
MBE, 16(5): 4692–4707.

DOI: 10.3934/mbe.2019235

Received: 21 February 2019

Accepted: 13 May 2019

Published: 23 May 2019

http://www.aimspress.com/journal/MBE

Research article

Tuning extreme learning machine by an improved

electromagnetism-like mechanism algorithm for classification problem

Mengya Zhang, Qing Wu* and Zezhou Xu

College of Engineering, Huazhong Agricultural University, Wuhan, Hubei, 430070, China

* Correspondence: Email: wuqing@mail.hzau.edu.cn; Tel: +861365983986.

Abstract: Extreme learning machine (ELM) is a kind of learning algorithm for single hidden-layer

feedforward neural network (SLFN). Compared with traditional gradient-based neural network

learning algorithms, ELM has the advantages of fast learning speed, good generalization

performance and easy implementation. But due to the random determination of input weights and

hidden biases, ELM demands more hidden neurons and cannot guarantee the optimal network

structure. Here, we report a new learning algorithm to overcome the disadvantages of ELM by tuning

the input weights and hidden biases through an improved electromagnetism-like mechanism (EM)

algorithm called DAEM and Moore-Penrose (MP) generalized inverse to analytically determine the

output weights of ELM. In DAEM, three different solution updating strategies inspired by dragonfly

algorithm (DA) are implemented. Experimental results indicate that the proposed algorithm

DAEM-ELM has better generalization performance than traditional ELM and other evolutionary

ELMs.

Keywords: extreme learning machine; electromagnetism-like mechanism; dragonfly algorithm;

classification problem

1. Introduction

Classification is a very important issue in many fields such as face detection, big data, and

disease diagnosis. Especially in recent years, with the development of internet and smart devices,

various types of data are exploding. In order to obtain accurate results more efficiently, the traditional

image analysis method and signal detection are being replaced by machine learning methods

gradually. In all these methods, artificial neural networks (ANNs) [1] and support vector machine

4693

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

(SVM) [2] are the two most popular methods. For ANNs, many neural network models have been

developed, such as back propagation algorithm (BP) [3] and convolutional neural networks (CNN) [4].

However, these techniques are time-consuming, easy to be trapped in local optima and require the

setting of many parameters. To overcome these disadvantages, the extreme learning machine (ELM)

method has been proposed for single-hidden layer feed-forward neural network [5].

ELM has advantages of high learning speed and excellent classification performance owing to

its inherent characteristics of simple structure. Due to the above advantages, ELM has been widely

used in various fields, such as localization [6], industrial production [7], solar radiation prediction [8],

finite-time optimal control of nonlinear systems [9], etc. In addition, ELM has several variants to

solve complex problems. Zhang et al. proposed a multilayer probability extreme learning machine

for device-free localization [10]. Youngmin Park combined convolutional neural network and ELM

for image classification [11]. In ELM, the input weights and hidden bias are randomly generated

without iterative learning [12]. Although these settings bring certain advantages, they also increase

the risk of overfitting. Besides, the hidden neurons are sensitive to unknown testing data.

Traditionally, choice of these parameters mainly depends on prior knowledge and expertise. To solve

these problems, it is important to optimize the input weights, hidden bias and the structure of the

network.

Intelligent algorithms are naturally considered as the solution to the above problems, such as

particle swarm optimization (PSO) [13], ant colony optimization (ACO) [14], and artificial bee

colony algorithm (ABC) [15]. Electromagnetism-like mechanism (EM) algorithm, which was

developed by Birbil and Fang in 2003 [16], is a population-based random search algorithm similar to

genetic algorithm (GA). Because of its strong search capability and easy implementation, EM has

been successfully applied to optimization problems [16–23], such as function optimization [17] and

flow shop scheduling [18–21]. All these previous studies have demonstrated the excellent

optimization performance of EM. Therefore, the integration of EM and ELM should be a promising

approach in training feedforward neural network.

In this study, an improved EM algorithm called DAEM is proposed by incorporating some

theories of dragonfly algorithm (DA) [24] into EM approach. By using the new algorithm, we

optimized the input weights and hidden biases, and minimum norm least-square scheme was used to

analytically determine the output weights in ELM. In the selection of input weights and hidden

biases, the improved EM considers not only the classification error rate but also the norm of the

output weights as well as constrains the input weights and hidden biases within a reasonable range.

In addition, the k-fold cross-validation method is adopted to avoid the problem of overfitting.

The rest of the paper is organized as follows. The theories related to ELM and EM are briefly

introduced in Section 2. Section 3 describes the establishment of the DAEM-ELM algorithm. Section

4 presents the results and discussion on eight classification problems to demonstrate the effectiveness

of the proposed algorithm. Finally, the conclusions are summarized in Section 5.

2. Theories and methods

2.1. Extreme learning machine

The core idea of ELM is to transform the training process of traditional SLFN model into solving

the least square solution problem. The main process of ELM consists of random generation of the

4694

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

parameters of hidden neurons, followed by fixing of the hidden layer parameters and then algebraically

solving the output weights. The specific theoretical basis of ELM is as follows.

For N arbitrary distinct samples (xi, ti), where xi = [xi1,xi2,…,xin]
T∈R

n
, ti = [ti1,ti2,…,tim]

T∈R
m
. The

i-th sample xi is an n × 1 feature vector, and ti is an m × 1 target vector. The standard mathematical

model of SLFNs with L hidden neurons and activation function g (x) is as follows:

1

(), 1,2,...,
L

j i i j i

i

O g x b j N 


    (1)

where Oj denotes the corresponding actual output vector of xj, ωi = [ωi1, ωi2,…, ωin]
T
 indicates the

weight vector connecting the i-th hidden neuron and input neurons, βi = [βi1, βi2,…, βim]
T
 represents the

weight vector connecting the i-th hidden neuron and output neurons, bi is the bias of i-th hidden neuron,

also known as the threshold, and ωi∙xj is the inner product of ωi and xj. The purpose of training SLFNs

is to minimize the error of output value，which means:

1

min
L

j j

j

O t


 (2)

Then, the N equations represented by equation (1) can be expressed in matrix form as follows:

 H T (3)

where  

   

   

1 1 1 1 1

1 2 1 2 1 2

1 1

...

, ,..., , , ,..., , , ,...,

...

L

L L N

N L N L N L

g x b g x b

H H b b b x x x

g x b g x b

 

  

 


    
 

   
     

,








 
 
 
 
  

1

=

T

T
L L m

,



 
 
 
 
  


1
T

T
N N m

t
T

t
, H is the hidden layer output matrix, β is the output weight matrix, and T is

the output matrix.

In the algorithm of ELM, when the input weights and hidden layer biases are randomly

generated, the determination of the output weights is to find the least-square (LS) solution to the

linear system:

  +H T (4)

where H
+
 is obtained by singular value decomposition of Moore-Penrose (MP) generalized inverse

matrix.

The pseudo-code of ELM is as follows:

Input: (xi, ti), L, g(x)

Generate the input weights ωi and the biases bi of hidden

neurons randomly;

H Compute the hidden layer output matrix;

β Compute the output weights by formula (4);

Output: β





4695

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

2.2. Electromagnetism-like mechanism algorithm

The basic principle of EM is that every feasible solution is compared to a charged particle and the

charge of each particle is calculated by the value of the preparative optimization objective function [16].

The charge determines not only the type of the force between two particles (either attraction or

repulsion), but also the strength of the force. Under the action of attraction and repulsion forces, the

population moves to a new generation. The whole process of particle movement under the force in a

population is shown in Figure 1. As can be clearly seen from Figure 1, the blue particle is subject to the

forces of other particles in the population, both attraction and repulsion. Besides, the optimal particle

in the population will always attract other particles to move towards it. Specifically, the EM algorithm

mainly includes the following four steps.

Figure 1. The process of particle movement.

(1) Initialization: m particles are randomly selected from the feasible region as initial population.

Each coordinate of the particle is uniformly distributed between corresponding upper and lower

bounds. Then, the objective function value is calculated for each particle and the particle with the

best objective function value is stored in Xbest.

(2) Local search: The procedure of the local search conducted on a single particle is to improve the

solution obtained. Each dimension of the current optimal particle Xbest is searched according to a

certain step size. Once a better solution is found, the optimal particle is updated. The effective

local information obtained from this procedure can contribute to the abilities of EM of both

exploration and exploitation.

(3) Calculation of the resultant force: The magnitude of the force of particle i is strongly related to

its charge qi, which can be calculated by formula (5):

   

    
1

exp ,
i best

i m

k best

k

f X f X
q n i

f X f X


 
 
   
  
 


 (5)

The resultant force Fi exerted on particle i can be calculated as follows:

4696

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

     

     

2
,

,

,
2

i j

j i j i

m j i

i
i jj i

i j j i

j i

q q
X X if f X f X

X X
F i

q q
X X if f X f X

X X




 


 

  




 (6)

According to the above formula, the particle with better and poorer objective function values

attracts and repulses other particles, respectively. The better the objective function value is, the

stronger the attraction will be, and vice versa.

(4) Movement of the population: After calculating the resultant force, the particles are moved in the

direction of the force, thus forming a new generation of population. The direction and step of the

movement are determined by the following formula:

 ,  i
i i

i

F
X X RNG i

F
 (7)

λ is a random number of 0 to 1, which guarantees that the particles with a nonzero probability

move to unvisited regions. RNG is a movable range between the upper and lower sectors.

The pseudo-code of EM algorithm is as follows:

EM (M, MAXITER, LSITER, δ)

M is the number of particles; MAXITER is the maximum number of iterations; LSITER is

the maximum number of iterations in local search; δ is the local search parameter, δ∈[0,1].

Initialization of the population and parameters

iteration 0

Do {

Local search (LSITER, δ)

q Calculation of charge of each particle (f(X))

F Calculation of resultant force (q)

Move each particle (F)

iteration iteration + 1

} while iteration < MAXITER

3. The improved extreme learning machine (DAEM-ELM)

From the introduction of ELM, it can be seen that the input weights and hidden layer biases are

randomly generated at the initialization stage. The network constructed in this way may give rise to a

problem of overfitting. More specifically, ELM usually requires more hidden neurons than

conventional neural networks to achieve the expected performance. Larger network size results in

longer running time of the testing phase of ELM, which may hinder its efficient development in

some test time sensitive scenarios [25]. To solve this problem, an improved approach designated as

DAEM-ELM, which combines EM with ELM, is proposed in this paper. This new ELM adopts a

novel EM called DAEM to optimize the input weights and biases of ELM to improve the

generalization performance and the conditioning of the SLFN. In this section, we will first provide a









4697

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

detailed description of the DAEM algorithm, and then present the DAEM-ELM algorithm.

3.1. DAEM

The convergence speed of EM slows down gradually during the iterations and the algorithm

easily falls into the local optimal solution, that is, prematurity. In addition, the position and number of

adjacent particles influence the step length and position update of the population according to formula (1).

But it remains unclear under what conditions individual particles can be defined as adjacent to each

other. In order to solve these problems, we propose an improved EM algorithm called DAEM, by

incorporating some theories of dragonfly algorithm (DA) into EM.

First, the adjacency of particles is defined. A neighborhood (circle in a 2D, sphere in a 3D space,

or hypersphere in an nD space) with a certain radius r is assumed around each particle [24]. If the

Euclidean distance between particle i and particle j is less than r, particle i and particle j are considered

as adjacent. In order to accelerate the convergence speed, the radius r increases with increasing number

of iterations. The specific calculation formula of r is as follows:

()
2

4 _

ub lb iter ub lb
r

Max iteration

  
   (8)

where iter is the number of current iterations, Max_iteration is the maximum number of iterations, ub

is the upper limit of variables, and lb is the lower limit of variables. The neighborhood can be

represented as (r1, r2,..., rn) and n represents the number of dimensions.

Taking particle i as an example, it can be expressed as Xi = (xi1,xi2,..., xin), and then the

neighborhood range of particle i in the j-th dimension (j = 1, 2,…, n) is [xij – rj, xij + rj]. When another

particle Xk is within the neighborhood range of particle i of each dimension, it is considered that Xk is

adjacent to Xi.

For different problems, the fixed solution updating strategy of EM may not be always reasonable,

and cannot guarantee the discovery of global optimal solution or approximate global optimal solution.

Therefore, DAEM provides three different solution updating strategies motivated by DA. In this way,

the suitable updating strategy can be selected according to the prior information of different problems.

Besides, variable searching step is adopted to solve the conflicts between solution accuracy and

computation time in the optimization process. The three updating strategies are described as follows.

Strategy 1: when the distance between the current particle and the optimal particle in a certain

dimension is smaller than the neighborhood radius, and there are adjacent particles in the

neighborhood of the current particle, the updated formula of the particle is as follows:

i
i i

i

F
X X c

F
    (9)

where c = 0.9–iter × (0.5/Max_iteration)，η is a random number between [0,1]. Fi is still calculated

by formula (6), but only the particles in the neighborhood instead of the entire population are

considered.

Strategy 2: when the distance between the current particle and the optimal particle in a certain

dimension is smaller than the neighborhood radius, and there is no particle adjacent to the current

particle in its neighborhood, the updated formula of the particle is as follows:

 i i i i
X X levy X X   (10)

4698

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

  1

1/

2

0.01
r

levy x
r




  (11)

 

1/

1

2

1 sin
2

1
2

2













 
 
 

  
    

  
  
    
  

 (12)

   1 !x x   (13)

where r1 and r2 are two random numbers in [0,1], and α is a constant (equal to 1.5 in DAEM).

Strategy 3: when the distance between the current particle and the optimal particle in any

dimension is greater than the neighborhood radius, the updated formula of the particle is as follows:

i i i W BX X c X Worst Best        (14)

* * *iX l L e E c C    (15)

where W and B are random numbers in [0,1],
worst iWorst X X  ,

best iBest X X  , Xworst and

Xbest represent the worst and best particle of current population respectively, l is a random numbers in [0,1],

L is the difference between the position of Xbest and position of Xi when Xbest is in the neighborhood of

Xi, otherwise L is a m-dimensional vector of 0’s, e = 0.1 – iter × (0.2/Max_iteration) (when e < 0, let e = 0),

C is an n-dimensional vector generated randomly.

3.2. DAEM-ELM

The basic process of DAEM-ELM is described below. Data samples are divided into training

sample set and testing sample set. The training set is trained by DAEM to build the classification

model. Then, the testing set is tested by the obtained classification model. The detailed steps of the

proposed method are as follows.

Firstly, the population is randomly generated. Each particle in the population is composed of a set

of input weights and hidden biases. The specific coding form is as follows:

 11 12 1 21 22 2 1 2 1 2= , ,..., , , ,..., ,..., , ,..., , , ,...,i L L n n nL LX b b b         (16)

where N is the number of input neurons, and L is the number of hidden neurons, that is, the dimension

of each particle is (N + 1) × L. All components in the particle are randomly initialized within the range

of [–1, 1].

Secondly, for each particle, the corresponding output weights are computed according to formula (4).

Then, the fitness of each particle is evaluated. The fitness function formula of DAEM-ELM is:

1 1,2,...,

N

ii
MCR

f i N
N

 


 (17)

where N is the number of training samples, and MCRi is the misclassification of the algorithm.

Neural network training should not solely rely on the misclassification of training set as the

fitness function, because a higher training accuracy does not guarantee a higher test accuracy. It has

been reported that neural networks tend to have better generalization performance with weights of

4699

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

smaller norms [26,27]. Hence, the output weights are also considered in selection strategy design in

order to further enhance the performance of our algorithm. It is stipulated that when the fitness values

of different particles are similar, the particle with smaller norm of output weights is chosen as a better

solution. The algorithm introduces the tolerance rate λ to meet this requirement and the effect is better

when λ is set to 0.04 as validated by experiment. Besides, to reduce the computational complexity of

the algorithm, the following regulation formula of current optimal solution is used only after each

iteration (the fitness function is still the misclassification, and only the tolerance rate is added for

adjustment).

                 &
ibest i ibest i ibesti iibest ibest

ibest

ibest

f X f X f X X X
X

X if f X f X f X or

X else

     




 
 (18)

                 &
gbest ibest gbest ibest gbestibest gbest ibest gbest

gbest

gbest

f X f X f X X XX if f X f X f X or
X

X else

       
 


 (19)

where f (Xi), f (Xibest) and f (Xgbest) are the corresponding fitness values for the i-th particle, the best

position of the i-th particle and global best position of all particles, respectively.

     , and i ibest gbestX X X   are the corresponding output weights obtained by MP generalized

inverse when the input weights are set as the i-th particle, the best position of the i-th particle and

global best position of all particles, respectively.

Thirdly, the k-fold cross-validation (k-fold CV) method is applied in order to get an unbiased

estimate of the generalization accuracy and make full use of samples in case of insufficient sample. In

k-fold CV, the data sample set is divided into k mutually disjoint subsets (approximately equal in size),

such as S1, S2,…, Sk, and then DAEM-ELM is performed for k iterations. Sk is selected as the testing set

and the rest of subsets are used as training set in the i-th iteration. Here, the parameter value of k is 5

and the final classification results are the average value of five iterations.

The pseudo-code of DAEM-ELM is as follows:

DAEM-ELM:

Performance estimation by k-fold CV where k=5;

MAXITER is the maximum number of iterations.

begin

for i=1:k

Training set=k-1 subsets Testing set=remaining subsets

begin DAEM

Initialize the population with random numbers

iteration 0

Do{

Train the ELM on the training set

Calculate fitness value

Update the position of each particle

iteration iteration + 1

} while iteration < MAXITER

end DAEM

Achieve the optimal input weights and hidden bias from the best





4700

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

solution

Test the ELM with the optimal input weights and hidden bias

end

Return the average classification accuracy and standard deviation of

ELM

end

4. Experiment and discussion

4.1. Datasets and experimental setup

In this section, the performance of the proposed algorithm is evaluated on eight real-world

classification problems (Thyroid, WDBC, Wine, Bupa Liver, Australian, Breast Cancer, Parkinson

and Iris), and all these data-sets are taken from the University of California Irvine (UCI) repository [28].

The specification of these datasets is listed in Table 1.

Table 1. Specification of eight classification problems.

Data-sets Instances Attributes Classes Missing Value

Thyroid 215 5 3 N

Parkinson 195 22 2 N

Iris 150 4 3 Y

Bupa Liver 345 6 2 N

Australian 690 14 2 Y

Breast Cancer 699 9 2 Y

Wine 178 13 3 N

WDBC 569 30 2 N

Iris, Australian and Breast cancer datasets have missing values (A data-set contains a certain

number of instances, and an instance includes several attributes. If some instance in a data-set lack

some attributes, it is said that the data-set has missing values.). The missing categorical attributes are

replaced by the mode of the attributes, and the missing continuous attributes are replaced by the mean

of the attributes in order to ensure the integrity of the sample data. Besides, normalization is employed

to avoid the influence of the feature values in larger numerical ranges on those in smaller numerical

ranges, which can also reduce the computational complexity. Every feature value can be normalized

by scaling them into the interval of [–1, 1] according to:

min
2 1

max min

i

i i

x
x

 
    

 
 (20)

where x′ is the normalization value, x is the original value, mini is minimum value of feature i and maxi

is maximum value of feature i.

The results obtained with the proposed algorithm are then presented and analyzed, and compared

with those obtained using other related algorithms. The parameters in all algorithms of experiments are

determined by trial and error. For DAEM-ELM, the maximum optimization epochs are 70, and the

4701

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

population size is 50. The sigmoid function g(x) = 1/(1 + exp(–x)) is adopt as the ELM activation

function to compute the hidden layer output matrix. All the programs are run in MATLAB 7.0

environment.

4.2. Benchmark classification

The performance of DAEM-ELM algorithm is tested with the number of hidden neurons

increasing from 5 to 40 at a step size of 5. The reason for choosing this range is that an excessive

number of hidden neurons will lead to an overfitting problem for ELM. In addition, better parameters

more suitable for associated networks can be found with the DAEM algorithm. Hence, the ELM only

needs a small number of hidden neurons to obtain better results. The experimental results are shown in

Table 2.

Table 2. Accuracy with different numbers of hidden neurons.

Hidden

Neurons

Accuracy

(%)

Dataset

Thyroid Parkinson Iris
Bupa

Liver
Australian

Breast

Cancer
Wine WDBC

5
Training 94.19 88.46 98.31 78.62 76.27 94.61 98.89 97.80

Testing 93.02 82.05 97.33 75.36 76.09 94.38 95.94 94.83

10
Training 97.67 89.10 98.33 80.80 82.25 94.79 99.26 98.01

Testing 93.02 87.17 92.33 71.01 74.64 92.41 98.33 96.83

15
Training 98.49 93.59 98.33 81.88 83.88 95.68 99.29 97.17

Testing 94.41 87.18 91.67 80.65 74.64 94.41 94.52 96.56

20
Training 98.84 92.95 98.33 81.88 83.88 99.04 100 98.19

Testing 95.35 89.74 86.67 68.41 73.82 97.57 97.25 96.73

25
Training 98.84 93.59 98.33 82.25 87.50 96.05 100 97.80

Testing 95.35 87.18 83.33 71.01 86.96 93.82 95.94 96.73

30
Training 98.84 96.15 98.33 82.03 90.22 96.97 100 97.80

Testing 93.02 87.18 80.00 70.72 86.96 93.82 91.77 96.73

35
Training 98.96 95.51 98.33 82.97 91.30 97.13 100 98.19

Testing 95.35 86.87 90.00 69.66 89.13 95.08 94.52 96.56

40
Training 98.84 96.15 98.33 80.07 83.88 97.31 100 99.12

Testing 90.70 92.31 83.33 71.01 82.61 92.97 94.38 96.56

As shown in Table 2, the accuracy rate does not simply increase with the number of hidden

neurons. When the hidden neurons increase to a certain number, further increase will lead to a decline

in accuracy. Secondly, the optimal number of hidden neurons varies for different problems.

Specifically, the optimal number is 20, 25 and 35 for the Thyroid dataset, and we chose the smallest

number (20) to reduce the computational time of the network. For the Parkinson, Iris, Bupa Liver,

Australian, Breast Cancer, Wine and WDBC datasets, the optimal number is 40, 5, 15, 35, 20, 10 and

10, respectively.

Table 3 and Table 4 show the results achieved with all seven investigated methods (ABC-ELM [29],

ELM, PSO-ELM [29], IPSO-ELM [29], E-ELM [29], LM and DAEM-ELM) for the eight benchmark

classification datasets based on five trials. The last column of Table 3 shows the smallest number of

4702

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

hidden neurons to be used in order to achieve the best results. It is evident that a higher accuracy rate

and a smaller number of hidden neurons represent a better mode. In addition, to test the accuracy, the

nearly optimal number of hidden neurons for these algorithms and the standard deviations are shown in

the table in the form of mean ± standard deviation. From Table 3 and Table 4, we can draw the

following conclusions.

Table 3. Detailed results obtained by seven investigated algorithms via 5-fold on the eight datasets.

Dataset Algorithm
Accuracy (%)

Hidden Neurons
Training Testing

Thyroid

ABC-ELM 98.79 94.971.44 15

ELM 96.84 92.933.98 30

PSO-ELM 97.92 94.143.67 30

IPSO-ELM 98.33 94.312.65 25

E-ELM 98.10 92.743.02 40

LM 95.70 91.073.41 35

DAEM-ELM 98.84 95.35 20

Parkinson

ABC-ELM 95.12 89.113.02 15

ELM 92.28 86.155.79 40

PSO-ELM 93.66 87.594.70 30

IPSO-ELM 93.95 88.104.62 25

E-ELM 94.17 87.085.70 35

LM 89.24 82.384.65 35

DAEM-ELM 96.15 91.802.30 40

Iris

ABC-ELM 97.63 96.681.83 15

ELM 96.00 95.422.45 20

PSO-ELM 96.38 95.891.13 15

IPSO-ELM 96.76 96.131.64 10

E-ELM 98.81 95.203.13 30

LM 98.74 96.002.67 10

DAEM-ELM 98.31 97.332.67 5

Bupa Liver

ABC-ELM 77.94 72.834.21 15

ELM 76.58 71.305.14 30

PSO-ELM 77.18 71.545.26 25

IPSO-ELM 77.40 71.725.33 25

E-ELM 76.26 71.195.70 20

LM 74.91 69.376.04 35

DAEM-ELM 81.88 80.650.41 15

For the Thyroid dataset, although the number of hidden neurons of DAEM-ELM is not the

smallest (only slightly bigger than that of ABC-ELM), its classification accuracy is the highest among

seven methods and the standard deviation of the acquired performance is also the smallest (equal to 0),

indicating the consistency and stability of the proposed method. The results of the Thyroid dataset are

shown in Figure 2(a).

4703

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 2. The classification accuracy of the four algorithms with different numbers of

hidden nodes: (a) Thyroid; (b) Parkinson; (c) Iris; (d) Bupa Liver; (e) Australian; (f)

Breast Cancer; (g) Wine; (h) WDBC.

4704

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

Table 4. Detailed results obtained by seven investigated algorithms via 5-fold on the eight datasets.

Dataset Algorithm
Accuracy (%)

Hidden Neurons
Training Testing

Australian

ABC-ELM 90.74 87.381.61 15

ELM 87.50 85.353.20 30

PSO-ELM 89.37 86.042.31 40

IPSO-ELM 89.65 86.412.72 15

E-ELM 89.51 86.032.80 20

LM 87.82 85.972.77 40

DAEM-ELM 91.30 89.130.21 35

Breast Cancer

ABC-ELM 98.54 96.971.09 10

ELM 97.42 96.051.02 40

PSO-ELM 97.16 96.311.25 35

IPSO-ELM 98.25 97.181.33 25

E-ELM 97.88 96.451.67 35

LM 96.21 95.962.24 40

DAEM-ELM 99.04 97.540.35 20

wine

ABC-ELM 99.97 98.431.11 10

ELM 99.86 97.982.08 25

PSO-ELM 100 97.632.27 15

IPSO-ELM 100 97.822.01 15

E-ELM 100 98.021.69 25

LM 99.40 98.052.55 30

DAEM-ELM 99.26 98.331.33 10

WDBC

ABC-ELM 98.85 96.821.23 10

ELM 96.43 96.131.64 30

PSO-ELM 97.49 96.281.60 20

IPSO-ELM 97.96 96.541.51 10

E-ELM 98.03 96.101.93 20

LM 96.11 95.172.22 30

DAEM-ELM 98.01 96.830.42 10

For the Parkinson dataset, ABC-ELM has the fewest hidden neurons. But the proposed method

outperforms other six methods in terms of classification accuracy by around 3% (more than 9%

compared with that of LM). Besides, DAEM-ELM also has the smallest standard deviation among

these methods. Figure 2(b) shows the accuracy obtained on the Parkinson dataset.

For the Iris dataset, DAEM-ELM only needs five hidden neurons to achieve the highest

classification accuracy. In this way, the proposed method achieves both the highest classification

accuracy and the most compact network structure. The results of the Iris dataset are shown in Figure

2(c).

For the Bupa Liver dataset and WDBC dataset, the proposed method outperforms others in all

cases (classification accuracy, number of hidden neurons, standard deviation), as shown in Figure 2(d)

and Figure2(h).

4705

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

For the Australian dataset and Breast Cancer dataset, the DAEM-ELM still maintains the highest

classification accuracy and the smallest standard deviation with a medium number of hidden neurons.

These results are also confirmed in Figure 2(e) and Figure 2(f).

For the Wine dataset, ABC-ELM is the algorithm with the best performance. The proposed

algorithm has the same number of hidden neurons as ABC-ELM, and only slightly poorer performance

in accuracy and standard deviation. Figure 2(g) illustrates the results on the Wine dataset.

In summary, the DAEM-ELM algorithm can achieve better performance by using DAEM to

select the input weights and hidden biases of the SLFN than the ELM, PSO-ELM, IPSO-ELM, E-ELM

and LM algorithms, indicating that the optimal network structure tuned by the DAEM algorithm

contributes greatly to the reduction of hidden neurons in the models and a reasonable generalization

performance for these datasets.

5. Conclusion

In this paper, a novel extreme learning machine based on electromagnetism-like mechanism

(DAEM-ELM) is proposed. In the new algorithm, an improved EM is used to optimize the input

weights and hidden biases, and minimum norm least-square scheme is employed to analytically

determine the output weights. In the optimization process, the improved EM considers not only the

misclassification but also the norm of the output weights as well as constrains the input weights and

hidden biases within a reasonable range. In addition, the 5-fold CV method is adopted to prevent the

overfitting problem. Experimental results show that DAEM-ELM outperforms other methods

(original ELM, PSO-ELM, IPSO-ELM, E-ELM and LM) and has a more compact network structure.

It is also confirmed that due to the selection of optimal parameters, the results are more stable with

fewer hidden neurons. Hence, it can be concluded the developed DAEM-ELM algorithm can be a

feasible and effective algorithm for classification problems. Future research work will be focused on

the identification of the optimal hidden neuron number, input weights and hidden biases at the same

time.

Acknowledgments

This research work is supported in part by National Natural Science Foundation of China

(NSFC) under Grant No. 61603145.

Conflict of interest

All authors declare no conflict of interest in this paper.

References

1. W. Cao, X. Wang, Z. Ming, et al., A review on neural networks with random weights,

Neurocomputing, (2017), S0925231217314613.

2. G. Camps-Valls, D. Tuia, L. Bruzzone, et al., Advances in hyperspectral image classification:

earth monitoring with statistical learning methods, IEEE Signal Proc. Mag., 31 (2013), 45–54.

3. L. Wang, Y. Zeng and T. Chen, Back propagation neural network with adaptive differential

evolution algorithm for time series forecasting, Expert Syst. Appl., 42 (2015), 855–863.

4706

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

4. E. Maggiori, Y. Tarabalka, G. Charpiat, et al., Convolutional neural networks for large-scale

remote sensing image classification, IEEE T. Geosci. Remote, 55 (2016), 645–657.

5. G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: theory and applications,

Neurocomputing, 70 (2006), 489–501.

6. J. Zhang, Y. F. Lu, B. Q. Zhang, et al., Device-free localization using empirical wavelet

transform-based extreme learning machine, Proceedings of the 30th Chinese Control and

Decision Conference, (2018), 2585–2590.

7. Y. J. Li, S. Zhang, Y. X. Yin, et al., A soft sensing scheme of gas utilization prediction for blast

furnace via improved extreme learning machine, Neural Process. Lett. (2018),

10.1007/s11063-018-9888-3.

8. J. Zhang, Y. F. Xu, J. Q. Xue, et al., Real-time prediction of solar radiation based on online

sequential extreme learning machine, Proceedings of the 13th IEEE Conference on Industrial

Electronics and Applications, (2018), 53–57.

9. R. Z. Song, W. D. Xiao, Q. L. Wei, et al., Neural-network-based approach to finite-time optimal

control for a class of unknown nonlinear systems, Soft Comput., 18 (2014), 1645–1653.

10. J. Zhang, W. D. Xiao, Y. J. Li, et al., Multilayer probability extreme learning machine for

device-free localization. Neurocomputing, (2019), 10.1016/j.neucom.2018.11.106.

11. Y. Park, and H. S. Yang, Convolutional neural network based on an extreme learning machine

for image classification, Neurocomputing, 339 (2019), 66–76.

12. G. B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass

classification, IEEE T. Syst. Man Cy. B., 42 (2012), 513–529.

13. F. Han, H. F. Yao and Q. H. Ling, An improved evolutionary extreme learning machine based on

particle swarm optimization, Neurocomputing, 116 (2013), 87–93.

14. A. Rashno, B. Nazari, S. Sadri, et al., Effective pixel classification of mars images based on ant

colony optimization feature selection and extreme learning machine, Neurocomputing, 226

(2017), 66–79.

15. G. Li, P. Niu, Y. Ma, et al., Tuning extreme learning machine by an improved artificial bee

colony to model and optimize the boiler efficiency, Knowl-Based Syst., 67 (2014), 278–289.

16. İ. B. Ş, and S. Fang, An electromagnetism-like mechanism for global optimization, J. Global

Optim., 25 (2003), 263–282.

17. C. J. Zhang, X. Y. Li, L. Gao, et al., An improved electromagnetism-like mechanism algorithm

for constrained optimization, Expert Syst. Appl., 40 (2013), 5621–5634.

18. C. T. Tseng, C. H. Lee, Y. S. P. Chiu, et al., A discrete electromagnetism-like mechanism for

parallel machine scheduling under a grade of service provision, Int. J. Prod. Res., 55 (2017),

3149–3163.

19. X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable

neighborhood search for integrated process planning and scheduling in a packaging machine

workshop, IEEE T. Syst. Man Cy. Syst., (2018), 10.1109/TSMC.2018.2881686.

20. X. Y. Li, C. Lu, L. Gao, et al., An Effective Multi-Objective Algorithm for Energy Efficient

Scheduling in a Real-Life Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409.

21. X. Y. Li, S. Q. Xiao, C. Y. Wang, et al., Mathematical Modeling and a Discrete Artificial Bee

Colony Algorithm for the Welding Shop Scheduling Problem, Memetic Comp., (2019),

10.1007/s12293-019-00283-4.

4707

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4692–4707.

22. Q. Wu, L. Gao, X. Y. Li, et al., Applying an electromagnetism-like mechanism algorithm on

parameter optimisation of a multi-pass milling process, Int. J. Prod. Res., 51 (2013), 1777–1788.

23. K. J. Wang, A. M. Adrian, K. H. Chen, et al., An improved electromagnetism-like mechanism

algorithm and its application to the prediction of diabetes mellitus, J. Biomed. Inform., 54 (2015),

220–229.

24. S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving

single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016),

1053–1073.

25. G. Huang, G. B. Huang, S. Song, et al., Trends in extreme learning machines: a review, Neural

Networks, 61 (2015), 32–48.

26. P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of

the weights is more important than the size of the network, IEEE T. Inform. Theory, 44 (2002),

525–536.

27. Q. Y. Zhu, A. K. Qin, P. N. Suganthan, et al., Evolutionary extreme learning machine, Pattern

Recogn., 38 (2005), 1759–1763.

28. D. Dua, and E. K. Taniskidou, UCI Machine Learning Repository Irvine, CA: University of

California, School of Information and Computer Science, 2017. Available from:

http://archive.ics.uci.edu/ml.

29. Y. Wang, A. Wang, Q. Ai, et al., A novel artificial bee colony optimization strategy-based extreme

learning machine algorithm, Prog. Artif. Intell., 6 (2016), 1–12.

©2019 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

