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1. Introduction

It is well known that stability properties of Hopfield-type neural networks (see, for example, [1], [2])
have been widely used in optimization problems,associative memory, pattern recognition and signal
processing (see, for example, [3], [4], [5], [6], [7]). Early researches on stability of the equilibria of
Hopfield-type neural networks mainly involves ordinary differential equations. However, time delays
are inevitable in the propagation of electrical signals between neurons or in complex signal processing.
Therefore, time delays are commonly found in artificial neural networks. At the same time, a large
number of theoretical studies show that time delays may have complicated and unpredictable impacts
on local or global dynamics of neural networks. Time delays may destroy stability properties of the
equilibria of neural networks and cause their orbits to oscillate and even become chaotic etc.

Due to both the universality of time delays in the real world and the importance of constructing
the neural networks, many mathematical researchers have paid great attention to Hopfield-type neural
networks with time delays and a great amount of results have been achieved (see, for example, [8], [9],
[10], [11], [12], [13], [14],[15], [16], [17], [18]).
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Compared with continuous Hopfield-type neural networks, theoretical studies on discrete Hopfield-
type neural networks are much less. However, discrete Hopfield-type neural networks may have rich
kinetic behavior.

In an ideal case, the discrete Hopfield-type neural networks should be produced in a way to re-
flect the dynamics of the continuous counterparts. Specifically, the discrete networks should inherit
the dynamical characteristics of the continuous networks, and also maintain functional similarity to
the continuous system and any physical or biological reality that the continuous has[19]. However,
unfortunately, as pointed out in [20], discrete neural networks can hardly maintain the dynamics of
continuous counterparts even during very short sampling periods. Therefore, it is crucial to study the
similarity of the dynamic properties between the discrete neural networks and the continuous counter-
parts.

It should be mentioned that, based on the analytical method on the distribution of the roots of
transcendental functions developed in [24], some sharp conditions are obtained for delay independent
stability of a class of additive neural networks are given in [25].

In [26], [27], [28] and [29], by constructing suitable nonlinear algebraic equations and using the re-
sults in [25] and the properties of M-matrix in [30], some sufficient conditions and necessary conditions
for global attractivity of retarded and neutral Hopfield-type neural networks are obtained.

The purpose of the short paper is to extend the methods in [24], [25], [26], [27], [28] and [29] to the
analysis for global attractivity of a class of discrete Hopfield-type neural networks with time delays.
This paper is organized as follows. In Section 2, a class of discrete Hopfield-type neural networks with
time delays and some basic assumptions are given. Then, ultimate boundedness of the solutions of the
discrete neural networks is considered by establishing a class of related nonlinear algebraic equations.
At the same time, for convenience, some equivalent conditions of M-matrix are introduced. In Section
3, global attractivity of the discrete neural networks is discussed, and a sufficient condition is given.
In Section 4, necessary conditions for stability of the discrete neural networks are obtained. To prove
the necessary conditions, several important lemmas similar to [24] and [25] have been extended to the
discrete neural networks. Finally, in Section 5, a 3-dimensional discrete Hopfield-type neural networks
with time delays is considered by the method of numerical simulations. The numerical simulations
show that, under certain conditions, the sufficient condition is very close to the necessary condition.

2. Discrete Hopfield-type neural networks with time delays and its dissipation

The following n-dimensional discrete Hopfield-type neural networks with time delays is considered,

Ui(k + 1) = biUi(k) +

n∑
j=1

ai j f j(U j(k − τi j)) (i = 1, 2, · · · , n; k ∈ Z+). (2.1)

In (2.1), Z+ denotes the set of all nonnegative integers. Ui(k) denotes the potential(or voltage) of the
ith neuron at time k. bi is the real constant which represents the ith neuron receives itself’s feedback.
ai j is the real constant which represents the synaptic connection weight between the jth neuron and
the ith neuron. f j(U) denotes the nonlinear processing function in the dendrites of neurons. The time
delay τi j is the nonnegative integer which represents the signal propagation delay from jth neuron to
ith neuron. As pointed out in [1], f j(U) can be regarded as a smooth input-output function because
the biological information in neurons often lies in a short-time average of the firing rate[21]. Hence,
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f j(U) can be regarded as a continuously differentiable function with respect to the variable U. Based
on biological meanings, it is assumed that the following conditions are satisfied.

(H1) |bi| < 1 (i = 1, 2, ..., n).
(H2) fi(0) = 0, | fi(U)| ≤ 1 (U ∈ R), lim

U→−∞
fi(U) = −1, lim

U→+∞
fi(U) = 1 (i = 1, 2, ..., n).

(H3) f ′i (U) > 0 (U ∈ R), f ′i (0) = sup
U∈R

f ′i (U) = 1 (i = 1, 2, ..., n).

Remark 2.1. Based on [22] and [23], the constant bi represents the rate with which the ith neuron
will reset its potential(or voltage) to the resting state in isolation when disconnected from the networks.
Hence, the assumption (H1) is reasonable in biology. Moreover, according to [2] the nonlinear pro-
cessing function f j can be considered as some sigmoidal function with saturation properties. Therefore,
the assumptions (H2) and (H3) have rationality in biology.

Remark 2.2. For convenience, and without losing the generality of theoretical analysis, it is assumed
that the external inputs are equal to 0 in (2.1). When there are constant external inputs in (2.1), similar
to [22] and [25], the neural networks can be transformed to a system similar to (2.1) without external
inputs.

The initial condition for (2.1) is given as ui(s) = φi(s), (s = −r,−r + 1, · · · , 0, i = 1, 2, · · · , n),
where φi(s) are given real constants, r = max{τi j | i, j = 1, 2, · · · , n}. It is clear that the solution
U(k) = (U1(k),U2(k), · · · ,Un(k))T of (2.1) with the above initial condition is existent and unique for
all k ∈ Z+.

(2.1) always has the equilibrium U = (0, 0, · · · , 0)T ≡ 0. This paper mainly discusses sufficient
conditions for global attractivity of U = 0 and necessary conditions for stability of U = 0.

First, similar to [26] and [27], we have the following important result on dissipation of (2.1).

Lemma 2.1. If (H1) - (H3) hold, then any solution U(k) of (2.1) satisfies lim supk→+∞ |Ui(k)|≤ Mi,

where each Mi satisfies the following nonlinear algebraic equations,

Mi =
1

1 − |bi|

n∑
j=1

|ai j| f̄ j(M j) (i = 1, 2, · · · , n),

where f̄ j(M j) = max{ f j(M j),− f j(−M j)} (i = 1, 2, · · · , n).

Proof. By (2.1) and (H2), it has

|Ui(k + 1)| ≤ |bi||Ui(k)| +
n∑

j=1

|ai j| (i = 1, 2, · · · , n, k ∈ Z+).

Note that |bi| < 1 by (H1), it further has

lim sup
k→+∞

|Ui(k)| ≤
1

1 − |bi|

n∑
j=1

|ai j| , Mi,0 (i = 1, 2, · · · , n).

For ∀ε > 0, there is a positive integer K0, such that |Ui(k − τi j)| ≤ Mi,0 + ε (i = 1, 2, · · · , n, k > K0).
According to (H3), it has

|Ui(k + 1)| ≤ |bi||Ui(k)| +
n∑

j=1

|ai j| f̄ j(M j,0 + ε) (i = 1, 2, · · · , n, k > K0).
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Hence,

lim sup
k→+∞

|Ui(k)| ≤
1

1 − |bi|

n∑
j=1

|ai j| f̄ j(M j,0 + ε) (i = 1, 2, · · · , n).

Let ε→ 0. It has lim supk→+∞ |Ui(k)| ≤ Mi,1, where

Mi,1 =
1

1 − |bi|

n∑
j=1

|ai j| f̄ j(M j,0) ≤ Mi,0 (i = 1, 2, · · · , n).

Repeating the above process, there has a decreasing sequence {Mi,p}, which satis-
fies lim supk→+∞ |Ui(k)| ≤ Mi,p, where

Mi,p =
1

1 − |bi|

n∑
j=1

|ai j| f̄ j(M j,p−1) (i = 1, 2, · · · , n, p = 1, 2, · · · ).

Denote lim sup
p→+∞

Mi,p = Mi (i = 1, 2, · · · , n). It has limk→+∞ supk |Ui(k)| ≤ Mi, where

Mi =
1

1 − |bi|

n∑
j=1

|ai j| f̄ j(M j) (i = 1, 2, · · · , n).

�

Lemma 2.2. ([30]) Define the set of real matrices Zn×n , {Z = (zi j)|zi j ≤ 0, i , j, i, j = 1, 2, · · · , n}.
For any C ∈ Zn×n, the following conditions are equivalent:

(i) All the principle minors of C are nonnegative.
(ii) For any vector x , 0, let y = Cx, then there is some i ∈ {1, 2, · · · , n} such that xi , 0 and

xiyi ≥ 0.

If C ∈ Zn×n satisfies any of the above conditions, then C is called an M-matrix.

3. Sufficient conditions for global attractivity

In this section, we will give sufficient conditions for global attractivity of U = 0 of (2.1).
Define the matrix C ∈ Zn×n as follows:

C =


1 − |b1| − |a11| −|a12| · · · −|a1n|

−|a21| 1 − |b2| − |a22| · · · −|a2n|
...

...
. . .

...

−|an1| −|an2| · · · 1 − |bn| − |ann|

 = (ci j)n×n.

Using the similar method in [28], it has the following result for global attractivity of U = 0 of (2.1).

Theorem 3.1. If C is an M-matrix, then U = 0 of (2.1) is globally attractive for any time delays τi j

(i, j = 1, 2, · · · , n).

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4936–4946



4940

Proof. According to Lemma 2.1, any solution U(k) of (2.1) satisfies lim supk→+∞ |Ui(k)| ≤ Mi, where

Mi =
1

1 − |bi|

n∑
j=1

|ai j| f̄ j(M j) (i = 1, 2, · · · , n). (3.1)

Subsequently, it will be shown that there must be Mi = 0 for all i = 1, 2, · · · , n.
Firstly, it assumes that Mi > 0 for all i = 1, 2, · · · , n. Then according to (3.1), (H2) and (H3), it has

that
n∑

j=1
|ai j| > 0 (i = 1, 2, ..., n). Hence, it has that f̄ j(M j) < M j ( j = 1, 2, ..., n). which further implies

that

Mi(1 − |bi) =

n∑
j=1

|ai j| f̄ j(M j) <
n∑

j=1

|ai j|M j (i = 1, 2, · · · , n),

i.e., CM < 0, here M = (M1,M2, · · · ,Mn)T > 0.
Denote x = M > 0 and y = CM. Then for all i ∈ {1, 2, · · · , n}, it has

xiyi = Mi

n∑
j=1

ci jM j < 0,

which contradicts to the condition (ii) in Lemma 2.2. Therefore, it must have that there is at least some
j such that M j = 0.

Without loss of generality, it is assumed that Mn = 0. Afterwards, it can be shown from (3.1) that

Mi =
1

1 − |bi|

n−1∑
j=1

|ai j| f̄ j(M j) (i = 1, 2, · · · , n − 1).

With the same method as discussed above, it has that M2 = M3 = · · · = Mn−1 = Mn = 0. Finally, it has
from (3.1) that

M1 =
1

1 − |b1|
|a11| f̄1(M1).

If a11 = 0, it is clear that M1 = 0. If a11 , 0, it has that

M1 =
1

1 − |b1|
|a11| f̄1(M1) <

1
1 − |b1|

|a11|M1,

i.e., (1− |b1| − |a11|)M1 < 0, which is a contradiction to C being an M-matrix (hence 1− |b1| − |a11| ≥ 0).
Therefore, there must be M1 = 0. In summary, it has that M1 = M2 = · · · = Mn = 0. �

4. Necessary conditions for stability

In this section, we will consider the necessary conditions for stability of U = 0 of (2.1). First of all,
from (H2) and (H3), it has the following linearized system of (2.1) at U = 0,

Ui(k + 1) = biUi(k) +

n∑
j=1

ai jU j(k − τi j) (i = 1, 2, · · · , n; k ∈ Z+). (4.1)
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The characteristic equation of (4.1) is

P(λ) , det


λ − b1 − a11λ

−τ11 −a12λ
−τ12 · · · −a1nλ

−τ1n

−a21λ
−τ21 λ − b2 − a22λ

−τ22 · · · −a2nλ
−τ2n

...
...

. . .
...

−an1λ
−τn1 −an2λ

−τn2 · · · λ − bn − annλ
−τnn

 = 0. (4.2)

Motivated by the results in [24] and [25], it has the following important Lemmas 4.1, 4.2 and 4.3.

Lemma 4.1. Assume that bi ≤ 0 (i = 1, 2, · · · , n). If det(C) < 0, then there exist the time delays
τi j ∈ N (i, j = 1, 2, · · · , n) such that the characteristic equation (4.2) has a root λ with |λ| > 1.

Proof. Let us assume that λ , 0. Consider the following equation,

λnP(λ) = λn det


λ − b1 − a11λ

−τ11 −a12λ
−τ12 · · · −a1nλ

−τ1n

−a21λ
−τ21 λ − b2 − a22λ

−τ22 · · · −a2nλ
−τ2n

...
...

. . .
...

−an1λ
−τn1 −an2λ

−τn2 · · · λ − bn − annλ
−τnn


= det


λ2 − b1λ − a11λ

−τ11+1 −a12λ
−τ12+1 · · · −a1nλ

−τ1n+1

−a21λ
−τ21+1 λ2 − b2λ − a22λ

−τ22+1 · · · −a2nλ
−τ2n+1

...
...

. . .
...

−an1λ
−τn1+1 −an2λ

−τn2+1 · · · λ2 − bnλ − annλ
−τnn+1

 .
Let us define the function,

Fε(z) , det


(z + ε)2 − b1(z + ε) − a11(z + ε)−τ11+1 · · · −a1n(z + ε)−τ1n+1

−a21(z + ε)−τ21+1 · · · −a2n(z + ε)−τ2n+1

...
. . .

...

−an1(z + ε)−τn1+1 · · · (z + ε)2 − bn(z + ε) − ann(z + ε)−τnn+1

 , (4.3)

where

τi j =

even number, ai j < 0,
odd number, ai j ≥ 0 (i, j = 1, 2, ..., n).

(4.4)

For z = reπi (r ∈ R+) and ε = 0, (4.3) becomes

R(r) , F0(reπi) = det


r2 + b1r − |a11|r−τ11+1 −|a12|r−τ12+1 · · · −|a1n|r−τ1n+1

−|a21|r−τ21+1 r2 + b2r − |a22|r−τ22+1 · · · −|a2n|r−τ2n+1

...
...

. . .
...

−|an1|r−τn1+1 −|an2|r−τn2+1 · · · r2 + bnr − |ann|r−τnn+1


= det


r2 − |b1|r − |a11|r−τ11+1 −|a12|r−τ12+1 · · · −|a1n|r−τ1n+1

−|a21|r−τ21+1 r2 − |b2|r − |a22|r−τ22+1 · · · −|a2n|r−τ2n+1

...
...

. . .
...

−|an1|r−τn1+1 −|an2|r−τn2+1 · · · r2 − |bn|r − |ann|r−τnn+1

 .
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According to bi ≤ 0, it has R(1) = det C < 0. Furthermore, R(+∞) = +∞ > 0. Since R(r) is continuous
in R, it has from Lagrangian mean value theorem that there exists r∗ > 1 such that R(r∗) = 0. Therefore,
z∗ = r∗eπi is a root of F0(z) = 0. Obviously, for small ε > 0, |Fε(z) − F0(z)| is also small enough. By
Rouch’s Theorem, Fε(z) = 0 has a root ẑ∗(ε) in the neighborhood of z∗ such that |ẑ∗| > 1.

Denote λ∗ , ẑ∗ + ε. Obviously, it has |λ∗| > 1 as ε is small enough. According to the selection
method of τi j in (4.4), it has from (4.3) that

0 =Fε(ẑ∗)

= det


(ẑ∗ + ε)2 − b1(ẑ∗ + ε) − a11(ẑ∗ + ε)−τ11+1 · · · −a1n(ẑ∗ + ε)−τ1n+1

−a21(ẑ∗ + ε)−τ21+1 · · · −a2n(ẑ∗ + ε)−τ2n+1

...
. . .

...

−an1(ẑ∗ + ε)−τn1+1 · · · (ẑ∗ + ε)2 − bn(ẑ∗ + ε) − ann(ẑ∗ + ε)−τnn+1


= det


(λ∗)2 − b1λ

∗ − a11(λ∗)−τ11+1 · · · −a1n(λ∗)−τ1n+1

−a21(λ∗)−τ21+1 · · · −a2n(λ∗)−τ2n+1

...
. . .

...

−an1(λ∗)−τn1+1 · · · (λ∗)2 − bnλ
∗ − ann(λ∗)−τnn+1


=(λ∗)nP(λ∗).

This proves that λ∗ is a root of the characteristic equation (4.2) such that |z∗| > 1. �

Lemma 4.2. Assume that bi ≤ 0 (i = 1, 2, · · · , n). If C is not an M-matrix, then there exist the time
delays τi j ∈ N (i, j = 1, 2, · · · , n) such that the characteristic equation (4.2) has a root λ with |λ| > 1.

Proof. From Lemma 2.2, if C is not an M-matrix, then there exists at least one negative principal minor
of C. Without loss of generality, it is assumed that the sequential principal minor Cl of order l of C is
negative, namely, det(Cl) < 0.

The characteristic equation of Cl is as follows,

Pl(λ) , det


λ − b1 − a11λ

−τ11 −a12λ
−τ12 · · · −a1lλ

−τ1l

−a21λ
−τ21 λ − b2 − a22λ

−τ22 · · · −a2lλ
−τ2l

...
...

. . .
...

−al1λ
−τl1 −al2λ

−τl2 · · · λ − bl − allλ
−τll

 = 0. (4.5)

By method similar to the proof of Lemma 4.1, there exist time delays τi j ∈ N+ (i, j = 1, 2, · · · , l) which
satisfy (4.4) such that the characteristic equation (4.5) has a root satisfying |λ∗| > 1.

Applying Laplace expansion, P(λ) can be written as

P(λ) = Pl(λ)[
n∏

m=l

(λ − bm − ammλ
−τmm) + S (λ, λ−τi j)] + T (λ, λ−τi j). (4.6)

Observing (4.2), it is easy to see that, both S (λ, λ−τi j) and T (λ, λ−τi j) contain the terms ai jλ
−τi j (i, j =

l + 1, · · · , n). Therefore, when |λ| > 1, |S (λ, λ−τi j)| and |T (λ, λ−τi j)| can become sufficiently small by
choosing τi j (i, j = l + 1, l + 2, · · · , n) to be large enough. Again using Rouch’s Theorem, it has that
(4.2) has a root λ̃∗ in the neighborhood of λ∗ satisfying |λ̃∗| > 1. �
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Lemma 4.3. ([31]) If the system (4.1) has a characteristic eigenvalue λ satisfying |λ| > 1, then U = 0
of (2.1) is not stable.

From Lemma 4.2, Lemma 4.3 and Lemma 4.3, it has the following result.

Theorem 4.1. Assume that bi ≤ 0 (i = 1, 2, · · · , n). If C is not an M-matrix, then there exist time
delays τi j ∈ N+ (i, j = 1, 2, · · · , n) such that U = 0 of (2.1) is not stable.

Remark 4.1. Based on [2], the Ui(k) of (2.1) refers to the potential of the ith neuron at time k. The
sign of Ui(k) indicates the neuron being at the action potential or the resting potential. In terms
of a single neuron (ignoring the interactions among neurons), when a neuron at resting potential
receives a stimulus input, the neuron’s potential will be at an action potential at next time. Similarly,
when neuron’s stimulation at the action potential is terminated, the neuron will be resting at next
time. Therefore, to a certain extent, this explains the biological significance of the condition bi ≤ 0
(i = 1, 2, ..., n) in Theorem 4.1.

5. Numerical simulations and conclusions

In this paper, global attractivity and stability of the equilibrium U = 0 of (2.1) have been considered.
In Theorem 3.1, sufficient conditions are given for global attractivity of U = 0 for any time delays τi j

(i, j = 1, 2, ..., n). In Theorem 4.1, under certain conditions, necessary conditions are presented for
stability of U = 0 for any time delays τi j (i, j = 1, 2, ..., n).

Theorem 3.1 shows that, under certain conditions, for global attractivity of the equilibrium, the dis-
crete Hopfield-type neural networks (2.1) can maintain consistent conditions with continuous counter-
parts in [25] and [28]. Meanwhile, it is also confirmed that the discrete Hopfield-type neural networks
can inherit some of biological dynamic properties of the continuous ones. Furthermore, based on [1]
and [2], when the discrete Hopfield-type neural networks (2.1) behaves as an associative memory or
a content addressable memory, the state near the equilibrium contains information about the memory.
Hence, under the conditions in Theorem 3.1, the memory is truly addressable and allows information to
be stored around the equilibrium. On the other hand, according to the following numerical simulations,
it can be showed that when a discrete Hopfield-type neural networks does not satisfy the conditions
in Theorem 4.1, the potential (voltage) of the neurons will not reset in the resting state, but becomes
oscillatory.

It should be pointed out that the condition ”bi ≤ 0 (i = 1, 2, ..., n)” in Theorem 4.1 may be a technical
condition and is likely to be further improved.

Finally, as a simple application of the conclusions of this paper, let us consider the following 3-
dimensional discrete Hopfield neural networks with time delays,

U1(k + 1) = −
3
10

U1(k) −
1

30
f (U1(k − τ11)) −

1
3

f (U2(k − τ12)) +
1
3

f (U3(k − τ13)),

U2(k + 1) = b2U2(k) +
1
3

f (U1(k − τ21)) +
1
30

f (U2(k − τ22)) −
1
3

f (U3(k − τ23)),

U3(k + 1) = −
3
10

U3(k) −
1
3

f (U1(k − τ31)) −
1
3

f (U2(k − τ32)) −
1

30
f (U3(k − τ33)),

(5.1)

where b2 ≤ 0, f (x) = tanh(x).
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Let b2 = −0.3, (5.1) satisfies the conditions of Theorem 3.1, and det C = 0. Hence, U = 0 is globally
attractive for any time delays τi j (i, j = 1, 2, 3). Figure 1 is corresponding numerical simulation.

On the other hand, let us change the value of b2 from b2 = −0.3 to b2 = −0.33, it has det C =

−0.01 < 0. According to (4.4), the time delays τi j (i, j = 1, 2, 3) are selected as follows,

τi j =

30, ai j < 0,
29, ai j ≥ 0 (i, j = 1, 2, 3).

From Theorem 4.1, it has that U = 0 is unstable. Figure 2 is corresponding numerical simulation,
which shows that the solution becomes oscillatory.
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Figure 1. The solution curves of (5.1) with b2 = −0.3 and det(C) = 0 ≥ 0.
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Figure 2. The solution curves of (5.1) with b2 = −0.33 and det(C) = −0.01 < 0.
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