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Abstract: Extreme learning machine (ELM) is a kind of learning algorithm for single hidden-layer 

feedforward neural network (SLFN). Compared with traditional gradient-based neural network 

learning algorithms, ELM has the advantages of fast learning speed, good generalization 

performance and easy implementation. But due to the random determination of input weights and 

hidden biases, ELM demands more hidden neurons and cannot guarantee the optimal network 

structure. Here, we report a new learning algorithm to overcome the disadvantages of ELM by tuning 

the input weights and hidden biases through an improved electromagnetism-like mechanism (EM) 

algorithm called DAEM and Moore-Penrose (MP) generalized inverse to analytically determine the 

output weights of ELM. In DAEM, three different solution updating strategies inspired by dragonfly 

algorithm (DA) are implemented. Experimental results indicate that the proposed algorithm 

DAEM-ELM has better generalization performance than traditional ELM and other evolutionary 

ELMs. 
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1. Introduction  

Classification is a very important issue in many fields such as face detection, big data, and 

disease diagnosis. Especially in recent years, with the development of internet and smart devices, 

various types of data are exploding. In order to obtain accurate results more efficiently, the traditional 

image analysis method and signal detection are being replaced by machine learning methods 

gradually. In all these methods, artificial neural networks (ANNs) [1] and support vector machine 
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(SVM) [2] are the two most popular methods. For ANNs, many neural network models have been 

developed, such as back propagation algorithm (BP) [3] and convolutional neural networks (CNN) [4]. 

However, these techniques are time-consuming, easy to be trapped in local optima and require the 

setting of many parameters. To overcome these disadvantages, the extreme learning machine (ELM) 

method has been proposed for single-hidden layer feed-forward neural network [5]. 

ELM has advantages of high learning speed and excellent classification performance owing to 

its inherent characteristics of simple structure. Due to the above advantages, ELM has been widely 

used in various fields, such as localization [6], industrial production [7], solar radiation prediction [8], 

finite-time optimal control of nonlinear systems [9], etc. In addition, ELM has several variants to 

solve complex problems. Zhang et al. proposed a multilayer probability extreme learning machine 

for device-free localization [10]. Youngmin Park combined convolutional neural network and ELM 

for image classification [11]. In ELM, the input weights and hidden bias are randomly generated 

without iterative learning [12]. Although these settings bring certain advantages, they also increase 

the risk of overfitting. Besides, the hidden neurons are sensitive to unknown testing data. 

Traditionally, choice of these parameters mainly depends on prior knowledge and expertise. To solve 

these problems, it is important to optimize the input weights, hidden bias and the structure of the 

network.  

Intelligent algorithms are naturally considered as the solution to the above problems, such as 

particle swarm optimization (PSO) [13], ant colony optimization (ACO) [14], and artificial bee 

colony algorithm (ABC) [15]. Electromagnetism-like mechanism (EM) algorithm, which was 

developed by Birbil and Fang in 2003 [16], is a population-based random search algorithm similar to 

genetic algorithm (GA). Because of its strong search capability and easy implementation, EM has 

been successfully applied to optimization problems [16–23], such as function optimization [17] and 

flow shop scheduling [18–21]. All these previous studies have demonstrated the excellent 

optimization performance of EM. Therefore, the integration of EM and ELM should be a promising 

approach in training feedforward neural network. 

In this study, an improved EM algorithm called DAEM is proposed by incorporating some 

theories of dragonfly algorithm (DA) [24] into EM approach. By using the new algorithm, we 

optimized the input weights and hidden biases, and minimum norm least-square scheme was used to 

analytically determine the output weights in ELM. In the selection of input weights and hidden 

biases, the improved EM considers not only the classification error rate but also the norm of the 

output weights as well as constrains the input weights and hidden biases within a reasonable range. 

In addition, the k-fold cross-validation method is adopted to avoid the problem of overfitting.  

The rest of the paper is organized as follows. The theories related to ELM and EM are briefly 

introduced in Section 2. Section 3 describes the establishment of the DAEM-ELM algorithm. Section 

4 presents the results and discussion on eight classification problems to demonstrate the effectiveness 

of the proposed algorithm. Finally, the conclusions are summarized in Section 5. 

2. Theories and methods 

2.1. Extreme learning machine 

The core idea of ELM is to transform the training process of traditional SLFN model into solving 

the least square solution problem. The main process of ELM consists of random generation of the 
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parameters of hidden neurons, followed by fixing of the hidden layer parameters and then algebraically 

solving the output weights. The specific theoretical basis of ELM is as follows.  

For N arbitrary distinct samples (xi, ti), where xi = [xi1,xi2,…,xin]
T∈R

n
, ti = [ti1,ti2,…,tim]

T∈R
m
. The 

i-th sample xi is an n × 1 feature vector, and ti is an m × 1 target vector. The standard mathematical 

model of SLFNs with L hidden neurons and activation function g (x) is as follows: 

1

( ), 1,2,...,
L

j i i j i

i

O g x b j N 


                       (1) 

where Oj denotes the corresponding actual output vector of xj, ωi = [ωi1, ωi2,…, ωin]
T
 indicates the 

weight vector connecting the i-th hidden neuron and input neurons, βi = [βi1, βi2,…, βim]
T
 represents the 

weight vector connecting the i-th hidden neuron and output neurons, bi is the bias of i-th hidden neuron, 

also known as the threshold, and ωi∙xj is the inner product of ωi and xj. The purpose of training SLFNs 

is to minimize the error of output value，which means:  

1

min
L

j j

j

O t

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Then, the N equations represented by equation (1) can be expressed in matrix form as follows: 
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, H is the hidden layer output matrix, β is the output weight matrix, and T is 

the output matrix.  

In the algorithm of ELM, when the input weights and hidden layer biases are randomly 

generated, the determination of the output weights is to find the least-square (LS) solution to the 

linear system: 

  +H T                (4) 

where H
+
 is obtained by singular value decomposition of Moore-Penrose (MP) generalized inverse 

matrix. 

The pseudo-code of ELM is as follows: 

Input: (xi, ti), L, g(x) 

Generate the input weights ωi and the biases bi of hidden  

neurons randomly; 

H  Compute the hidden layer output matrix; 

β  Compute the output weights by formula (4); 

Output: β 




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2.2. Electromagnetism-like mechanism algorithm 

The basic principle of EM is that every feasible solution is compared to a charged particle and the 

charge of each particle is calculated by the value of the preparative optimization objective function [16]. 

The charge determines not only the type of the force between two particles (either attraction or 

repulsion), but also the strength of the force. Under the action of attraction and repulsion forces, the 

population moves to a new generation. The whole process of particle movement under the force in a 

population is shown in Figure 1. As can be clearly seen from Figure 1, the blue particle is subject to the 

forces of other particles in the population, both attraction and repulsion. Besides, the optimal particle 

in the population will always attract other particles to move towards it. Specifically, the EM algorithm 

mainly includes the following four steps. 

 

Figure 1. The process of particle movement. 

(1) Initialization: m particles are randomly selected from the feasible region as initial population. 

Each coordinate of the particle is uniformly distributed between corresponding upper and lower 

bounds. Then, the objective function value is calculated for each particle and the particle with the 

best objective function value is stored in Xbest. 

(2) Local search: The procedure of the local search conducted on a single particle is to improve the 

solution obtained. Each dimension of the current optimal particle Xbest is searched according to a 

certain step size. Once a better solution is found, the optimal particle is updated. The effective 

local information obtained from this procedure can contribute to the abilities of EM of both 

exploration and exploitation. 

(3) Calculation of the resultant force: The magnitude of the force of particle i is strongly related to 

its charge qi, which can be calculated by formula (5):  

   

    
1

exp ,
i best

i m

k best

k

f X f X
q n i

f X f X


 
 
   
  
 


                       (5) 

The resultant force Fi exerted on particle i can be calculated as follows: 
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According to the above formula, the particle with better and poorer objective function values 

attracts and repulses other particles, respectively. The better the objective function value is, the 

stronger the attraction will be, and vice versa. 

(4) Movement of the population: After calculating the resultant force, the particles are moved in the 

direction of the force, thus forming a new generation of population. The direction and step of the 

movement are determined by the following formula: 

 ,  i
i i

i

F
X X RNG i

F
                         (7) 

λ is a random number of 0 to 1, which guarantees that the particles with a nonzero probability 

move to unvisited regions. RNG is a movable range between the upper and lower sectors. 

The pseudo-code of EM algorithm is as follows: 

EM (M, MAXITER, LSITER, δ) 

M is the number of particles; MAXITER is the maximum number of iterations; LSITER is 

the maximum number of iterations in local search; δ is the local search parameter, δ∈[0,1]. 

Initialization of the population and parameters  

iteration  0 

Do { 

Local search (LSITER, δ) 

q  Calculation of charge of each particle (f(X)) 

F  Calculation of resultant force (q) 

Move each particle (F) 

iteration  iteration + 1 

} while iteration < MAXITER 

3. The improved extreme learning machine (DAEM-ELM)  

From the introduction of ELM, it can be seen that the input weights and hidden layer biases are 

randomly generated at the initialization stage. The network constructed in this way may give rise to a 

problem of overfitting. More specifically, ELM usually requires more hidden neurons than 

conventional neural networks to achieve the expected performance. Larger network size results in 

longer running time of the testing phase of ELM, which may hinder its efficient development in 

some test time sensitive scenarios [25]. To solve this problem, an improved approach designated as 

DAEM-ELM, which combines EM with ELM, is proposed in this paper. This new ELM adopts a 

novel EM called DAEM to optimize the input weights and biases of ELM to improve the 

generalization performance and the conditioning of the SLFN. In this section, we will first provide a 








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detailed description of the DAEM algorithm, and then present the DAEM-ELM algorithm. 

3.1. DAEM 

The convergence speed of EM slows down gradually during the iterations and the algorithm 

easily falls into the local optimal solution, that is, prematurity. In addition, the position and number of 

adjacent particles influence the step length and position update of the population according to formula (1). 

But it remains unclear under what conditions individual particles can be defined as adjacent to each 

other. In order to solve these problems, we propose an improved EM algorithm called DAEM, by 

incorporating some theories of dragonfly algorithm (DA) into EM. 

First, the adjacency of particles is defined. A neighborhood (circle in a 2D, sphere in a 3D space, 

or hypersphere in an nD space) with a certain radius r is assumed around each particle [24]. If the 

Euclidean distance between particle i and particle j is less than r, particle i and particle j are considered 

as adjacent. In order to accelerate the convergence speed, the radius r increases with increasing number 

of iterations. The specific calculation formula of r is as follows: 

( )
2

4 _

ub lb iter ub lb
r

Max iteration

  
                          (8) 

where iter is the number of current iterations, Max_iteration is the maximum number of iterations, ub 

is the upper limit of variables, and lb is the lower limit of variables. The neighborhood can be 

represented as (r1, r2,..., rn) and n represents the number of dimensions. 

Taking particle i as an example, it can be expressed as Xi = (xi1,xi2,..., xin), and then the 

neighborhood range of particle i in the j-th dimension (j = 1, 2,…, n) is [xij – rj, xij + rj]. When another 

particle Xk is within the neighborhood range of particle i of each dimension, it is considered that Xk is 

adjacent to Xi. 

For different problems, the fixed solution updating strategy of EM may not be always reasonable, 

and cannot guarantee the discovery of global optimal solution or approximate global optimal solution. 

Therefore, DAEM provides three different solution updating strategies motivated by DA. In this way, 

the suitable updating strategy can be selected according to the prior information of different problems. 

Besides, variable searching step is adopted to solve the conflicts between solution accuracy and 

computation time in the optimization process. The three updating strategies are described as follows. 

Strategy 1: when the distance between the current particle and the optimal particle in a certain 

dimension is smaller than the neighborhood radius, and there are adjacent particles in the 

neighborhood of the current particle, the updated formula of the particle is as follows: 

i
i i

i

F
X X c

F
                                   (9) 

where c = 0.9–iter × (0.5/Max_iteration)，η is a random number between [0,1]. Fi is still calculated 

by formula (6), but only the particles in the neighborhood instead of the entire population are 

considered. 

Strategy 2: when the distance between the current particle and the optimal particle in a certain 

dimension is smaller than the neighborhood radius, and there is no particle adjacent to the current 

particle in its neighborhood, the updated formula of the particle is as follows: 

 i i i i
X X levy X X                               (10) 
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   1 !x x                              (13) 

where r1 and r2 are two random numbers in [0,1], and α is a constant (equal to 1.5 in DAEM). 

Strategy 3: when the distance between the current particle and the optimal particle in any 

dimension is greater than the neighborhood radius, the updated formula of the particle is as follows: 

i i i W BX X c X Worst Best                        (14) 

* * *iX l L e E c C                           (15) 

where W  and B  are random numbers in [0,1], 
worst iWorst X X  , 

best iBest X X  , Xworst and 

Xbest represent the worst and best particle of current population respectively, l is a random numbers in [0,1], 

L is the difference between the position of Xbest and position of Xi when Xbest is in the neighborhood of 

Xi, otherwise L is a m-dimensional vector of 0’s, e = 0.1 – iter × (0.2/Max_iteration) (when e < 0, let e = 0), 

C is an n-dimensional vector generated randomly.  

3.2. DAEM-ELM 

The basic process of DAEM-ELM is described below. Data samples are divided into training 

sample set and testing sample set. The training set is trained by DAEM to build the classification 

model. Then, the testing set is tested by the obtained classification model. The detailed steps of the 

proposed method are as follows. 

Firstly, the population is randomly generated. Each particle in the population is composed of a set 

of input weights and hidden biases. The specific coding form is as follows: 

 11 12 1 21 22 2 1 2 1 2= , ,..., , , ,..., ,..., , ,..., , , ,...,i L L n n nL LX b b b                  (16) 

where N is the number of input neurons, and L is the number of hidden neurons, that is, the dimension 

of each particle is (N + 1) × L. All components in the particle are randomly initialized within the range  

of [–1, 1]. 

Secondly, for each particle, the corresponding output weights are computed according to formula (4). 

Then, the fitness of each particle is evaluated. The fitness function formula of DAEM-ELM is: 

1    1,2,...,

N

ii
MCR

f i N
N

 


                         (17) 

where N is the number of training samples, and MCRi is the misclassification of the algorithm. 

Neural network training should not solely rely on the misclassification of training set as the 

fitness function, because a higher training accuracy does not guarantee a higher test accuracy. It has 

been reported that neural networks tend to have better generalization performance with weights of 
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smaller norms [26,27]. Hence, the output weights are also considered in selection strategy design in 

order to further enhance the performance of our algorithm. It is stipulated that when the fitness values 

of different particles are similar, the particle with smaller norm of output weights is chosen as a better 

solution. The algorithm introduces the tolerance rate λ to meet this requirement and the effect is better 

when λ is set to 0.04 as validated by experiment. Besides, to reduce the computational complexity of 

the algorithm, the following regulation formula of current optimal solution is used only after each 

iteration (the fitness function is still the misclassification, and only the tolerance rate is added for 

adjustment). 

                 &
ibest i ibest i ibesti iibest ibest

ibest

ibest

f X f X f X X X
X

X if f X f X f X or

X else

     




 
  (18) 

                 &
gbest ibest gbest ibest gbestibest gbest ibest gbest

gbest

gbest

f X f X f X X XX if f X f X f X or
X

X else

       
 


 (19) 

where f (Xi), f (Xibest) and f (Xgbest) are the corresponding fitness values for the i-th particle, the best 

position of the i-th particle and global best position of all particles, respectively. 

     ,   and i ibest gbestX X X    are the corresponding output weights obtained by MP generalized 

inverse when the input weights are set as the i-th particle, the best position of the i-th particle and 

global best position of all particles, respectively. 

Thirdly, the k-fold cross-validation (k-fold CV) method is applied in order to get an unbiased 

estimate of the generalization accuracy and make full use of samples in case of insufficient sample. In 

k-fold CV, the data sample set is divided into k mutually disjoint subsets (approximately equal in size), 

such as S1, S2,…, Sk, and then DAEM-ELM is performed for k iterations. Sk is selected as the testing set 

and the rest of subsets are used as training set in the i-th iteration. Here, the parameter value of k is 5 

and the final classification results are the average value of five iterations. 

The pseudo-code of DAEM-ELM is as follows: 

DAEM-ELM: 

Performance estimation by k-fold CV where k=5; 

MAXITER is the maximum number of iterations. 

begin 

for i=1:k 

Training set=k-1 subsets  Testing set=remaining subsets 

begin DAEM 

Initialize the population with random numbers 

iteration  0 

Do{ 

Train the ELM on the training set 

Calculate fitness value 

Update the position of each particle 

iteration  iteration + 1 

} while iteration < MAXITER 

end DAEM 

Achieve the optimal input weights and hidden bias from the best 




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solution 

Test the ELM with the optimal input weights and hidden bias 

end  

Return the average classification accuracy and standard deviation of  

ELM 

end 

4. Experiment and discussion 

4.1. Datasets and experimental setup 

In this section, the performance of the proposed algorithm is evaluated on eight real-world 

classification problems (Thyroid, WDBC, Wine, Bupa Liver, Australian, Breast Cancer, Parkinson 

and Iris), and all these data-sets are taken from the University of California Irvine (UCI) repository [28]. 

The specification of these datasets is listed in Table 1. 

Table 1. Specification of eight classification problems. 

Data-sets Instances Attributes Classes Missing Value 

Thyroid 215 5 3 N 

Parkinson 195 22 2 N 

Iris 150 4 3 Y 

Bupa Liver 345 6 2 N 

Australian 690 14 2 Y 

Breast Cancer 699 9 2 Y 

Wine 178 13 3 N 

WDBC 569 30 2 N 

Iris, Australian and Breast cancer datasets have missing values (A data-set contains a certain 

number of instances, and an instance includes several attributes. If some instance in a data-set lack 

some attributes, it is said that the data-set has missing values.). The missing categorical attributes are 

replaced by the mode of the attributes, and the missing continuous attributes are replaced by the mean 

of the attributes in order to ensure the integrity of the sample data. Besides, normalization is employed 

to avoid the influence of the feature values in larger numerical ranges on those in smaller numerical 

ranges, which can also reduce the computational complexity. Every feature value can be normalized 

by scaling them into the interval of [–1, 1] according to: 

min
2 1

max min

i

i i

x
x

 
    

 
                             (20) 

where x′ is the normalization value, x is the original value, mini is minimum value of feature i and maxi 

is maximum value of feature i. 

The results obtained with the proposed algorithm are then presented and analyzed, and compared 

with those obtained using other related algorithms. The parameters in all algorithms of experiments are 

determined by trial and error. For DAEM-ELM, the maximum optimization epochs are 70, and the 
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population size is 50. The sigmoid function g(x) = 1/(1 + exp(–x)) is adopt as the ELM activation 

function to compute the hidden layer output matrix. All the programs are run in MATLAB 7.0 

environment. 

4.2. Benchmark classification 

The performance of DAEM-ELM algorithm is tested with the number of hidden neurons 

increasing from 5 to 40 at a step size of 5. The reason for choosing this range is that an excessive 

number of hidden neurons will lead to an overfitting problem for ELM. In addition, better parameters 

more suitable for associated networks can be found with the DAEM algorithm. Hence, the ELM only 

needs a small number of hidden neurons to obtain better results. The experimental results are shown in 

Table 2. 

Table 2. Accuracy with different numbers of hidden neurons. 

Hidden 

Neurons 

Accuracy 

(%) 

Dataset 

Thyroid Parkinson Iris 
Bupa 

Liver 
Australian 

Breast 

Cancer 
Wine WDBC 

5 
Training 94.19 88.46 98.31 78.62 76.27 94.61 98.89 97.80 

Testing 93.02 82.05 97.33 75.36 76.09 94.38 95.94 94.83 

10 
Training 97.67 89.10 98.33 80.80 82.25 94.79 99.26 98.01 

Testing 93.02 87.17 92.33 71.01 74.64 92.41 98.33 96.83 

15 
Training 98.49 93.59 98.33 81.88 83.88 95.68 99.29 97.17 

Testing 94.41 87.18 91.67 80.65 74.64 94.41 94.52 96.56 

20 
Training 98.84 92.95 98.33 81.88 83.88 99.04 100 98.19 

Testing 95.35 89.74 86.67 68.41 73.82 97.57 97.25 96.73 

25 
Training 98.84 93.59 98.33 82.25 87.50 96.05 100 97.80 

Testing 95.35 87.18 83.33 71.01 86.96 93.82 95.94 96.73 

30 
Training 98.84 96.15 98.33 82.03 90.22 96.97 100 97.80 

Testing 93.02 87.18 80.00 70.72 86.96 93.82 91.77 96.73 

35 
Training 98.96 95.51 98.33 82.97 91.30 97.13 100 98.19 

Testing 95.35 86.87 90.00 69.66 89.13 95.08 94.52 96.56 

40 
Training 98.84 96.15 98.33 80.07 83.88 97.31 100 99.12 

Testing 90.70 92.31 83.33 71.01 82.61 92.97 94.38 96.56 

As shown in Table 2, the accuracy rate does not simply increase with the number of hidden 

neurons. When the hidden neurons increase to a certain number, further increase will lead to a decline 

in accuracy. Secondly, the optimal number of hidden neurons varies for different problems. 

Specifically, the optimal number is 20, 25 and 35 for the Thyroid dataset, and we chose the smallest 

number (20) to reduce the computational time of the network. For the Parkinson, Iris, Bupa Liver, 

Australian, Breast Cancer, Wine and WDBC datasets, the optimal number is 40, 5, 15, 35, 20, 10 and 

10, respectively. 

Table 3 and Table 4 show the results achieved with all seven investigated methods (ABC-ELM [29], 

ELM, PSO-ELM [29], IPSO-ELM [29], E-ELM [29], LM and DAEM-ELM) for the eight benchmark 

classification datasets based on five trials. The last column of Table 3 shows the smallest number of 
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hidden neurons to be used in order to achieve the best results. It is evident that a higher accuracy rate 

and a smaller number of hidden neurons represent a better mode. In addition, to test the accuracy, the 

nearly optimal number of hidden neurons for these algorithms and the standard deviations are shown in 

the table in the form of mean ± standard deviation. From Table 3 and Table 4, we can draw the 

following conclusions. 

Table 3. Detailed results obtained by seven investigated algorithms via 5-fold on the eight datasets. 

Dataset Algorithm 
Accuracy (%) 

Hidden Neurons 
Training Testing 

Thyroid 

ABC-ELM 98.79 94.971.44 15 

ELM 96.84 92.933.98 30 

PSO-ELM 97.92 94.143.67 30 

IPSO-ELM 98.33 94.312.65 25 

E-ELM 98.10 92.743.02 40 

LM 95.70 91.073.41 35 

DAEM-ELM 98.84 95.35 20 

Parkinson 

ABC-ELM 95.12 89.113.02 15 

ELM 92.28 86.155.79 40 

PSO-ELM 93.66 87.594.70 30 

IPSO-ELM 93.95 88.104.62 25 

E-ELM 94.17 87.085.70 35 

LM 89.24 82.384.65 35 

DAEM-ELM 96.15 91.802.30 40 

Iris 

ABC-ELM 97.63 96.681.83 15 

ELM 96.00 95.422.45 20 

PSO-ELM 96.38 95.891.13 15 

IPSO-ELM 96.76 96.131.64 10 

E-ELM 98.81 95.203.13 30 

LM 98.74 96.002.67 10 

DAEM-ELM 98.31 97.332.67 5 

Bupa Liver 

ABC-ELM 77.94 72.834.21 15 

ELM 76.58 71.305.14 30 

PSO-ELM 77.18 71.545.26 25 

IPSO-ELM 77.40 71.725.33 25 

E-ELM 76.26 71.195.70 20 

LM 74.91 69.376.04 35 

DAEM-ELM 81.88 80.650.41 15 

For the Thyroid dataset, although the number of hidden neurons of DAEM-ELM is not the 

smallest (only slightly bigger than that of ABC-ELM), its classification accuracy is the highest among 

seven methods and the standard deviation of the acquired performance is also the smallest (equal to 0), 

indicating the consistency and stability of the proposed method. The results of the Thyroid dataset are 

shown in Figure 2(a). 
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Figure 2. The classification accuracy of the four algorithms with different numbers of 

hidden nodes: (a) Thyroid; (b) Parkinson; (c) Iris; (d) Bupa Liver; (e) Australian; (f) 

Breast Cancer; (g) Wine; (h) WDBC.  
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Table 4. Detailed results obtained by seven investigated algorithms via 5-fold on the eight datasets. 

Dataset Algorithm 
Accuracy (%) 

Hidden Neurons 
Training Testing 

Australian 

ABC-ELM 90.74 87.381.61 15 

ELM 87.50 85.353.20 30 

PSO-ELM 89.37 86.042.31 40 

IPSO-ELM 89.65 86.412.72 15 

E-ELM 89.51 86.032.80 20 

LM 87.82 85.972.77 40 

DAEM-ELM 91.30 89.130.21 35 

Breast Cancer 

ABC-ELM 98.54 96.971.09 10 

ELM 97.42 96.051.02 40 

PSO-ELM 97.16 96.311.25 35 

IPSO-ELM 98.25 97.181.33 25 

E-ELM 97.88 96.451.67 35 

LM 96.21 95.962.24 40 

DAEM-ELM 99.04 97.540.35 20 

wine 

ABC-ELM 99.97 98.431.11 10 

ELM 99.86 97.982.08 25 

PSO-ELM 100 97.632.27 15 

IPSO-ELM 100 97.822.01 15 

E-ELM 100 98.021.69 25 

LM 99.40 98.052.55 30 

DAEM-ELM 99.26 98.331.33 10 

WDBC 

ABC-ELM 98.85 96.821.23 10 

ELM 96.43 96.131.64 30 

PSO-ELM 97.49 96.281.60 20 

IPSO-ELM 97.96 96.541.51 10 

E-ELM 98.03 96.101.93 20 

LM 96.11 95.172.22 30 

DAEM-ELM 98.01 96.830.42 10 

For the Parkinson dataset, ABC-ELM has the fewest hidden neurons. But the proposed method 

outperforms other six methods in terms of classification accuracy by around 3% (more than 9% 

compared with that of LM). Besides, DAEM-ELM also has the smallest standard deviation among 

these methods. Figure 2(b) shows the accuracy obtained on the Parkinson dataset. 

For the Iris dataset, DAEM-ELM only needs five hidden neurons to achieve the highest 

classification accuracy. In this way, the proposed method achieves both the highest classification 

accuracy and the most compact network structure. The results of the Iris dataset are shown in Figure 

2(c). 

For the Bupa Liver dataset and WDBC dataset, the proposed method outperforms others in all 

cases (classification accuracy, number of hidden neurons, standard deviation), as shown in Figure 2(d) 

and Figure2(h). 
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For the Australian dataset and Breast Cancer dataset, the DAEM-ELM still maintains the highest 

classification accuracy and the smallest standard deviation with a medium number of hidden neurons. 

These results are also confirmed in Figure 2(e) and Figure 2(f). 

For the Wine dataset, ABC-ELM is the algorithm with the best performance. The proposed 

algorithm has the same number of hidden neurons as ABC-ELM, and only slightly poorer performance 

in accuracy and standard deviation. Figure 2(g) illustrates the results on the Wine dataset. 

In summary, the DAEM-ELM algorithm can achieve better performance by using DAEM to 

select the input weights and hidden biases of the SLFN than the ELM, PSO-ELM, IPSO-ELM, E-ELM 

and LM algorithms, indicating that the optimal network structure tuned by the DAEM algorithm 

contributes greatly to the reduction of hidden neurons in the models and a reasonable generalization 

performance for these datasets. 

5. Conclusion 

In this paper, a novel extreme learning machine based on electromagnetism-like mechanism 

(DAEM-ELM) is proposed. In the new algorithm, an improved EM is used to optimize the input 

weights and hidden biases, and minimum norm least-square scheme is employed to analytically 

determine the output weights. In the optimization process, the improved EM considers not only the 

misclassification but also the norm of the output weights as well as constrains the input weights and 

hidden biases within a reasonable range. In addition, the 5-fold CV method is adopted to prevent the 

overfitting problem. Experimental results show that DAEM-ELM outperforms other methods 

(original ELM, PSO-ELM, IPSO-ELM, E-ELM and LM) and has a more compact network structure. 

It is also confirmed that due to the selection of optimal parameters, the results are more stable with 

fewer hidden neurons. Hence, it can be concluded the developed DAEM-ELM algorithm can be a 

feasible and effective algorithm for classification problems. Future research work will be focused on 

the identification of the optimal hidden neuron number, input weights and hidden biases at the same 

time. 
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