ1

g(0,...,0) + ε1g(1,0,...0) =
(
P1, ε1P2

) (µ1

µ2

)
g(0,...,0) + ε1

(
g(1,0,...0) + ε2g(1,1,0,...,0)

)
=

(
P1, ε1P2, ε1ε2P3

) 
µ1

µ2

µ3


etc.

Likewise, one generalizes the definitions of A1, A2 and the constructions of the projection matrices
Q j, the latter extending smoothly to ε1 = · · · εN−1 = 0. This yields the various (intermediate)
reductions.
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Given a general parameter dependent system (4.1), nested Tikhonov-Fenichel parameter values may
be found via the ansatz

γ : (ε1, . . . , εN−1) 7→ π̂ + ε1 (ρ1(x, ε1) + ε2 (ρ2(x, ε1, ε2) + ε3 (· · · )))

and the ensuing decomposition of h(x, γ(ε1, . . . , εN−1)) analogous to the one in (4.3). Thus the problem
is to find s > 0, 0 < k1 < · · · < kN−1 with s + kN−1 < n and a smooth map

β : (ε1, . . . , εN−2)→ Π,

defined in some neighborhood of 0, such that

β(ε1, . . . , εN−2) ∈ Πs

β(ε1, . . . , εN−3, 0) ∈ Πs+k1
...

β(0, . . . , 0) ∈ Πs+kN−1

whenever all ε j > 0. Rather obvious generalizations of Proposition 3 hold, and the strategy outlined in
Remark 4 remains applicable.
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Appendix

For the reader’s convenience we state and prove here two lemmas.

Lemma 3. Let r1, r2 be positive integers and

A ∈ Rr1×r1 , B ∈ Rr1×r2 , C ∈ Rr2×r1 , D ∈ Rr2×r2 .

Moreover assume that all eigenvalues of A have real part < 0. Then the following are equivalent.

(i) All eigenvalues of −CA−1B + D have real part < 0.

(ii) There exists δ > 0 such that, for every ε ∈ (0, δ), all eigenvalues of(
A B
εC εD

)
have real part < 0.

Proof. Consider the singularly perturbed linear differential equation

ẋ = Ax + By
ẏ = εCx + εDy

Introducing z := x + A−1By one can rewrite this as

ż = Az + ε(· · · )
ẏ = ε

(
(−CA−1B + D)y + Cz

)
Here the fast system is just given by ż = Az, and the slow system (on the critical manifold defined by
z = 0) is given by

ẏ = ε(−CA−1B + D)y.

Using Tikhonov’s theorem (in the form given e.g. in Verhulst [23], Ch. 8), one sees that both conditions
(i), (ii) are equivalent to exponential attractivity of the stationary point 0 for the linear system. �

Lemma 4. Let V ⊆ Rn be open and nonempty, 0 < r < n, δ > 0 and

B1 : V × [0, δ)→ Rn×r, (x, ε) 7→ B1(x, ε)
B2 : V × [0, δ)→ Rn×(n−r), (x, ε) 7→ B2(x, ε)

be smooth functions (defined in some neighborhood of V × [0, δ)) such that Rn is the sum of the image
W1 of B1 and the image W2 of B2, for every (x, ε). Then the entries of the matrix Q(x, ε) ∈ Rn×n

which sends v ∈ Rn to its W2-component with respect to the direct sum decomposition W1 ⊕W2 depend
smoothly on (x, ε).
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Proof. We suppress the arguments (x, ε) in the notation. By assumption C :=
(
B1, B2

)
is invertible,

and the entries of C−1 depend smoothly on (x, ε). With the projection matrix given by

Q =
(
0 B2

)
C−1,

the assertion is obvious.
�
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