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Abstract: In this paper, a new mathematical model (a system of delay differential equation) is
proposed to describe dynamical behaviors of malaria in an infected host with red blood cells (RBCs),
infected red blood cells (iRBCs) and immune factors. The basic reproduction number<0 of the malaria
infection is derived. If <0 ≤ 1, the uninfected equilibrium E0 is globally asymptotically stable. If
<0 > 1, there exists two kinds of infection equilibria. The conditions of these equilibria with respect
to the existence, stability and uniform persistence are given. Furthermore, fluctuations occur when the
model undergoes Hopf bifurcation, and periodic solution appears near the positive equilibrium. The
direction and stability of Hopf bifurcation are also obtained by applying the center manifold method
and the normal form theory. Numerical simulations are provided to demonstrate the theoretical results.
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1. Introduction

Malaria is one of the most dangerous global health problems. It causes millions of infections every
year, and more than 1.1 million people died from the disease, especially infants, young children and
pregnant women (WHO [1]). The mainly affected group is children under the age of five, accounting
for 82% of all malaria deaths. It is endemic in the tropical and subtropical regions of the world, and
people in Africa are at the risk of such disease accounting for 27% of the world’s malaria infections
(WHO [1]). It is reported that about every 30 seconds, a child’s life will be threatened by such disease.
Although some children are survived, they still suffer miserable physical problems, such as hearing
impairment and brain damage. Meanwhile, pregnant women are also susceptible to malaria infection,
which can cause maternal mortality, low birth weight in infants as well as maternal anaemia. According
to the statistics, it caused an estimated 243 million malaria cases led to an estimated 863,000 deaths in
2008 (WHO [1]).

Malaria infection is mainly induced by the following four malaria parasites: P. falciparum, P.
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malariae, P. ovale and P. vivax. Among them, P. falciparum is responsible for almost all of the deaths
attributed to malaria [2]. And anopheles is a vector of malaria. Once the infected anopheles bites the
host, the malaria parasites first penetrate liver cells of the host and then move into the blood, where
they multiply and undergo replication cycles in the red blood cells. After 10-14 days or more, the
malaria parasites develop and mature in the biting mosquitos until they can infect others. When
malaria parasites evolve in the host, they can stimulate the activity of immune cells which produce an
immune response.

In the past few years, lots of efforts have been carried out to control and prevent such disease [3].
However, people living in high epidemic areas are still hardly to obtain effective malaria prevention,
diagnosis and treatment. As the emergence of malaria drug resistant strains and insecticide resistant
mosquitoes, how to prevent and control malaria infection is still a problem. The main detriment of
plasmodium in the host occurs in the blood-stage, where the parasites will develop and reproduce.
In order to clarify the mechanism, many mathematical models have been employed to describe the
dynamics of malaria infection.

The first model was proposed by Hetzel and Anderson [4] which studied the performance of a
mathematical model for the blood phase of malaria infection with a single strain. Analyzing the cells
population dynamics in the absence of a host immune response, the authors demonstrated a
relationship between host and parasite parameters, which defined a criterion for the successful
invasion and persistence of the parasite. Hetzel and Anderson [4] indicated some important
parameters, such as the production rates of merozoite and erythrocyte, the mortality rates of merozoite
and erythrocyte as well as the invasion rate of merozoite.

In 2011, Li et al. [5] studied the dynamics for malaria parasites infection in the host blood-stage.
Considered that the clearance of host immune cells was restricted by concentration, the following
model was established: 

dH
dt

= λ − d1H − αHM,

dI
dt

= αHM − δI −
p1IE

1 + βI
,

dM
dt

= rI − µM −
p2ME

1 + γM
,

dE
dt

= −d2E +
k1IE

1 + βI
+

k2ME
1 + γM

,

where H, I,M and E are population of red blood cells, infected red blood cells, malaria parasites and
immunity effectors, respectively. d1, δ, µ and d2 represent the decay rate of H(t),I(t), M(t) and E(t)
respectively. λ, α and r are production rate of H(t), infection of H(t) by M(t), product rate of M(t)
respectively. p1, p2, k1, k2, β and γ represent the removal rate of I(t) and M(t) by E(t), proliferation rate
of E(t) by I(t) and M(T ), 1

β
means half saturation constant for I(t) and 1

γ
is half saturation constant

for M(t) respectively. In [5], the authors showed that there existed a threshold value <0 and the
malaria-free equilibrium was globally asymptotically stable if <0 < 1, if <0 > 1, there existed two
kinds of infection equilibria: malaria infection equilibrium (without specific immune response) and
positive equilibrium (with specific immune response). Conditions on the existence and stability of both
infection equilibria are given. Moreover, it indicated that the model could undergo Hopf bifurcation at
the positive equilibrium and exhibit periodic oscillations.
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A malaria model between human and mosquitoes was established by Xiao and Zou [6] which
presented an important conclusion that two malaria parasites may co-exist in the same region but not
in the same host.

In 2016, Chang [7] made a great progress in the study of the innate immune mechanism of
plasmodium falciparum escaping the immune clearance in the host. Innate immune response is the
first line for host to defense pathogen invasion. After being stimulated by the red blood cells, the host
neutrophils release chromatin and lysosomal granules in the cytoplasm to form a reticular structure
(NETs) in a way of active death (Netosis). NETs can capture and kill infected red blood cells. At the
same time, plasmodium degrades NETs by secreting DNA enzymes (TatD-like DNase) to escape host
immune elimination. Chang [7] indicated that TatD-like DNase was an important factor in the
survival of malaria parasites as well as a potential candidate for malaria vaccine.

In terms of a great deal of literatures in malaria infection [8–12], we focus on some more
important factors and hope to establish new models that can be used to study malaria infection in a
host from different perspectives. Liu [13] considered three dynamical variables of populations: RBCs
T (t), iRBCs I(t) and the immunity effectors (NETs) M(t). Here the model reads as



dT (t)
dt

= λ − d1T (t) − µT (t)I(t),

dI(t)
dt

= µT (t)I(t) − d2I(t) − αI(t)M(t),

dM(t)
dt

= βI(t)M(t) − d3M(t).

(1.1)

The variables and parameters are given in the table below.

Table 1. Variables in model (1.1).

Symbols Variables Initial Values Reference
T population of red blood cells (RBCs) 5 × 106cells/ul [4, 5, 10]
I population of infection red blood cells (iRBCs) 104cells/ul [4, 5, 10]
M population of immune factors (NETs) 10−4cells/ul [4, 5, 10]

Table 2. Parameters in model (1.1).

Symbols Parameters Initial Values Reference
λ production rate of T (t) 4.15 × 104cells/ul/day [4, 5]
d1 decay rate of T (t) 8.3 × 10−3/day [4, 5]
d2 decay rate of I(t) 1.0/day [4, 5]
d3 decay rate of M(t) 0.05/day [4]
µ infection of T (t) by plasmodium 2 × 10−9ul/cell/day [4, 5]
α removal rate of I(t) by M(t) 10−8cells/ul/day [4, 5]
β production rate of M(t) by I(t) 2.5 × 10−5cells/ul/day [4, 5]
g 1

g half saturation constant for I(t) 5 × 10−4cells/ul/day [5]
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The main results of model (1.1) have been shown in [13]. And here, we just simply introduce the
results as below.

(i) If<0 < 1, then the infection-free equilibrium is globally asymptotically stable.
(ii) If 1 < <0 < 1+

d3µ

d1β
, then the infection equilibrium (without specific immune response) is globally

asymptotically stable.
(iii) If <0 > 1 +

d3µ

d1β
, then the infection equilibrium (with specific immune response) is globally

asymptotically stable.

However, in real life, malaria infection does not tend to a fixed state over time, it turns out that some
diseases will recur over a period of time or even change periodically. That means, it is not a good way
to study the dynamics of malaria in host by using an ordinary differential equation model. Hence, in
order to describe the time lag of the generation of immune factors, we consider adding a delay term to
model (1.1). The delay differential equation model is as follows.

dT (t)
dt

= λ − d1T (t) − µT (t)I(t),

dI(t)
dt

= µT (t)I(t) − d2I(t) − αI(t)M(t),

dM(t)
dt

= βI(t − τ)M(t − τ) − d3M(t).

Compared with model (1.1), this model adds a time delay τ in the production item of immune factors
βI(t)M(t). In the following analysis, we calculated the characteristic root of the characteristic
transcendental equation and found that the stability of positive equilibrium is changed from stable to
unstable, and thus the Hopf bifurcation occurs.

This paper is organized as follows. In section 2, we propose a delay differential equation model for
the within-host dynamics of malaria infection based on the basic reproduction number, existence of
equilibria, stability of infection-free equilibrium E0 and infection equilibria E1, E∗ as well as
persistence of positive equilibrium E∗. Section 3 is devoted to exhibit periodic oscillations due to the
Hopf bifurcation at the positive equilibrium E∗. Specifically, by choosing immune response delay as
bifurcation parameter, we can demonstrate that a limit cycle occurs via Hopf bifurcation when the
time delay τ passes through the critical value. The direction and stability of Hopf bifurcation are
derived by applying the center manifold method and the normal form theory. In section 4, some
numerical simulations are presented to interpret our main results biologically. A short discussion on
research results is also given in this section.

2. Global dynamical properties of the model

Consider the delay differential equation model

dT (t)
dt

= λ − d1T (t) − µT (t)I(t),

dI(t)
dt

= µT (t)I(t) − d2I(t) − αI(t)M(t),

dM(t)
dt

= βI(t − τ)M(t − τ) − d3M(t).

(2.1)
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The initial conditions of (2.1) are given as

T (θ) = ϕ1(θ) ≥ 0, I(θ) = ϕ2(θ) ≥ 0,M(θ) = ϕ3(θ) ≥ 0, θ ∈ [−τ, 0],
ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0,

(2.2)

where (ϕ1, ϕ2, ϕ3) ∈ C([−τ, 0],R3
+), the Banach space of continuous functions map the interval [−τ, 0]

into R3
+. By fundamental theory of functional differential equation (Kuang [14]), there exists a unique

solution (T (t), I(t),M(t)) of (2.1) with initial conditions (2.2).
Upon the positivity and boundedness of solutions for model (2.1), we claim the following result.

Theorem 2.1. Let (T (t), I(t),M(t)) be the solution of model (2.1) with initial conditions (2.2), then
T (t), I(t),M(t) are positive and ultimately bounded for all t ≥ 0.

Proof. The positivity of the model (2.1) follows directly from Theorem 3.4 [15]. As for the
boundedness of solutions to the model (2.1) with initial conditions (2.2), we denote

L(t) = T (t) + I(t) +
α

β
M(t + τ).

By the positivity of solutions, we have

dL(t)
dt

= λ − d1T (t) − µT (t)I(t) + µT (t)I(t) − d2I(t) − αI(t)M(t)

+ αI(t)M(t) −
αd3

β
M(t + τ)

= λ − d1T (t) − d2I(t) −
αd3

β
M(t + τ)

≤ λ − mL(t),

(2.3)

where m = min {d1, d2, d3}. Hence, it comes

lim sup
t→∞

L(t) ≤
λ

m
.

This implies that T (t), I(t),M(t) are ultimately bounded. �

Next, we define threshold values <0 and <1. For model (2.1), the basic reproduction number of
iRBCs, which describes the average number of newly infected cells generated by one infected cell
during its lifespan, is defined by

<0 =
λµ

d1d2
,

and the immune response threshold value is defined as below

<1 = 1 +
d3µ

d1β
.

We will see that <0 and <1 play key roles in determining the existence and stability of equilibria
of the model (2.1). Actually, let 

λ − d1T − µT I = 0,
µT I − d2I − αIM = 0,
βIM − d3M = 0.

(2.4)

The following results can be verified by direct calculations.
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(i) If <0 ≤ 1, then (2.1) always has a unique infection-free equilibrium E0 = (T0, 0, 0), where
T0 = λ

d1
.

(ii) If 1 < <0 ≤ <1, then (2.1) has two equilibria, E0 and infection equilibrium (without specific
immune response) E1 = (T1, I1, 0), where T1 = d2

µ
and I1 =

λµ−d1d2
d2µ

=
d1(<0−1)

µ
.

(iii) If <0 > <1, then (2.1) has three equilibria, E0, E1 and infection equilibrium (with specific
immune response) E∗ = (T ∗, I∗,M∗) respectively, where T ∗ =

λβ

d1β+d3µ
, I∗ = d3

β
and

M∗ =
λµβ−d1d2β−d2d3µ

d1αβ+d3αµ
=

d1d2β(<0−<1)
d1αβ+d3αµ

.

Now, we investigate the stability of the equilibria of model (2.1). Consider the linearization of the
model (2.1) at E = (T (t), I(t),M(t)),

x′(t) = Ax(t) + Bx(t − τ), (2.5)

where x(t) = (T (t), I(t),M(t))T ,

A =


−d1 − µI(t) −µT (t) 0

µI(t) µT (t) − d2 − αM(t) −αI(t)
0 0 −d3


.

(2.6)

B =


0 0 0
0 0 0
0 βM(t − τ) βI(t − τ)


.

(2.7)

The characteristic equation of (2.5) is formulated as (Hale [16])

det[ΛI − A − e−ΛτB] = 0. (2.8)

Theorem 2.2. If<0 < 1, then the infection-free equilibrium E0 of model (2.1) is locally asymptotically
stable. Moreover, E0 is unstable if<0 > 1.

Proof. By substituting E0 in (2.5), (2.6), (2.7) and (2.8), we obtain the following characteristic equation

(Λ + d1)(Λ + d3)(Λ −
λµ

d1
+ d2) = 0.

Clearly, Λ1 = −d1, Λ2 = −d3 and

Λ3 =
λµ

d1
− d2 = d2(<0 − 1),

which dominates the stability of E0. If<0 < 1, then Λ3 < 0. Therefore, when<0 < 1, all eigenvalues
of model (2.1) have negative real parts and hence, equilibrium E0 is locally asymptotically stable. In
addition, when<0 > 1, we have Λ3 > 0, which means E0 is unstable. �

Theorem 2.3. If <0 ≤ 1, then the infection-free equilibrium E0 of model (2.1) is globally
asymptotically stable.
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Proof. Define Lyapunov functional V0 as follows

V0 = T − T0 − T0 ln
T
T0

+ I +
α

β
M + α

∫ t

t−τ
I(θ)M(θ)dθ.

Differentiating V0 with time t along the model (2.1), then

dV0

dt
= (1 −

T0

T
)(d1T0 − d1T − µT I) + (µT I − d2I − αIM) +

α

β
(βIM − d3M)

= −
d1

T
(T − T0)2 − µT I + µT0I + µT I − d2I −

d3α

β
M

= −
d1

T
(T − T0)2 + (

λµ

d1
− d2)I −

d3α

β
M

= −
d1

T
(T − T0)2 + d2(<0 − 1)I −

d3α

β
M.

Obviously, if <0 ≤ 1, then dV0
dt ≤ 0 for any T (t), I(t) and M(t). In addition, dV0

dt = 0 if and only if
T (t) = T0, I(t) = 0 and M(t) = 0. Let Γ be the largest invariant set of {(T (t), I(t),M(t) ∈ R3

+ |
dV0
dt = 0},

we easily get Γ = {E0}. According to LaSalles invariance principle (Kuang [14]), it follows that
equilibrium E0 is globally asymptotically stable when<0 ≤ 1. This completes the proof. �

Theorem 2.4. If 1 < <0 < <1, then the infection equilibrium (without specific immune response) E1

of model (2.1) is locally asymptotically stable.

Proof. By substituting E1 into (2.5), (2.6), (2.7) and (2.8), we have the following characteristic equation[
Λ − d3

(
e−Λτ d1β

d3µ
(<0 − 1) − 1

)] [
Λ2 + d1<0Λ + d1d2(<0 − 1)

]
= 0. (2.9)

It is easy to check that Λ2 + d1<0Λ + d1d2(<0 − 1) = 0 has two eigenvalues Λ1 and Λ2 with negative
real parts if 1 < <0 < <1. We assume that Λ = a + ib satisfies

Λ − d3

[
e−Λτ d1β

d3µ
(<0 − 1) − 1

]
= 0. (2.10)

Substituting Λ = a + ib into (2.10) and separating the real and imaginary parts, we obtaina = d3[βd1(<0−1)
d3µ

e−aτ cos(bτ) − 1],

b = d3[−βd1(<0−1)
d3µ

e−aτ sin(bτ)].
(2.11)

Assume that a ≥ 0, when 1 < <0 < <1, then a < d3[e−aτ cos(bτ) − 1] from the right hand side of
the first equation of (2.11). This contradicts the assumption. So we get a < 0, i.e. ReΛ3 < 0. Thus,
all eigenvalues of equation (2.9) have negative real parts and equilibrium E1 is locally asymptotically
stable. �

Theorem 2.5. If 1 < <0 ≤ <1, then the infection equilibrium (without specific immune response) E1

of model (2.1) is globally asymptotically stable.
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Proof. Define Lyapunov functional V1 as follows

V1 = T − T1 − T1 ln
T
T1

+ I − I1 − I1 ln
I
I1

+
α

β
M + α

∫ t

t−τ
I(θ)M(θ)dθ.

Differentiating V1 with time t along model (2.1), then

dV1

dt
= (1 −

T1

T
)
dT
dt

+ (1 −
I1

I
)
dI
dt

+
α

β
(βIM − d3M)

= −
d1

T
(T − T1)2 + µT1I1(1 −

T I
T1I1

−
T1

T
+

I1

I
) + (1 −

I1

I
)(µT I − µT1I + αIM1

− αIM) + αIM − αI1M

= −
d1

T
(T − T1)2 + µT1I1(1 −

T I
T1I1

−
T1

T
+

I1

I
) + µT1I1(1 −

I1

I
)(

T I
T1I1

−
I
I1

)

= −
d1

T
(T − T1)2 + µT1I1(1 −

T I
T1I1

−
T1

T
+

I
I1

) + µT1I1(
T I

T1I1
−

I
I1
−

T
T1

+ 1)

= −
d1

T
(T − T1)2 + µT1I1(2 −

T
T1
−

T1

T
).

Obviously, if 1 < <0 ≤ <1, then dV1
dt ≤ 0 for any T (t), I(t) and M(t). In addition, dV1

dt = 0 if and only
if T (t) = T1, I(t) = I1 and M(t) = 0. By LaSalles invariance principle (Kuang [14]), equilibrium E1 is
globally asymptotically stable when 1 < <0 ≤ <1. The proof is completed.

Next, we study the stability of the infected equilibrium (with specific immune response), which
is denoted by positive equilibrium E∗. Recall that the positive equilibrium E∗ exists if and only if
<0 > <1. At equilibrium E∗, the characteristic equation for the corresponding linearized model of
(2.1) is

Λ3 + AΛ2 + BΛ + C + (A1Λ
2 + B1Λ + C1)e−Λτ = 0, (2.12)

where

A = d1 + d3 + µI∗,

A1 = −d3,

B = d1d3 + d3µI∗ + µ2T ∗I∗,

B1 = −d1d3 − d3µI∗ + d3αM∗,

C = d3µ
2T ∗I∗,

C1 = d1d3αM∗ − d2d3µI∗.

When τ = 0, equation (2.12) becomes

Λ3 + (A + A1)Λ2 + (B + B1)Λ + (C + C1) = 0, (2.13)

where

A + A1 = d1 + µI∗ > 0,
B + B1 = µ2T ∗I∗ + d3αM∗ > 0,
C + C1 = d3αM∗(µI∗ + d1) > 0.

(2.14)
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Clearly, (A+A1)(B+B1) > C+C1. By Hurwitz criteria, all eigenvalues of equation (2.13) have negative
real parts, which leads to the local stability of equilibrium E∗ when τ = 0. In fact, in this case, E∗ is
also globally stable. �

Theorem 2.6. If <0 > <1 and τ = 0, then the infection equilibrium (with specific immune response)
E∗ of model (2.1) is globally asymptotically stable.

Proof. Define Lyapunov functional V∗ that

V∗ = T − T ∗ − T ∗ ln
T
T ∗

+ I − I∗ − I∗ ln
I
I∗

+
α

β
(M − M∗ − M∗ ln

M
M∗

).

Differentiating V∗ with respect to t along model (2.1), we get

dV∗

dt
= (1 −

T ∗

T
)
dT
dt

+ (1 −
I∗

I
)
dI
dt

+
α

β
(1 −

M∗

M
)
dM
dt

= (1 −
T ∗

T
)(d1T ∗ + µT ∗I∗ − d1T − µT I) + (1 −

I∗

I
)[µT I − (µT ∗ − αM∗)I

− αIM] +
α

β
(1 −

M∗

M
)(βIM − βI∗M)

= −
d1

T
(T − T ∗)2 + (µT ∗I∗ − d1T − µT I) + (1 −

I∗

I
)(µT I − µT ∗I) + (1

−
I∗

I
)(αM∗I − αIM) + αM∗I∗(1 −

M∗

M
)(

IM
I∗M∗

−
M
M∗

)

= −
d1

T
(T − T ∗)2 + µT ∗I∗(1 −

T ∗

T
)(1 −

T I
T ∗I∗

) + µT ∗I∗(1 −
I∗

I
)(

T I
T ∗I∗

−
I
I∗

)

+ αM∗I∗(1 −
I∗

I
)(

I
I∗
−

IM
I∗M∗

) + αM∗I∗(
IM

I∗M∗
−

M
M∗
−

I
I∗

+ 1)

= −
d1

T
(T − T ∗)2 + µT ∗I∗(1 −

T I
T ∗I∗

−
T ∗

T
+

I
I∗

) + µT ∗I∗(
T I

T ∗I∗
−

I
I∗
−

T
T ∗

+ 1) + αM∗I∗(
I
I∗
−

IM
I∗M∗

− 1 +
M

M∗
) + αM∗I∗(

IM
I∗M∗

−
M
M∗
−

I
I∗

+ 1)

= −
d1

T
(T − T ∗)2 + µT ∗I∗(2 −

T
T ∗
−

T ∗

T
).

If<0 > <1, then dV∗
dt ≤ 0 for any T (t), I(t) and M(t). In addition, dV∗

dt = 0 if and only if T (t) = T ∗, I(t) =

I∗ and M(t) = M∗. By using LaSalles invariance principle (Kuang [14]), equilibrium E∗ is globally
asymptotically stable when<0 > <1. This completes the proof. �

Now we consider the stability of the equilibrium E∗ if <0 > <1 and τ > 0. By theorem 4.4
of Hal Smith [15], for small enough delay, the characteristic roots of (2.12) are either very near the
eigenvalues of (2.13) or having more negative real parts than any of the eigenvalues of (2.13). Hence,
when the delay is small the equilibrium E∗ is locally asymptotically stable.

When <0 > <1, for any τ > 0, zero is not a root of (2.12). Note that any complex roots to the
equations (2.12) appear in pairs, and all roots of (2.12) have negative real parts if τ = 0. Therefore,
any root of (2.12) has negative real part for sufficiently small τ. Assume that there exists τ = τ∗, such
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that (2.12) has a pair of pure imaginary roots, denoted by Λ = ±ωi, (ω > 0). Substituting Λ = ωi into
(2.12), we have,

−i(ω3 − Bω) − Aω2 + C + (−A1ω
2 + iB1ω + C1)(cosωτ∗ − i sinωτ∗) = 0.

Separate the real and imaginary parts,{
(C1 − A1ω

2) cosωτ∗ + B1ω sinωτ∗ = Aω2 −C,
B1ω cosωτ∗ − (C1 − A1ω

2) sinωτ∗ = ω3 − Bω.

It follows that

ω6 + (A2 − 2B − A2
1)ω4 + (B2 + 2A1C1 − 2AC − B2

1)ω2 + C2 −C2
1 = 0.

Let z = ω2, it follows that
z3 + p1z2 + q1z + r1 = 0, (2.15)

where
p1 = A2 − 2B − A2

1,

q1 = B2 + 2A1C1 − 2AC − B2
1,

r1 = C2 −C2
1.

By calculating p1, q1 and r1, we obtain

p1 = (d1 + d3 +
d3µ

β
)2 − 2d1d3 − d2

3 −
2d2

3µ

β
−

2d3λµ
2

β(d1 +
d3µ

β
)

= d2
1 + (

d3µ

β
)2 +

2d1d3µ

β
−

2d3λµ
2

d1β + d3µ

= d2
1 + d2

1(<1 − 1)2 + 2d2
1(<1 − 1) − 2d1d2(<1 − 1)

<0

<1

= d2
1<

2
1 − 2d1d2(<0 −

<0

<1
),

q1 =

[
d1d3 +

d2
3µ

β
+

d2
3λµ

2

β(d1 +
d3µ

β
)

]2

−

[
d1d3 + d3(d2 −

λµ

d1<1
) +

d2
3µ

β

]2

+ 2d3

[d2d2
3µ

β

+ d1d3(d2 −
λµ

d1<1
)
]
−

2d2
3λµ

2(d1 + d3 +
d3µ

β
)

d1β<1

=

[
d1d3<1 +

d1d2<0

<1
(<1 − 1)

]2

−

[
d1d3<1 + d2d3(1 −

<0

<1
)
]2

+ 2d3(d1d2d3<1

− d1d2d3
<0

<1
) −

2d1d2d3(<1 − 1)<0

<1
(d1<1 + d3)

= 2d2
1d2d3<0(<1 − 1) +

[d1d2<0

<1
(<1 − 1)

]2

− d1d2d2
3<1(1 −

<0

<1
) −

[
d2d3(1 −

<0

<1
)
]2

− 2d1d2d3

[
d3(<0 −<1) + d1<0(<1 − 1)

]
=

[d1d2<0

<1
(<1 − 1) + d2d3(1 −

<0

<1
)
][d1d2<0

<1
(<1 − 1) − d2d3(1 −

<0

<1
)
]
,
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r1 =

[ d2
3λµ

2

β(d1 +
d3µ

β
)

]2

−

[
d1d3(d2 −

λµ

d1 +
d3µ

β

) +
d2d2

3µ

β

]2

=

[
d1d2d3(<0 −

<0

<1
)
]2

−

[
d1d2d3(1 −

<0

<1
) + d1d2d3(<1 − 1)

]2

= d2
1d2

2d2
3[<2

0(1 −
2
<1

) −<2
1 + 2<0].

Equation (2.15) has no positive roots if it satisfies p1 > 0, r1 > 0, p1q1 − r1 > 0 (Hurwitz criterion).
Hence, τ∗ doesn’t exist. It follows that all solutions of equation (2.15) have negative real part and E∗ is
locally asymptotically stable for any τ > 0. Therefore, we have the following theorem.

Theorem 2.7. If <0 > <1 and p1 > 0, r1 > 0, p1q1 − r1 > 0, then the infection equilibrium E∗ is
locally asymptotically stable for any τ > 0.

Theorem 2.8. If <0 > <1 and r1 < 0, there exists τ∗ > 0, such that equation (2.15) has a pair of
conjugate purely imaginary roots ±ω∗i when τ < τ∗. Moreover, the infection equilibrium E∗ is locally
asymptotically stable if τ < τ∗.

Proof. We know that if r1 < 0, then equation (2.15) has at least one positive root and not more than
three positive roots. Assume that equation (2.15) has three positive roots, denoted by zk, k = 1, 2, 3, it
follows that

τn
k =

1
ωk

[
arccos

(B1 − AA1)ω4
k + (C1A + A1C − BB1)ω2

k −CC1

A2
1ω

4
k + (B2

1 − 2A1C1)ω2
k + C2

1

+ 2nπ
]
,

where k = 1, 2, 3, n ∈ Z+. Suppose that

τ∗ = min
k=1,2,3

{τ0
k}.

When τ = τ∗, equation (2.15) has a pair of conjugate purely imaginary roots. Note that all roots of
equation (2.15) have negative real part if τ = 0, and all roots of equation (2.15) have negative real part
if τ < τ∗, which follows from the continuous dependence of the solution on τ. �

In what follows, we study the persistence of equilibrium E∗, following the analysis of Wang et
al. [17].

Lemma 2.1. Let X be a locally compact metric space and it is the union of two disjoint subsets X1 and
X2, with X2 be compact in X, X1 be open and forward invariant under the continuous semiflow Φ on X.
Assume that

Ω2 =
⋃
y∈Y2

ω(y),Y2 = {x ∈ X2; Φt(x) ∈ X2,∀t > 0},

has an acyclic isolated covering M = ∪m
k=1Mk. If each part Mk of M is a weak repeller for X1, then X2

is a uniform strong repeller for X1.

Theorem 2.9. If <0 > <1, then M is uniformly persistent, that is, there exists a positive constant σ,
such that the positive solutions of model (2.1) satisfy lim inf

t→∞
M(t) > σ.
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Proof. By Theorem 2.1, model (2.1) is point dissipative. Let

X = R3
+ = {(T, I,M)|T ≥ 0, I ≥ 0, M ≥ 0, T + I +

α

β
M ≤

λ

m
},

X1 = {(T, I,M) ∈ L|M > 0, T + I +
α

β
M ≤

λ

m
}, X2 = X \ X1

To prove Theorem 2.9, we need to show that X2 is uniformly strong repeller for X1. It suffice to
verify the conditions of Lemma 2.1. Obviously, X is locally compact, X2 is compact and X1 is forward
invariant. In addition, there are two equilibria E0 = ( λd1

, 0, 0) and E1 = (d2
µ
, λµ−d1d2

d2µ
, 0) in X2. Consider

dT (t)
dt

= λ − d1T (t) − µT (t)I(t),

dI(t)
dt

= µT (t)I(t) − d2I(t).
(2.16)

By Theorem 2.5, E11 = (T1, I1) = ( d2
µ
, λµ−d1d2

d2µ
) is globally asymptotically stable for solutions (T (t), I(t))

to (2.16) with positive initial value if 1 < <0 ≤ <1. In addition, let Y = {(T, 0)|T ≥ 0}, then Y
is positively invariant for (2.16) and the solutions to (2.16) in Y approach E00 = (T0, 0) = ( λd1

, 0) as
t → ∞, it becomes zero or unbounded as t → −∞. Therefore, it follows that

Ω2 = {E11, E00}, M = M1

⋃
M2 = E11

⋃
E00.

Thus, we know that M is acyclic in X2. From theorem 2.4, 2.5 and the Jacobian matrix at E00, it is easy
to check that E00 and E11 are hyperbolic if<0 > <1, which implies that E00 and E11 are isolated in X2.
From what has been discussed above, Ω2 has an acyclic isolated covering M = E00 ∪ E11.

Next, we need to show that each part Mk(k = 1, 2) of M is a weak repeller for X1. It suffice to show
that W s(E11)

⋂
X1 = ∅ and W s(E00)

⋂
X1 = ∅, where W s(E11) denotes the stable manifold of E11, and

W s(E00) denotes the stable manifold of E00. Suppose W s(E11)
⋂

X1 , ∅, then there is a solution of
model (2.1) such that lim

t→∞
(T (t), I(t),M(t)) → E11. Therefore, from the third equation of model (2.1)

that for any ε > 0, there exists t0 > 0, then we obtain

M′(t) ≥ M
[
β(λµ − d1d2)

d2µ
− ε − d3

]
, ∀t ≥ t0. (2.17)

Note that
g(ε) =

β(λµ − d1d2)
d2µ

− ε − d3,

then for t ≥ t0 and M′(t) ≥ g(ε)M. Since <0 > <1, we can choose ε sufficiently small such that
g(ε) > 0. Thus, (2.17) shows that M(t) → ∞ as t → ∞. This contradicts the ultimate boundedness of
Theorem 2.1. Hence, W s(E11)

⋂
X1 = ∅. Similarly, we can prove W s(E00)

⋂
X1 = ∅. �

3. Hopf bifurcation

In the following, we shall determine when the equilibrium E∗ becomes unstable and Hopf
bifurcation occurs. We will seek conditions which guarantee characteristic equation (2.15) to have a
root with negative real part as well as a pair of conjugate purely imaginary roots.
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Theorem 3.1. Suppose <0 > <1 and r1 < 0, then there exists τ∗ > 0. If τ > τ∗, there is a Hopf
bifurcation of model (2.1) from equilibrium E∗ as τ passes through the critical value τ∗.

Proof. Consider the derivative of eigenvalue on real axis across section of positive equilibrium point
E∗ on τ = τ∗ ( [18]). Assume that Λ(τ) = ξ(τ) + iω(τ) is the eigenvalue of equation (2.15) at τ near τ∗
and calculate the derivative of equation (2.15) on τ, we obtain ( [19])

(3Λ2 + 2AΛ + B)
dΛ

dτ
+ (2A1Λ + B1)e−ΛτdΛ

dτ
− (A1Λ

2 + B1Λ + C1)e−Λτ(Λ + τ
dΛ

dτ
) = 0.

This gives
dΛ

dτ
=

Λ(A1Λ
2 + B1Λ + C1)e−Λτ

3Λ2 + 2AΛ + B + [2A1Λ + B1 − τ(A1Λ2 + B1Λ + C1)]e−Λτ
.

For ξ(τ∗) = 0 and ω(τ∗) = ω∗, then[dReΛ(τ∗)
dτ

]−1

= Re
[ (3Λ2 + 2AΛ + B)eΛτ + 2A1Λ + B1

Λ(A1Λ2 + B1Λ + C1)

]
τ=τ∗

=
1
Z
{−B1ω

2
∗[(B − 3ω2

∗) cosω∗τ∗ − 2Aω∗ sinω∗τ∗] + (C1ω∗ − A1ω
3
∗)

[2Aω∗ cosω∗τ∗ + (B − 3ω2
∗) sinω∗τ∗] − B2

1ω
2
∗ + 2A1ω∗(C1ω∗ − A1ω

3
∗)}

=
1
Z

[3ω6
∗ + 2(A2 − 2B − A2

1)ω4
∗ + (B2 + 2A1C1 − 2AC − B2

1)ω2
∗]

=
z∗
Z

(3z2
∗ + 2p1z∗ + q1),

where Z = [b2
1ω

2
∗+(C1−A1ω

2
∗)

2]ω2
∗ > 0. Since z3

∗+p1z2
∗+q1z∗+r1 = 0 and r1 < 0, then 3z2

∗+2p1z∗+q1 > 0
if either p1 ≥ 0 or q1 ≤ 0. So we have

dReΛ(τ∗)
dτ

> 0,

if either p1 ≥ 0 or q1 ≤ 0. �

Remark 3.1. By theorem 3.1, we can extend that if there exists p1, q1 and r1, which makes z3
∗ + p1z2

∗ +

q1z∗+ r1 = 0 and z∗
Z (3z2

∗ + 2p1z∗+ q1) > 0 hold. Then periodic solutions are bifurcated near the positive
equilibrium E∗.

We have already shown the existence of Hopf bifurcation. Next, we will give a formula by using
the center manifold theorem and the normal form theory to determine the direction of Hopf bifurcation
and stability of periodic solutions.

Let v(t) = T (τt) − T ∗, x(t) = I(τt) − I∗ and y(t) = M(τt) − M∗. Then (2.1) can be rewritten as
v̇(t)
ẋ(t)
ẏ(t)

 = τA1


v(t)
x(t)
y(t)

 + τB


v(t − 1)
x(t − 1)
y(t − 1)

 + F(vt, xt, yt, τ), (3.1)

where
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A =


−d1 − µI∗ −µT ∗ 0

µI∗ 0 −αI∗

0 0 −d3

 ,
B =


0 0 0
0 0 0
0 βM∗ βI∗

 ,
F(vt, xt, yt, τ) =


−τµv(t)x(t)

τµv(t)x(t) − ταx(t)y(t)
τβx(t − 1)y(t − 1) − τd3M∗

 .
Let τ̂ be the critical value of τ where model (2.1) undergoes a Hopf bifurcation at E∗. Assume

τ = τ̂ + h, then h = 0 is the Hopf bifurcation value of (2.1).
Choose the phase space C = C([−1, 0],R3). Define L(h) : C → R3 by

L(h)φ = (τ̂ + h)A1φ(0) + (τ̂ + h)Bφ(−1), φ ∈ C.

From the Riesz representation theorem, there exists a matrix whose components are bounded variation
functions η(θ, h) : [−1, 0]→ R3, θ ∈ [−1, 0], such that

L(h)φ =

∫ 0

−1
dη(θ, h)φ(θ), φ ∈ C.

We select η(θ, h) = (τ̂ + h)Aδ(θ) − (τ̂ + h)Bδ(θ + 1), where

δ(θ) =

1, θ = 0,
0, θ , 0.

For φ ∈ C1([−1, 0],R3), we give

A(h)φ =

φ̇(θ), θ ∈ [−1, 0),∫ 0

−1
dη(t, h)φ(t), θ = 0,

such that

R(h)φ =

0, θ ∈ [−1, 0),
F(φ, τ̂ + h), θ = 0.

Then (3.1) can be rewritten as
µ̇t = A(h)µt + R(h)µt. (3.2)

For ϕ ∈ C1([0, 1], (C3)∗), define

A∗ϕ(s) =

−ϕ̇(s), s ∈ (0, 1],∫ 0

−1
ϕ(−t)dη(t, 0) = τ̂ϕ(0)A1 + τ̂ϕ(1)B, s = 0.
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And for φ ∈ C([−1, 0],C3) with ϕ ∈ C([0, 1], (C3)∗), define

〈ϕ, φ〉 = ϕ(0)φ(0) −
∫ 0

−1

∫ θ

0
ϕ(ξ − θ)dη(θ, 0)φ(ξ)dξ,

then A∗ and A(0) are adjoint operators, such that 〈ϕ, Aφ〉 = 〈A∗ϕ, φ〉. Let q(θ) and q∗(s) be the
eigenvectors of A and A∗ corresponding to iwτ̂ and −iwτ̂ respectively. Via direct calculation, we
obtain following result.

Lemma 3.1. q(θ) = (1, α1, β1)T eiŵτ̂θ is the eigenvector of operator A on iŵτ̂, q∗(s) = D(1, α2, β2)T eiŵτ̂s

is the eigenvector of operator A∗ on −iŵτ̂, and 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0, where α1 = −
iŵ+d1+µI∗

µT ∗ , β1 =

−
iŵα1−µI∗

αI∗ , α2 =
−iŵ+d1+µI∗

µI∗ , β2 =
−iŵα2+µT ∗

eiŵτ̂βM∗ .

Proof. Let q(θ) = (1, α1, β1)T eiŵτ̂θ be an eigenvector of operator A on iŵτ̂, it follows from Aq(0) =

iŵτ̂q(0), then

τ̂A1


1
α1

β1

 + τ̂B


1
α1

β1

 = iŵτ̂


1
α1

β1

 .
The calculation shows that α1 = −

iŵ+d1+µI∗

µT ∗ , β1 = −
iŵα1−µI∗

αI∗ . Similarly, we can obtain

α2 =
−iŵ+d1+µI∗

µI∗ , β2 =
−iŵα2+µT ∗

eiŵτ̂βM∗ .

〈q∗, q〉 = q̄∗(0)q(0) −
∫ 0

−1

∫ 0

ξ=0
q̄∗(ξ − θ)dη(θ, 0)q(ξ)dξ

= D(1 + α1ᾱ2 + β1β̄2) −
∫ 0

−1

∫ 0

ξ=0
D(1, ᾱ2, β̄2)e−iŵτ̂(ξ−θ)dη(θ, 0)(1, α1, β1)T eiŵτ̂ξdξ

= D(1 + α1ᾱ2 + β1β̄2) − D(1, ᾱ2, β̄2)
∫ 0

−1
dη(θ, 0)θeiŵτ̂θ(1, α1, β1)T

= D(1 + α1ᾱ2 + β1β̄2) + Dτ̂(α1β̄2βM∗ + β1β̄2βI∗)e−iŵτ̂

= D(1 + α1ᾱ2 + β1β̄2 + τ̂β̄2β(α1M∗ + β1I∗)e−iŵτ̂).

To ensure 〈q∗, q〉 = 1, we only need

D =
1

1 + α1ᾱ2 + β1β̄2 + τ̂β̄2β(α1M∗ + β1I∗)e−iŵτ̂
.

The details have been given in Hassard et al. [20] corroborated 〈q∗, q̄〉 = 0. Here we are not going to
repeat it. The proof is completed. �

Following the algorithm in Hassard et al. [20], we first compute the coordinates to describe the
center manifold C0 at h = 0. Let µt = (vt, xt, yt)T be the solution of (3.1) when τ = τ̂, i.e. when h = 0.
Define

z(t) = 〈q∗, µt〉,W(t, θ) = µt(θ) − 2Re{z(t) − q(θ)},

On the center manifold C0, it shows

W(t, θ) = W(z(t), z̄(t), θ),
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where

W(z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ W30(θ)

z3

6
+ · · · .

z and z̄ represent the local coordinates for the center manifold C0 in the direction of q∗ and q̄∗. Note
that W is real if ut is real, and here, we only consider real solutions. For the solution ut ∈ C0 of (3.1),
since h = 0,

ż(t) = iŵτ̂z(t) + 〈q∗(s), F(W(t, ·) + 2Re{z(t)q(·)})〉
= iŵτ̂z(t) + q̄∗(0)F(W(z, z̄, 0) + 2Re{z(t)q(0)}) , iŵτ̂z + q̄∗(0)F0(z, z̄).

We rewrite the above equation as

ż(t) = iŵτ̂z(t) + g(z(t), z̄(t)), (3.3)

where

g(z, z̄) = q̄∗(0)F(W(z, z̄, 0) + 2Re{z(t)q(0)}) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · . (3.4)

From (3.2) and (3.3), we have

Ẇ = µ̇t − żq − ˙̄zq̄ =

AW − 2Re{q̄∗(0)F0q(θ)}, i f − 1 ≤ θ < 0
AW − 2Re{q̄∗(0)F0q(θ)} + F0, i f θ = 0

, AW + H(z, z̄, θ),

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (3.5)

Expanding the above series and comparing the coefficients, it yields

(A − 2iŵτ̂)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), (A + 2iŵτ̂)W02(θ) = −H02(θ), · · · (3.6)

Note that

q∗(0) = D(1, α2, β2),

v(t) = z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ · · · ,

x(t) = zα1 + z̄ᾱ1 + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ · · · ,

y(t) = zβ1 + z̄β̄1 + W (3)
20 (0)

z2

2
+ W (3)

11 (0)zz̄ + W (3)
02 (0)

z̄2

2
+ · · · ,

x(t − 1) = zα1e−iŵτ̂ + z̄eiŵτ̂α1 + W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz̄ + W (2)
02 (−1)

z̄2

2
+ · · · ,

y(t − 1) = zβ1e−iŵτ̂ + z̄β̄1eiŵτ̂ + W (3)
20 (−1)

z2

2
+ W (3)

11 (−1)zz̄ + W (3)
02 (−1)

z̄2

2
+ · · · .

and

F0 =


−τ̂µv(t)x(t)

τ̂µv(t)x(t) − τ̂αx(t)y(t)
τ̂βx(t − 1)y(t − 1) − τ̂d3M∗

 .
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Direct substitution and comparing the coefficients with (3.4) shows that

g20

2
=[−µα1 + ᾱ2(µα1 − αα1β1) + β̄2α1β1e−2iŵτ̂]Dτ̂,

g11 =〈−µ(α1 + ᾱ1) + ᾱ2[µ(α1 + ᾱ1) − α(α1β̄1 + ᾱ1β1)] + β̄2[α1β̄1 + ᾱ1β1]〉Dτ̂,
g02

2
=[−µᾱ1 + ᾱ2(−µᾱ1 − αᾱ1β̄1) + β̄2(ᾱ1β̄1e2iŵτ̂)]Dτ̂,

g21

2
=[−µ(W (2)

11 (0) +
1
2

W (2)
20 +

1
2

W (1)
20 (0)ᾱ1 + W (1)

11 (0)α1) + ᾱ2µ(W (2)
11 (0) +

1
2

W (2)
20 +

1
2

W (1)
20 (0)ᾱ1

+ W (1)
11 (0)α1) − ᾱ2α(α1W (3)

11 (0) +
1
2
ᾱ1W (3)

20 (0) +
1
2

W (2)
20 β̄1 + β1W (2)

11 (0))

+ β̄2β(α1e−iŵτ̂W (3)
11 (−1) + ᾱ1eiŵτ̂1

2
W (3)

20 (−1) +
1
2

W (2)
20 (−1)β̄1eiŵτ̂ + β1e−iŵτ̂W (2)

11 (−1))]Dτ̂.

We still need to compute W20(θ) and W11(θ). For θ ∈ [−1, 0], it comes

H(z, z̄, θ) = −2Re{z̄∗(0)F0q(θ)} = −gq(θ) − ḡq̄(θ)

= −(g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · · )q(θ) − (ḡ20

z̄2

2
+ g11zz̄ + ¯g02

z2

2
+ · · · )q̄(θ).

Comparing the coefficients with (3.5), we found that

H20(θ) = −g20q(θ) − ¯g02q̄(θ),

and
H11(θ) = −g11q(θ) − ¯g11q̄(θ).

It follows from (3.6) that

Ẇ20(θ) = 2iŵτ̂W20(θ) + g20q(0)eiŵτ̂θ + ¯g02q̄(0)e−iŵτ̂θ.

Then solving the above equation, we get

W20(θ) = e
∫

2iŵτ̂dθ(
∫

(g20q(θ) + ¯g02q̄(θ))e−
∫

2iŵτ̂dθdθ + E1)

=
ig20q(0)eiŵτ̂θ

ŵτ̂
+

i ¯g02q̄(0)e−iŵτ̂θ

3ŵτ̂
+ E1e2iŵτ̂θ.

(3.7)

Similarly,

W11(θ) =
−ig11q(0)

ŵτ̂
eiŵτ̂θ +

i ¯g11q̄(0)
ŵτ̂

e−iŵτ̂θ + E2, (3.8)

where E1 and E2 are both two-dimensional vectors and can be determined by setting θ = 0 in H. In
fact, since

H(z, z̄, 0) = −2Re{q̄∗(0)F0q(0)} + F0,

we have

H20(0) = −g20q(0) − ¯g02q̄(0) + 2τ̂


−µα1

µα1 − αα1β1

α1β1e−2iŵτ̂

 ,
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and

H11(0) = −g11q(0) − ¯g11q̄(0) + τ̂


−µ(α1 + ᾱ1)

µ(α1 + ᾱ1) − α(α1β̂1 + ᾱ1β1)
α1β̄1 + ᾱ1β1

 .
It follows from (3.6) and the definition of A that

τ̂A1W20(0) + τ̂BW20(−1) = 2iŵτ̂W20(0) − H20(0),

and
τ̂A1W11(0) + τ̂BW11(−1) = −H11(0).

Substituting (3.7), (3.8) into the above two equations respectively yields

E1 = −1
τ̂
(A1 + B−2iŵτ̂ − 2iŵI)−1[H20(0) + 4Re(g20q(0)) − i

ŵg20A1q̄(0) + i
3ŵ ḡ02A1q̄(0)

+ i
ŵg20e−iŵτ̂Bq(0) + i

3ŵ ḡ02eiŵτ̂Bq̄(0)],

E2 = −
1
τ̂

(A1 + B)−1(H11(0) +
2
ŵ

A1Im(g11(0)q(0)) +
2
ŵ

BIm(g11q(0)e−iŵτ̂)),

where I is the 3× 3 identity matrix. Consequently, g21 can be expressed in terms of the parameters and
delay τ̂. Then the following values can be computed,

C1(0) =
i

2ŵτ̂
(g20g11 − 2|g11|

2 −
|g02|

2

3
) +

g21

2
,

µ2 = −
Re(C1(0))
Reλ′(τ̂)

,

β2 = 2Re(C1(0)).

Utilizing the results of Hassard et al. [20], we make a conclusion as follows.

Theorem 3.2.

(i) If µ2 > 0(< 0), then the Hopf bifurcation is supercritical (subcritical).
(ii) If β2 < 0(> 0), then the bifurcating periodic solutions are stable (unstable).

4. Simulations, biological explanations and discussions

In order to interpret the conclusions from a quantitative perspective, the dynamics of malaria
infection in the host by numerical simulations will be analyzed in the following. In this section, we
use matlab to find the numerical solutions of the model (2.1) and analyze the effect of basic
reproduction number<0 and the immune response reproduction number<1 on malaria infection.

With parameters values given in Table 1 and Table 2, we get<0 = 0.0025 < 1. Hence, Theorem 2.3
indicates that the infection-free equilibrium E0 is globally asymptotically stable. Meanwhile, this result
shows that iRBCs can be eliminated by immune response in host infected with malaria, such that
malaria infection can not be established within a host if<0 ≤ 1 (see Figure 1).

Taking u = 3 × 10−7, β = 1.5 × 10−8 and the other parameters values as in Table 1 and Table 2,
we get <0 = 1.5 and <1 ≈ 121. The infection equilibrium (without specific immune response) E1 is
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Figure 1. When <0 = 0.0025 < 1, the infection-free equilibrium E0 = (5 × 106, 0, 0) is
globally asymptotically stable for any τ > 0.

Figure 2. Take u = 3 × 10−7 and β = 1.5 × 10−8, then <0 = 1.5 and <1 ≈ 121. The
infection equilibrium (without specific immune response) E1 = (3.33 × 106, 13833, 0) is
globally asymptotically stable for any τ > 0.

globally asymptotically stable. It means that the generation of immune factors in the host are degraded
immediately, which ultimately leads to the failure of the immune factors in the host, that is, immune
factors do not remove the iRBCs in the host completely, such that malaria infection can be established
in the host if<0 > 1 (see Figure 2).

Taking τ = 0, u = 3 × 10−7, β = 7 × 10−6 and the other parameters values as in Table 1 and Table 2,
we get <0 = 1.5 and <1 ≈ 1.26. The infection equilibrium (with specific immune response) E∗ is
globally asymptotically stable. It shows that immune factors play roles in the host, but the number
of immune factors and iRBCs will eventually tend to a dynamic balance. Immune factors can not
completely eliminate the iRBCs in the host, such that malaria infection can be established in the host
if τ = 0 and<0 ≥ <1 (see Figure 3).
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Figure 3. Take τ = 0, u = 3 × 10−7 and β = 7 × 10−6, then <0 = 1.5 and <1 ≈ 1.26. The
infection equilibrium (with specific immune response) E∗ = (3.974 × 106, 7143, 3.44 × 106)
is globally asymptotically stable.

Figure 4. Take τ = 0.1, u = 3 × 10−7 and β = 7 × 10−6, then<0 = 1.5 and<1 ≈ 1.26. The
infection equilibrium (with specific immune response) E∗ = (3.974 × 106, 7143, 3.44 × 106)
is locally asymptotically stable.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4885–4907.



4905

When all parameters values are as in Figure 3 with τ = 0.1, we can find the solution curve is the
same as Figure 3. It means that there is no great change in the stability of the equilibrium E∗ when the
time delay τ is small. Immune factors can not completely eliminate the iRBCs in the host, so malaria
infection can be established in the host if τ = 0.1 and<0 > <1 (see Figure 4).

Figure 5. Take τ = 2, u = 3 × 10−7 and β = 7 × 10−6, then <0 = 1.5 and <1 ≈ 1.26. The
infection equilibrium (with specific immune response) E∗ = (3.974 × 106, 7143, 3.44 × 106)
is unstable and there is a periodic solution bifurcated from E∗.

When τ increases and passes through τ∗ ≈ 0.238. For example, taking τ = 2, we get<0 = 1.5,<1 ≈

1.26 and E∗ becomes unstable. Theorem 3.1 implies that model (2.1) undergoes Hopf bifurcation and
a periodic solution appears. It means that in the previous period of relative stability, the number of
iRBCs is very small. Meanwhile, the number of immune factors is small as well, the iRBCs in the
host has not been cleared completely. We consider that the incubation period for malaria leads to the
number of iRBCs rising again after a period of time. Maybe that is why malaria might rekindle in the
host (see Figure 5).

In this paper, we have discussed a malaria infection model with time delay.
For the model (2.1), immune response delay τ plays a important role in the stability of the

equilibrium E∗. We derive the basic reproduction number <0 for the malaria infection and establish
that the dynamics are completely determined by the basic reproduction number<0. The results show
that when<0 ≤ 1, the infection-free equilibrium E0 is globally asymptotically stable for any delay τ.
It signifies that the malaria is cleared and immune response is not active. When 1 < <0 ≤ <1, the
infection equilibrium E1 without immune response exists and it is globally asymptotically stable for
any delay τ, which means that the immune response would not be activated and malaria infection can
be established in the host. When<0 > <1, some results are given as below:

(i) If τ = 0, the infection equilibrium with immune response E∗ is globally asymptotically stable.
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(ii) If τ < τ∗, the infection equilibrium with immune response E∗ is locally asymptotically stable.
(iii) If model (2.1) satisfies theorem 3.1 or remark 3.1, the dynamical behaviors of equilibrium E∗

will occur and locally asymptotically stable becomes unstable and Hopf bifurcation appears. By
choosing immune response delay as bifurcation parameter, we have demonstrated that a limit
cycle occurs via Hopf bifurcation, when the delay passes through the critical value τ∗. This
explains the fact that the immune response delay plays negative role in controlling disease
progression. The direction and stability of Hopf bifurcation is derived by applying the center
manifold method and the normal form theory.

Moreover, we study the uniform persistence of infection equilibrium E∗.
Numerical simulations are also provided to demonstrate these theoretical results. Finally, we hope

that our work will be helpful to the study of malaria infection.
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