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Abstract: Since the good application of quantum mechanism in the field of communication, quantum
secure communication has become a research hotspot. The existing quantum secure communication
protocols usually assume that the quantum channel is noise-free. But the inevitable quantum noise in
quantum channel will greatly interferes the transmission of quantum bits or quantum states, seriously
damaging the security and reliability of the quantum system. This paper analyzes and discusses the
performance of a χ state based steganography protocol under four main quantum noises, i.e., Amplitude
Damping (AD), Phase damping (Phs), Bit Flip (BF) and Depolarizing (D). The results show that the
protocol is least affected by amplitude damping noise when only the sender’s first transmission in
quantum channel is affected by quantum noise. Then, we analyze the performance of the protocol
when both the sender’s two transmissions are affected by quantum noise, and find that the specific
combination of different noises will increase the performance of the protocol in quantum noisy channel.
This means that an extra quantum noise can be intentionally added to quantum channel according to the
noise intensity, so that the protocol can improve performance under the influence of quantum noises.
Finally, the detailed mathematical analysis proves the conclusions.
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1. Introduction

Quantum information technology applies the basic principles of quantum mechanics to the fields
of computation, communication, and cryptography, forming three branches of quantum
computing [1–3], quantum communication [4], and quantum cryptography [5]. As an emerging
frontier interdisciplinary subject, quantum secure communication is developed by the combination of
quantum mechanics and information technologies [6–10]. As the rapid development of
network [11, 12], it becomes an urgent need for communication security. In 1993, C.H. Bennett
proposed the concept of quantum communication. In the same year, a scheme [13] for realizing
quantum teleportation using the combination of classical and quantum information was proposed.
The scheme requires that two parties of the communication first share an EPR pair. The sender
measures the single qubit state to be transmitted and his EPR particles under the Bell basis, and
transmits the measurement result to the receiver through the classical channel. After that, the receiver
can recover the target quantum state. Quantum teleportation is not only important in the field of
physics to people’s understanding and revealing the mysterious laws of nature, but also can use
quantum state as information carrier [14, 15] to realize the transmission of large-capacity information
that cannot be deciphered in principle. Quantum secure communication uses quantum state as
information carrier, such as quantum key distribution (QKD) [16], quantum secret sharing (QSS) [17],
and quantum identity verification (QIV) [18]. Compared with the classical communication protocol, it
shows a better performance in both security and efficiency.

As a member of quantum security communication, quantum information hiding plays a vital role.
Based on the design idea of classical information hiding, quantum information hiding realizes the
communication of secret message between communicators by establishing hidden quantum channels
in quantum public channel. In 2001, Terhal et al. [19, 20] proposed a quantum information hiding
protocol based on the Bell state. The protocol was the first quantum information hiding protocol
proposed at that time, which laid the foundation for the development of quantum information hiding
technique later.

Quantum steganography is an important sub-discipline of quantum information hiding. The secret
message is embedded in an ordinary quantum carrier, and the receiver can decode the secret message
after the quantum carrier is transmitted. It can achieve the purpose of secretly transmitting the
message. In recent years, a variety of quantum steganography protocols have emerged by using
different carrier media [21–28]. In 2003, Guo et al. [29] proposed a steganographic method for
encoding secret information into an extended Bell state set by using the uncertainty in the preparation
of the Bell state. In 2007, K.Matin [30] proposed a new quantum steganography protocol based on the
BB84 protocol, which sends secret messages by establishing a hidden channel during the process of
key distribution. In 2010, we proposed a protocol for establishing hidden information to convey secret
messages in the ordinary information transfer process using Bell state entanglement swapping [31]. In
the following year, by using the characteristics of the entanglement swapping, we proposed a χ state
based steganographic protocol [32], which has better imperceptibility and large capacity. In 2013,
Wei et al. [33] proposed a quantum steganography protocol for embedding secrets into carrier data
using POVM measurements, which has good secrecy and security. In 2015, Wei et al. [34] proposed a
new quantum image steganography algorithm based on least significant bits. In 2017, Heidari et
al. [35] proposed a color image steganography scheme based on Gray code. In 2017, we proposed a
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robust quantum watermarking algorithm based on the polar representation of quantum images [36]. In
the same year, based on the quantum video-based MCQI representation, we proposed a new
large-capacity quantum video steganography protocol [37].

Quantum noise has to be taken into consideration in actual communication, as it will seriously
disturb a communicating quantum system. For channel noise, the channel coding method is a good
way to resist the effects of noise. Channel coding has three types of coding methods: quantum error
correcting code, error avoiding code and error proventing code. The quantum error correcting
code [38] usually uses a specific encoding method, so that the error detection measurement can
correctly detect what kind of error was occurred and recover it. The quantum error avoiding code [39]
achieves the effect of overcoming quantum noise by encoding information in a quantum subspace that
is unaffected by noise. The basic idea of quantum error-preventing code is to use the quantum Zeno
effect [40] to make frequent measurements on the quantum system, so that the quantum system which
has been affected by quantum noise can change to initial state after a small change. However, due to
the high requirements on hardware facilities, it is still in the theoretical stage. In recent years, some
new researches on resistance to quantum noise have emerged [41, 42]. In 2010, Alexander N.
Korotkov et al. [43] proposed a scheme to overcome decoherence by using quantum non-collapse
measurements, which can effectively preserve quantum states. In 2014, Guan et al. [44] analyzed
arbitrary two-qubit remote preparation schemes in noisy environments and calculated the effect of
quantum noise on protocol efficiency. In 2015, Raphael Fortes et al. [45] analyzed the effects of noise
on the quantum teleportation process in detail. The conclusion shows that the joint influence of two
noises has some symmetry. In 2017, Wang et al. [46–48] performed quantum noise analysis on
quantum remote preparation of single-particle, two-particle and multi-particle, and respectively gave
the efficiency of the above protocol in noisy environment. In the same year, we studied the
relationship between the effects of noise and the use of quantum channels for several arbitrary
two-qubit state remote preparation protocols [49]. In addition, for the remote preparation of arbitrary
three-qubit state, we analyze the efficiency of the protocol under noise, and propose a scheme to
improve the remote preparation efficiency under noisy environment [50] by using the natural
characteristic of the mutual restraint of the noise channel. In addition to the remote preparation
scheme will be affected by noise, the steganographic protocol is also affected by noise and can
seriously affect the usefulness of the protocol. Therefore, this paper will carry out noise analysis on
the χ state-based steganography protocol [32] proposed in 2011, and further propose an optimization
scheme, which makes it have better practicability in the real environment.

The rest of this paper consists of four parts. In Section 2, four kinds of quantum noises are
introduced briefly, which are the four most possible quantum noises encountered in quantum
channels. In Section 3, a brief review of the steganographic protocol based on the χ state is given. In
Section 4, the noise environment that the steganographic protocol may be subjected to is analyzed,
and the fidelity of information is calculated for all possible cases. The efficiency of the protocol is
analyzed and the optimization scheme under noise is given. This article will be discussed and
summarized in Section 5.
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2. Quantum noise channels

This section describes the four common types of quantum noises in quantum channels, namely
amplitude damping, phase damping, bit flip, and depolarizing noises. Quantum noise can be regarded
as one specific quantum operation, so that it can be described by the form of operator sum.

2.1. Amplitude damping channel

Amplitude damping describes the dissipation process of energy, that is, the effect that energy is lost
from the quantum system. The operands for amplitude damping are described below.

E0 =

(
1 0
0

√
1 − p

)
, E1 =

(
0
√

p
0 0

)
(2.1)

In which, the noise coefficient p denotes the probability that a quantum system loses a photon.

2.2. Phase damping channel

Phase damping is described as the interfere to quantum information without energy dissipation,
often referred to as the ”T2” (or spin-spin) relaxation process, the operator-sum formalism can be
expressed as

E0 =
√

1 − pI, E1 =
√

pσz, (2.2)

where the noise coefficient p can be understood as the probability of scattering from a photon without
energy loss from the system, σz is Pauli matrix.

2.3. Bit flip channel

Bit flip channel flips the qubit state with a probability p from |0〉 to |1〉 (or vice versa), and the
operands of its quantum operation are expressed as

E0 =
√

1 − pI, E1 =
√

pσx, (2.3)

where p is noise coefficient, σx is Pauli matrix.

2.4. Depolarizing channel

Another noisy channel is a kind of important quantum noise. The depolarizing channel depolarizes
the qubit with a probability of p, i,e, makes it becoming a maximum mixed state I/2. The operands of
the depolarized channel can be expressed as

E0 =
√

1 − pI, E1 =

√
p
3
σx, E2 =

√
p
3
σz, E3 =

√
p
3
σy, (2.4)

where I, σx, σy, σz are four Pauli matrices.
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3. The steganography protocol based on χ state

In the original protocol [32], the sender Alice wanted to send a classical information sequence to
Bob while carrying 4 bits of secret information. The specific steps of the protocol are as follows.

S1) The sender Alice and the receiver Bob know in advance how to encode the four Pauli operators,
that is

σ0 ↔ 00,σ1 ↔ 01,
σ2 ↔ 10,σ3 ↔ 11.

(3.1)

S2) Alice prepares a series of entangled four-particle χ state, and the particles of the quantum
states sequence is expressed as

[
P1

1, P
1
2, P

1
3, P

1
4, P

2
1, P

2
2, ..., P

n
3, P

n
4

]
, the superscript indicates the sequence

number of the nth entangled particle pair, and the subscript indicates the four particles of each χ

state. All entangled particles are initially in the |χ00〉3214 state. The ith particle of each entangled
pair constitutes the sequence Ci =

[
P1

i , P
2
i , ..., P

n
i

]
, Alice keeps particle sequence C1 and C3, sends the

sequence C2 and C4 to Bob.
S3) Bob randomly selects the particles in the corresponding position from C2 and C4 to start the

eavesdropping detection by measuring the particles under BM1 or BM2 basis. He will tell Alice the
position and measurement basis of the particles through the classical channel. Then, Alice measures
her particle at the corresponding position and at the corresponding basis AM1 or AM2. Finally, Alice
and Bob public the measurement results to detect eavesdropping. Since the basis in this step is not
used in our work, the corresponding measurement basis is not listed here.

S4) According to the information bit sequence, Alice performs corresponding unitary operation on
her particles. Suppose Alice wants to pass the information i1i2i3i4, she will performσ2i1+i2

3 andσ2i3+i4
1 on

particle 3 and 1 to encode the information and then send the encoded particles to Bob. After receiving
the particles, Bob measures the particle group

[
Pi

3, P
i
1, P

i
2, P

i
4

]
under the FMB basis (χ state orthogonal

basis) to decode information. In this step, Alice can choose whether to enter the secret information
hiding mode S5).

S5) Secret information hiding mode: (a) Alice selects the location m of the hidden channel
according to the secret information, and the secret information is in one-to-one correspondence with
the entangled exchange result set of

∣∣∣χi j
〉m−1

3214
and |χpq〉

m
3214, m can be sent to Bob through a classical

channel. (b) Alice copies the information carried by
∣∣∣χi j

〉m−1

3214
to

∣∣∣χi j
〉m+1

3214
by performing the same

unitary operator σi
3σ

j
1 on Pm+1

3 Pm+1
1 . Then

∣∣∣χi j
〉m+1

3214
just as an auxiliary particle to hide the secret and

no longer transmits classic messages. (c) Alice achieves entanglement swapping by exchanging the
particles [1, 4] and [1′, 4′] of

∣∣∣χi j
〉m

3214
and

∣∣∣χi j
〉m+1

3′2′1′4′
.

S6) Secret decoding mode: (a) Bob first receives the m sent by Alice. (b) He measures particle
groups

[
Pm

3 , P
m
2 , P

m
1 , P

m
4

]
and

[
Pm+1

3 , Pm+1
2 , Pm+1

1 , Pm+1
4

]
respectively under the CMB basis (cat state

measurement basis). (c) Based on the measurement results, Bob can decode the secret message sent
by Alice.

Two types of messages are sent in the original protocol, one is a normal information sequence, and
the other is a 4-bit secret message. Next, we will start to analyze the impact of these two types of
messages after being affected by noise.
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4. The steganography protocol under noisy channels

From the previous section, it’s easy to know that the transmitted information and secret information
will be affected by quantum channel noise in the steganographic protocol. In this section, we will
analyze the different noise effects on these two types of messages in detail.

4.1. Effect on transmitted information

In order to facilitate the analysis, we will study the effect of noise on a single χ state that carries
transmitted message.

In the step S2, Alice sends the particle sequences C2 and C4 to Bob. During the transmission
process, each of the 2, 4 particles will be affected by the quantum noise channel. The initial quantum
system can be written as

ρini =
∣∣∣χ00

〉
3214

〈
χ00

∣∣∣
3214

=
1
8

(|0000〉 − |0011〉 − |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉 + |1111〉)

× (〈0000| − 〈0011| − 〈0101| + 〈0110| + 〈1001| + 〈1010| + 〈1100| + 〈1111|) . (4.1)

After the transmission is completed, the quantum system shared by Alice and Bob is affected by the
quantum noise becomes

ρ1 =
∑

i j

E4
i E2

jρiniE2
j
†
E4

i
†
. (4.2)

Among them, the superscript represents the quantum particle affected by the noise operator. For
example, E2

j represents the noise operator acting on particle numbered 2 in the state. After the
eavesdropping detection step S3, Alice performs corresponding unitary operations σ2i1+i2

3 and σ2i3+i4
1

on the 1, 3 particles according to the transmission information, and the encoded quantum system
becomes

ρ1
′ = σ2i1+i2

3 σ2i3+i4
1 ρ1σ1

2i3+i4†σ3
2i1+i2†. (4.3)

Alice then sends the particles 1, 3 to Bob via the quantum noise channel. After the transfer is
completed, the quantum system composed of the particles owned by Bob becomes

ρ2 =
∑

i j

E3
i E1

jρ1
′E1

j
†
E3

i
†
. (4.4)

while the state that Bob should obtain theoretically is

|T 〉 = σ2i1+i2
3 σ2i3+i4

1

∣∣∣χ00
〉

3214
. (4.5)

Fidelity can describe the distance between two quantum states, so fidelity can be used to describe
the effect of noise on quantum states. Fidelity is defined as follows

F = 〈T | ρ2 |T 〉 . (4.6)

The values of fidelity range from 0 to 1. The greater the fidelity, the more similar the two quantum
states are. A fidelity of 1 indicates that the two quantum states are identical to each other.
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For ease of analysis, it is supposed that the classic information transmitted is 0000, then the unitary
operation σ2i1+i2

3 σ2i3+i4
1 Alice performs is σ0

3σ
0
1.

Considering that Alice’s first transmission quantum channel is affected by quantum noise (noise
factor pA , 0 ) and the second transmission quantum channel is not affected by noise (noise factor
pB=0 ). Thus, under the four noisy channels, the fidelity of the transmitted information is

F(AD,∅) =
1
2
−

1
2

pA +
1

16
pA

2 +
1
4

(2 − pA)
√

1 − pA (4.7)

F(Phs,∅) = 1 − 2pA + pA
2 (4.8)

F(BF,∅) = 1 − 2pA + pA
2 (4.9)

F(D,∅) = 1 − 2pA + pA
2 (4.10)

F(X,Y) indicates the fidelity of the information in the case that Alice’s first transmission quantum channel
is subjected to X (AD, Phs, BF,D) noise and her second transmission quantum channel is subjected to
Y (AD, Phs, BF,D, ∅) noise.

From the calculation results, we can see that phase damping, bit flip and depolarizing noise have
the same effect on the transmitted information. In Figure 1, we plot the equations 4.7 to 4.10 for
the fidelity as a function of the noise factor pA. It can be seen that the amplitude damping noise has
less influence on the transmitted information than the other three kinds of quantum noises. As the
quantum noise factor pA increases, the fidelity of the information transmitted under the four kinds of
noises respectively gradually decreases. When pA increases to 1, each fidelity under phase damping,
bit flip or depolarizing noise is reduced to zero, the fidelity at amplitude damping reaches a minimum
of 0.0625.

Next, we analyze the situation when both Alices first and second transmission quantum channels
are disturbed by quantum noise (pA , 0, pB , 0).
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Figure 1. When Alice’s first transmission quantum channel is affected by four kinds of
quantum noises and the second transmission quantum channel is not affected by quantum
noises, the curves that the fidelity changes with pA.

At first, let assume that Alice’s first transmission quantum channel is subject to amplitude damping
noise and her second transmission quantum channel is affected by four different quantum noises. The
fidelities of the system in these cases are

F(AD,AD) =
1
2

(1 − pA − pB) +
1
8

pA
2 pB

2 −
1
8

pA pB (pA + pB) +
5
8

pA pB

+
1

16

(
pA

2 + pB
2
)

+

[
1
2
−

1
4

(pA + pB) +
1
8

pA pB

] √
(1 − pA) (1 − pB) (4.11)

F(AD,Phs) =
1
2
−

1
2

pA − pB − pA pB
2 + pA pB +

1
16

pA
2 + pB

2

+
1
4

(2 − pA) (1 − 2pB)
√

(1 − pA) (4.12)

F(AD,BF) =
1
2
−

1
2

pA − pB +
1
4

pA
2 pB

2 −
3
4

pA pB
2 −

1
4

pA
2 pB +

5
4

pA pB

+
1

16
pA

2 +
1
2

pB
2 +

1
4

(2 − pA) (1 − pB)2
√

(1 − pA) (4.13)

F(AD,D) =
1
2
−

1
2

pA − pB +
1

36
pA

2 pB
2 −

5
9

pA pB
2 −

1
12

pA
2 pB + pA pB
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+
1

16
pA

2 +
5
9

pB
2 +

1
4

(
1 +

8
9

pB
2 − 2pB

)
(2 − pA)

√
(1 − pA) (4.14)

Figure 2 shows the variation of fidelities with noise factor pB in the four cases. For ease of analysis,
only the images that the value of pA is 0.1, 0.3, 0.7, and 0.9 respectively are listed here. Through
the calculation results, we found that when pB is less than about 0.6, as the pA value increases, the
fidelity of the transmitted information gradually decreases. If pB is greater than about 0.6, with the
increases of pA the fidelity of the transmission information will go down first and then increase, while
the Alices second transmission channel is subjected to phase damping noise, this change is especially
obvious when pB = 1. With the value of pA grows, F(AD,AD) increases from 0.0625 to 0.1250, F(AD,Phs)

increases from 0 to 0.0625, F(AD,BF) increases from 0 to 0.0625, F(AD,D) increases from 0 to 0.0069.
Although this change is very small, we can see that there is a kind of mutual restraint effect after the
combination of quantum noise. And when pA is small (pA ≤ 0.3), the effects of phase damping, bit flip
and depolarizing noise are almost the same. With the increase of pA, the influence of bit flip noise is
gradually less than phase damping, and the effect of phase flip noise is less than depolarizing noise. In
addition, in this case, both Alice’s first and second transmission channels are subject to noise fidelity
less than if only Alice’s first transmission channel is subject to noise.
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Figure 2. In the situation that both Alice’s first and second transmission quantum channel
are affected by four kinds of quantum noise, the curves that the fidelity F(AD,Y) changes with
pA and pB. The solid black line is the fidelity of Alice’s first transmission channel is affected
by amplitude damping and her second transmission channel is unaffected by quantum noise.

The other case is that Alice’s first transmission quantum channel is subjected to phase damping and
her second transmission quantum channel is affected by four different quantum noises. In this case, the

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4999–5021.



5008

fidelity of the system is

F(Phs,AD) =
1
2
−

1
2

pB − pA − pB pA
2 + pA pB +

1
16

pB
2 + pA

2

+
1
4

(2 − pB) (1 − 2pA)
√

(1 − pB) (4.15)

F(Phs,Phs) = 1 − 2 (pA + pB) + 2pA
2 pB

2 − 2pA
2 pB − 2pA pB

2

+ 4pA pB + pA
2 + pB

2 (4.16)

F(Phs,BF) = 1 − 2 (pA + pB) − pA pB
2 − 2pA

2 pB + 4pA pB + pA
2 + pB

2 (4.17)

F(Phs,D) = 1 − 2 (pA + pB) +
8
9

pA
2 pB

2 −
16
9

pA pB
2 − 2pA

2 pB + 4pA pB + pA
2 + pB

2 (4.18)

In this case, the fidelity as a function of the noise factor is shown in Figure 3. When pB = 0,
the fidelity of all the four quantum noises decreases with the increase of pA. When pA is small, the
influence of phase damping on the transmitted information is smaller than that of the other three kinds
of quantum noises. With the increase of pB, the fidelity under bit flip noise is gradually greater than
the fidelity under amplitude damping. As the pA increases, the fidelity of the phase damping noise
will gradually increase. When pA= 0.5, the fidelity of the phase damping noise will be equal to the
fidelity under the bit flip. At the same time, the phase damping and bit flip noise will be the same when
pA= 0.5,pB= 1 and pA= 0.5,pB= 0. As pA continues to increase, the fidelity of phase damping noise
will gradually exceed the bit flip noise, and then the black solid line which represents that only Alice’s
channel is subject to noise. This means that we can increase the fidelity of the transmitted information
by using the appropriate pB according to the value of pA. When pA = 1, pB is the intensity factor of
the phase damping noise and the pB reach the value of 1 can maximize the fidelity of the transmitted
information. This means that, in this case, the phase damping can be completely offset by the phase
damping noise.
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Figure 3. When Alice’s first transmission quantum channel is affected by phase damping
noise and the second transmission quantum channel is affected by four quantum noises,
the curves that the fidelity changes with pA and pB. The solid black line represents the
fidelity of Alice’s first transmission channel is affected by phase damping, while her second
transmission channel is unaffected by quantum noise.

Next, Alice’s first transmission quantum channel is affected by bit flip and the second transmission
quantum channel is affected by four different quantum noises. The fidelity of quantum systems in these
four cases is

F(BF,AD) =
1
2
−

1
2

pB − pA +
1
4

pB
2 pA

2 −
3
4

pA
2 pB −

1
4

pA pB
2 +

5
4

pB pA

+
1

16
pB

2 +
1
2

pA
2 +

1
4

(2 − pB) (1 − pA)2
√

(1 − pB) (4.19)

F(BF,Phs) = 1 − 2 (pA + pB) − pB pA
2 − 2pB

2 pA + 4pA pB + pA
2 + pB

2 (4.20)

F(BF,BF) = 1 − 2 (pA + pB) + 2pA
2 pB

2 − 3pA pB
2 − 3pA

2 pB + 5pA pB + pA
2 + pB

2 (4.21)

F(BF,D) = 1 − 2 (pA + pB) +
8
9

pA
2 pB

2 −
20
9

pA pB
2 − 2pA

2 pB +
13
3

pA pB + pA
2 + pB

2 (4.22)

In this case, the fidelities of the transmitted information under the four kinds of noises vary with
pA and pB are shown in Figure 4. When pA is small, the fidelity under amplitude damping noise is
greater than that of the other three quantum channels. As the pA increases, the fidelity under phase
damping noise is gradually greater than that of the other three quantum noises. When pA ≥ 0.6, the
fidelity under phase damping will gradually be greater than that of noise-free in the second transmission
channel. And in this case, the maximum fidelity is taken at pA= 1,pB= 0.5 , which is 0.25. It can be
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found that adding extra noise can increase the fidelity of the system when pA is large. When pA is
small, the reduction effect is not obvious.
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Figure 4. When Alice’s first transmission quantum channel is affected by bit flip noise
and the second transmission quantum channel is affected by four different quantum noises,
the curves that the fidelity changes with pA and pB. The solid black line is the fidelity of
Alice’s first transmission channel is affected by bit flip and her second transmission channel
is unaffected by quantum noise.

In another case, Alice’s first transmission quantum channel is subject to the depolarizing noise, and
the second transmission quantum channel is subject to four different quantum noises. The fidelity of
the system is

F(D,AD) =
1
2
−

1
2

pB − pA +
1

36
pB

2 pA
2 −

5
9

pA
2 pB −

1
12

pA pB
2 + pB pA

+
1

16
pB

2 +
5
9

pA
2 +

1
4

(
1 +

8
9

pA
2 − 2pA

)
(2 − pB)

√
(1 − pB) (4.23)

F(D,Phs) = 1 − 2 (pA + pB) +
8
9

pA
2 pB

2 −
16
9

pB pA
2 − 2pB

2 pA + 4pA pB + pA
2 + pB

2 (4.24)

F(D,BF) = 1 − 2 (pA + pB) +
8
9

pA
2 pB

2 −
20
9

pA
2 pB − 2pA pB

2 +
13
3

pA pB + pA
2 + pB

2 (4.25)

F(D,D) = 1 − 2 (pA + pB) +
28
27

pA
2 pB

2 −
50
27

pA
2 pB −

50
27

pA pB
2 + 4pA pB + pA

2 + pB
2 (4.26)

Figure 5 plots the fidelities vary with pA and pB under the situation that Alice’s first channel under
depolarizing and her second channel under four different quantum noises. Similarly, when pA is
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Figure 5. When Alice’s first transmission quantum channel is affected by depolarizing noise
and the second transmission quantum channel is affected by four different quantum noises,
the curves that the fidelity changes with pA and pB. The solid black line is the fidelity of
Alice’s first transmission channel is affected by depolarizing and her second transmission
channel is unaffected by quantum noise.

small, the effect of amplitude damping is also small. As the pA increases, the fidelity that the second
transmission channel under depolarizing noise gradually increases. When pA ≈ 0.6, the fidelity of the
information that the second channel under depolarizing noise is gradually greater than that of
noise-free channel. When pA ≥ 0.6, the maximum fidelity can be obtained at the situation that
pA= 1,pB= 1, and the maximum fidelity was 0.33.

In addition, according to the equations 4.11 to 4.26, it can be found that the influence of quantum
noise on the transmitted information has excellent symmetry. That is F(M,N) = F(N,M)

(M,N ∈ {AD, Phs, BF,D} ∩ M , N). This symmetry effectively simplifies our analysis of the effects
of noise and the connection between different noises.

4.2. Effect on secret information

This section will analyze the impact of quantum noise on secret information. According to the
protocol reviewed in Section 3, we know that the secret information is based on the transmission
information carrier, two χ states. And the secret information is encoded by the characteristics of the
transmitted information carriers, which is essentially the transmission of information carrier. It should
be noted that Alice performs an entanglement swapping on the two χ states which carries the secret
information. Taking the two χ states that is encoded secret information as an example, transmission
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process of the normal transmission information and the transmission process of secret information are
shown in Figure 6.
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Figure 6. The transmission process of the transmission information (a) and the secret
information (b) that carried by two χ state.

As can be seen from Figure 6, when the secret information is transmitted, although the
entanglement swapping operation is performed, the particles transmitted actually are exactly the same
as the particles that carry transmission information. This means that the effect of quantum noise on
the two χ states of secret information is the same as the effect of the same two χ states of ordinary
transmission information. Therefore, the influence of quantum noise on secret information is the same
as that of transmitted information, and has the same conclusion on how to improve the fidelity under
noise.

To be specific, it’s supposed that the secret message is 0000, there are 16 possible two χ states
combinations for Alice to choose. For the convenience of studying, assuming Alice chooses

∣∣∣χ00
〉
⊗∣∣∣χ00

〉
, the quantum system contains secret message will be

ρini =
∣∣∣χ00

〉
3214
⊗

∣∣∣χ00
〉

3′2′1′4′

〈
χ00

∣∣∣
3214
⊗

〈
χ00

∣∣∣
3′2′1′4′

. (4.27)

Alice performs the entanglement swapping by exchanging the particles [1, 4] and [1′, 4′], then the
system will become

ρini
′ =

∣∣∣χ00
〉

321′4′
⊗

∣∣∣χ00
〉

3′2′14

〈
χ00

∣∣∣
321′4′

⊗
〈
χ00

∣∣∣
3′2′14

. (4.28)

Alice transmits the particles [2, 4′] and [2′, 4] to Bob. It’s supposed that Alice’s every transmission
using the same quantum channel, which means that the four particles will suffer the same quantum
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noise in the noisy channel. After the transmission is completed, the quantum system will be

ρ′ =
∑
i, j,k,l

E2
i E4′

j E2′
k E4

l ρini
′E4†

l E2′†
k E4′†

j E2†
i . (4.29)

Then Alice sends the particles [3, 1′] and [3′, 1] to Bob, the quantum system that Bob receives is

ρ′′ =
∑
i, j,k,l

E3
i E1′

j E3′
k E1

l ρ
′E1†

l E3′†
k E1′†

j E3†
i . (4.30)

Bob measures the particles [3, 1′, 2, 4′] and [3′, 1, 2′, 4] on the CMB basis to deduce the two χ states
which performed entanglement swapping, then Bob can decode the secret message. Let measure the
effect of noise on the secret message by calculating the fidelity of quantum system Bob finally received.
The fidelity can be defined as

F = 〈T | ρ′′ |T 〉 , (4.31)

in which,

|T 〉 =
∣∣∣χ00

〉
321′4′

⊗
∣∣∣χ00

〉
3′2′14

. (4.32)

A simple calculation shows that the fidelity of secret information is the square of the fidelity of an
ordinary information.

Then, in the situation that Alice’s first transmission suffers four types of noises (pA , 0) and her
second transmission is not affected by noise (pB = 0), the fidelities are as follows, respectively.

F(AD,∅) =

(
1
2
−

3
4

pA +
5

16
pA

2 −
1
32

pA
3
) √

1 − pA − pA +
5
8

pA
2 −

1
8

pA
3 +

1
256

pA
4 +

1
2

(4.33)

F(Phs,∅) = pA
4 − 4pA

3 + 6pA
2 − 4pA + 1 (4.34)

F(BF,∅) = pA
4 − 4pA

3 + 6pA
2 − 4pA + 1 (4.35)

F(D,∅) = pA
4 − 4pA

3 + 6pA
2 − 4pA + 1 (4.36)

The curves of fidelity as a function of noise factor are plotted in Figure 7. We can see that the effects
of noise on secret message are similar to that on ordinary information, the difference is that the fidelity
of a single secret message is lower than an ordinary information. The other possible situations will not
be analyzed in detail due to it has the same conclusion as the ordinary information, the fidelity curves
will be given in Supplementary.
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Figure 7. When Alice’s first transmission quantum channel is affected by one of the four
types of noises and the second transmission quantum channel is not affected by quantum
noise, the curves that the fidelity of secret message changes with pA.

5. Conclusions

This paper analyzes the performance of a steganographic protocol based on the χ state under
quantum noise. When Alices first transmission channel is affected by quantum noise, and the second
transmission channel is not affected by the quantum noise, the performance of the protocol under
amplitude damping noise is better than that of the other three kinds of quantum noises. When Alice’s
first channel is affected by quantum noise and her second quantum channel is also affected by
quantum noise, if Alice can adjust the corresponding second noise channel according to her first
transmission channel noise intensity, then she can select the appropriate noise channel, so that the
fidelity of the transmitted information can increase under the quantum noise, and the anti-noise
performance of the protocol is improved. Specifically, when Alices first channel is subjected to phase
damping, bit flip, and depolarization noise, she can increase the fidelity of the transmitted information
by adjusting the coefficient of the noise. When Alice’s first channel is affected by amplitude damping
noise, this method cannot be used to improve the performance of the protocol. Under some certain
conditions, the fidelity of information under phase damping and bit flip can be increased by adding
phase damping noise. The fidelity of information under depolarizing can be increased by adding
depolarizing noise. The method proposed in this paper has a better improvement effect on strong
noises especially. Therefore, when the protocol needs to work in a strong noise environment, the
method proposed in this paper can be a good option to improve the performance of the protocol.
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Supplementary

Table 1. Some of abbreviations and symbols utilized in this paper.

Symbols Description
AD Amplitude damping noise
Phs Phase damping noise
BF Bit flip noise
D Depolarizing noise

Ei, i ∈ 0, .., 3 Operators of quantum noise
En

i , n ∈ 1, ..., 4 Quantum noise operator operated on particle n
p Quantum noise intensity
pA Quantum noise intensity of Alice’s first transmission
pB Quantum noise intensity of Alice’s second transmission

σ0 Pauli matrix, σ0 ≡ I ≡
(

1 0
0 1

)
σ1 Pauli matrix, σ1 ≡ σx ≡

(
0 1
1 0

)
σ2 Pauli matrix, σ2 ≡ σy ≡

(
0 −i
i 0

)
σ3 Pauli matrix, σ3 ≡ σz ≡

(
1 0
0 −1

)
|T 〉 The quantum state Bob received in ideal environment
F Fidelity of quantum state Bob received in noisy environment

χ state

∣∣∣χ00
〉

3214
= 1

2
√

2
(|0000〉 − |0011〉 − |0101〉 + |0110〉 + |1001〉
+ |1010〉 + |1100〉 + |1111〉)3214

F(X,Y), X,Y ∈ {AD, Phs, BF,D, ∅}
Fidelity of quantum state Bob received in the situation

that Alices first transmission suffered X noise and her second
transmission suffered Y noise
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Figure 8. When Alice’s first transmission quantum channel is affected by amplitude damping
noise and the second transmission quantum channel is affected by four quantum noises, the
curves that the fidelity of secret message changes with pA and pB.
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Figure 9. When Alice’s first transmission quantum channel is affected by phase damping
noise and the second transmission quantum channel is affected by four quantum noises, the
curves that the fidelity of secret message changes with pA and pB.
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Figure 10. When Alice’s first transmission quantum channel is affected by bit flip noise and
the second transmission quantum channel is affected by four quantum noises, the curves that
the fidelity of secret message changes with pA and pB.
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Figure 11. When Alice’s first transmission quantum channel is affected by depolarizing
noise and the second transmission quantum channel is affected by four quantum noises, the
curves that the fidelity of secret message changes with pA and pB.
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