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Abstract: This work is mainly focused on the series of dynamical analysis of tritrophic food chain
model with Sokol-Howell functional response, incorporating the multiple gestation time delays for
more realistic formulation. Basic properties of the proposed model are studied with the help of
boundedness, stability analysis, and Hopf-bifurcation theory. By choosing the fixed parameter set and
varying the value of time delay, the stability of the model has been studied. There is a critical value for
the delay parameter. Steady state is stable when the value of delay is less than the critical value and
a further increase in the value of delay beyond the critical value makes the system oscillatory through
Hopf-bifurcation. Whereas, another delay parameter has a stabilizing effect on the system dynamics.
Chaotic dynamics has been explored in the model with the help of phase portrait and sensitivity on
initial condition test. Numerical simulations are performed to validate the effectiveness of the derived
theoretical results and to explore the various dynamical structures such as Hopf-bifurcation, periodic
solutions, and chaotic dynamics.
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1. Introduction

Time delays are ubiquitous in all biological situations, as species require some time in order to
complete various biological activities such as digestion, gestation, maturation, incubation, etc. Also,
the present growth of species may be affected by the past generations through delay mechanism [1, 2].
Introduction of time delay may change qualitatively the dynamical behaviors of a predator-prey
interaction model, therefore, it is important to investigate the dynamical properties of a predator-prey
model with time delays in both theoretical research and practical applications. One of the interesting
observation of inclusion of time delay is the appearance of oscillatory behavior in single species
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models [3, 4]. Time delay can produce chaotic oscillations even in simple predator-prey models [5, 6].
The introduction of time delay leads to rich dynamical behaviors such as periodic orbits, stability
switching, chaotic dynamics, and multiple stable coexistence through the different bifurcation
routes [7]. Mathematical models incorporating the time delays are widely discussed in the books of
MacDonald [8], Kuang [3] and Cushing [9].

Recently, the impact of multiple delays on the dynamics of ecological systems has caught the
attention of many researchers. In particular, Gakkhar and Singh [5] have studied the predator-prey
model with Holling type II response function and discrete delays. They have observed that the stable
species coexistence undergoes Hopf-bifurcation for the critical value of delay and a further increase in
delay beyond the Hopf-bifurcation leads the system dynamics to the chaotic state. Also in two neuron
system with multiple delays, Song et al. [10, 11] have obtained stability switching, multiple stable
coexistence of two resting states, two anti-symmetric periodic activity with period three, one
self-symmetric periodic activity with period one, one quasiperiodic spiking and chaotic behavior.
Jiang et al. [12] have considered the Phytoplankton-Zooplankton model with Holling III functional
response and discrete delay. They have shown that the oscillations can be prevented by adjusting the
magnitude of delay. Song et al. [13] have discussed the food chain system with multiple digestion
delays and predicted that the multiple delays can generate and suppress the higher order limit cycles
and chaos. Lotka-Volterra food chain system with two discrete delays has been investigated by Cui
and Yan [14]. They have determined the linear stability, Hopf-bifurcation, direction and stability of
bifurcating period solutions by considering the sum of two delays as a bifurcating parameter. Jiang
and Wang [15] have investigated the predator-prey model with three delays and discussed the delay
induced destabilization and stability analysis of periodic solutions. Further, Ghosh et al. [16] have
studied the stability and bifurcation analysis of an eco-epidemiology model with multiple delays.
Three species Leslie-Gower type food chain model with resource digestion delay and consumer
digestion delay is analyzed by Guo et al. [17]. It has been noted that the multiple delays lead to the
stability switching, generate or terminate the recurrent bloom and help control the species population
to the stable coexistence.

Delay induced destabilization is a common finding. A lot of work has been done with the objective
to find the critical value of the delay parameter at which system bifurcates from its stable state and starts
showing the oscillatory behaviour [18–23]. However, Sen et al. [24] have provided the necessary and
sufficient conditions for stability of interior equilibria in a ratio-dependent predator-prey model with
Allee effect and maturation delay. Stabilizing effect of maturation delay in a ratio-dependent predator-
prey model with Allee effect is investigated by Banerjee and Takeuchi [25]. Wang and Jiang [26] have
demonstrated that different values of delay can induce or eradicate chaotic dynamics in the predator-
prey system with dormancy in predator. Motivated by these research work, we have asked the following
research questions in the current manuscript:

(i) How do multiple gestation delays affect the stable and oscillatory coexistence of species? Do
several delays behave in a similar fashion?

(ii) Is it possible to obtain some parameter sets so that stable coexistence of species is not affected by
the introduction of delays?

(iii) Is it possible to obtain various complex dynamical behaviors such as higher order limit cycles and
chaos? If yes, what is the impact of delays on these complex dynamical structures?
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For ecological forecasting, it is necessary to understand the predator-prey linkage in food chain or
web systems. Different functional and numerical responses are used for modeling the trophic
interactions and they are one of the most important components in the study of interacting
populations. In most of the studies, population dynamics is modeled with the help of monotonic
response functions (Holling type I, II, III). Observational and experimental results show that these
types of response functions are not appropriate for modeling the situations with group defence and
inhibitory effects [27]. More suitable in these situations is Holling type IV functional
response [28, 29]. In their experiment of uptake of phenol by pure culture of Pseudomonas putida
growing on phenol in continuous culture, Sokol and Howell [30] proposed the simplified form of
Monod-Haldane functional response as p(x) = mx

a+x2 . They obtained that it better fits the experimental
data and simple as involving only two parameters. Edwards [31], Boon and Laudelout [32], Xiao and
Ruan [27] suggested that this type of functional response takes place at the microbial level: when the
nutrient concentration attains a high value, an inhibitory effect on the specific growth rate may occur.
Recently, Ali et al. [33, 34] proposed a three species food chain system with Sokol-Howell functional
response. They have studied the boundedness, local and global stability of the system. Dynamical
behavior is also explored by using the numerical simulations. Explosive instabilities in three species
food chain model with this functional response have been investigated by Parshad et al. [35]. A three
species Rosenzweig-MacArthur food chain model with this functional response has been investigated
by Ali et al. [36].

In the current work, we have studied a food chain model with multiple gestation delays. As
assimilation of prey into the predator biomass is a complex phenomenon and completed through
various bio-physiological activities, which require time, therefore, time lags in predators gestation
process have been considered. Effect of gestation delay in the system of interacting populations is
studied by many researchers [18–20, 22, 23, 37–39]. Patra et al. [40] have analyzed the effect of
discrete delay in a three species food chain model with ratio-dependent type functional response. Pal
et al. [41] have studied the tritrophic food chain model with gestation delay, where species interacts
with Holling type II response function. Here, gestation delays are incorporated in the model using the
Wangersky-Cunningham delay formulation [42]. The conventional way of delay formulation has been
extensively studied in literature [5, 24, 40, 43]. In recent years, Wangersky-Cunningham delay
formulation is used prominently due to its clear biological explanation [19, 24, 25, 41].

The organization of paper is as follows. Formulation of the model is given in section 2. In section 3,
positive invariance, boundedness, equilibria and stability analysis have been discussed. Local stability
analysis and Hopf-bifurcation about the interior equilibrium point for all possible cases to incorporate
gestation delays have been derived in section 4. Numerical simulation results have been presented in
section 5. Finally, discussion and conclusion are given in the last section.

2. Formulation of the mathematical model

The model has been developed under the following assumptions.

(1) The behavior of whole community arises due to the coupling of three types of interacting
populations: prey X(t), intermediate predator Y(t) and top predator Z(t).

(2) Prey population grows logistically with intrinsic growth rate r and carrying capacity K. Thus, the
per capita growth rate of prey in the absence of predator is given by r

(
1 − X(t)

K

)
.
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(3) Intermediate and top predators consume their sole food (prey and intermediate predator
respectively) according to Sokol-Howell functional response.

(4) In the absence of their only foods intermediate and top predators die out with their natural death
rates.

(5) Consumption of prey by the predator is not an instantaneous process. However, predator requires
some period of time to convert the prey density into itself due to gestation.

Under the above assumptions, interactions between the species are modeled by the following system
of DDEs:

dX
dT

= rX
(
1 −

X
K

)
−

ωXY
X2 + a1

,

dY
dT

= −bY +
ω1X(T − T1)Y(T − T1)

X2(T − T1) + a1
−

ω2YZ
Y2 + a2

,

dZ
dT

= −cZ +
ω3Y(T − T2)Z(T − T2)

Y2(T − T2) + a2
.

(2.1)

All the parameters r, K, ω, a1, b, ω1, ω2, a2, c, ω3, T1 and T2 are positive and brief description
about these parameters is given in Table 1.

Table 1. Parameters used in the model (2.1).

Parameters Meaning
r Intrinsic growth rate of prey population X
K Carrying capacity of prey X in the absence of predator Y
ω, ω2 Maximum values which per capita reduction rate of prey and

intermediate predator can attain respectively
ω1 Conversion coefficient from individual of prey to individual of

intermediate predator
b, c Death rates of intermediate predator Y and top predator Z in the absence

of their sole foods X and Y respectively
ω3 Conversion coefficient from individual of intermediate predator to the

top predator
a1, a2 Measure the level of protection provided by environment to the prey and

intermediate predator respectively
T1, T2 Gestation delays for intermediate and top predator respectively

Model (2.1) involves 12 parameters, which complicates the system analysis. Thus, to reduce the
complexity of model (2.1), we non-dimensionalize it by using the following transformations:

X
K

= x, rT = t,
a1

K2 = ω4,
ωY
rK2 = y,

b
r

= ω5,
ω1

rK
= ω6,

ω2ω
2Z

r3K4 = z,
a2ω

2

r2K4 = ω7, rT1 = τ1,
c
r

= ω8,
ω3ω

r2K2 = ω9, rT2 = τ2.
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Then model (2.1) is reduced in the following dimensionless form:

dx
dt

= x(1 − x) −
xy

x2 + ω4
,

dy
dt

= −ω5y +
ω6x(t − τ1)y(t − τ1)

x2(t − τ1) + ω4
−

yz
y2 + ω7

,

dz
dt

= −ω8z +
ω9y(t − τ2)z(t − τ2)

y2(t − τ2) + ω7
.

(2.2)

All the variables and parameters of dimensionless system (2.2) are positive. We denote by C the
Banach space of continues functions φ : [−τ, 0]→ R3 with norm

‖φ‖ = sup
−τ≤θ≤0

{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|}, τ = max[τ1, τ2], φ = (φ1, φ2, φ3).

The initial conditions are given as

x(θ) = φ1(θ), y(θ) = φ2(θ), z(θ) = φ3(θ), θ ∈ [−τ, 0]. (2.3)

For biological reasons, it is assumed that

φ1(θ) ≥ 0, φ2(θ) ≥ 0, φ3(θ) ≥ 0, θ ∈ [−τ, 0].

By the fundamental theorem of differential equations [44], there exists a unique solution
(x(t), y(t), z(t)) of the model (2.2) with initial conditions (2.3).

3. Preliminaries

In this section, we present some basic results such as positive invariance, boundedness of the
solutions, equilibria analysis and characteristic equation of model (2.2).

3.1. Positive invariance

It is important to discuss the positivity of solutions of model (2.2) as they represent the populations
of prey, intermediate predator and top predator at any time. In the biological sense, positivity makes
sure that the population never becomes negative and always survives in the finite time. We have
established the positivity through the following theorem.

Theorem 3.1. Every solution of the system (2.2) with initial conditions (2.3) is positive.

Proof. The model (2.2) with the initial conditions (2.3) can be written in the following form:

Consider W =col(x, y, z) ∈ R3
+, (φ1(θ), φ2(θ), φ3(θ)) ∈ C+ = ([−τ, 0], R3

+),
φ1(0), φ2(0), φ3(0) > 0.

(3.1)

F(W) =


F1(W)

F2(W)

F3(W)

 =


x(1 − x) − xy

x2+ω4

−ω5y +
ω6 x(t−τ1)y(t−τ1)

x2(t−τ1)+ω4
−

yz
y2+ω7

−ω8z +
ω9y(t−τ2)z(t−τ2)

y2(t−τ2)+ω7

 .
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The model (2.2) becomes

Ẇ = F(W), (3.2)

with W(θ) = (φ1(θ), φ2(θ), φ3(θ)) ∈ C+ and φ1(0), φ2(0), φ3(0) > 0. It is easy to check in system (3.2)
that whenever choosing W(θ) ∈ R3

+ such that x = y = z = 0, then

Fi(W) |wi=0, W∈R3
+
≥ 0,

with w1(t) = x(t), w2(t) = y(t), w3(t) = z(t). Using the lemma 4 given in [45], any solution of (3.2)
with W(θ) ∈ C+ saying W(t) = W(t,W(θ)), is such that W(t) ∈ R3

+ for all t ≥ 0. Hence the solution of
the system (3.2) exists in the region R3

+ and all solutions remain nonnegative for all t > 0. Therefore,
the positive orthant R3

+ is an invariant region. �

3.2. Boundedness

Theorem 3.2. Let (x(t), y(t), z(t)) be any positive solution of the model (2.2), then there exists a time
T̃ > 0, such that 0 ≤ x(t) ≤ M1, 0 ≤ y(t) ≤ M2 and 0 ≤ z(t) ≤ M3 for t > T̃ , where M1 =

1, M2=
ω6

4ω5
, M3 =

ω6ω9(ω5−δ)
4ω5δ

, δ is any positive constant satisfying δ < min{ω5, ω8}.

Proof. From the positive invariance theorem, we have x(t) ≥ 0, y(t) ≥ 0 and z(t) ≥ 0. Therefore, we
only need to show that x(t) ≤ M1, y(t) ≤ M2 and z(t) ≤ M3. From the prey equation, we obtain that

dx
dt
≤ x(1 − x),

thus
x(t) ≤

x(0)
x(0) + (1 − x(0))e−t ,

therefore,
lim sup

t→+∞

x(t) ≤ 1 = M1.

Now, we construct a new function

σ(t) = x(t − τ1) +
y(t)
ω6

.

By differentiating σ(t) with respect to time t, we obtain

dσ
dt

=
dx(t − τ1)

dt
+

1
ω6

dy
dt

= x(t − τ1)(1 − x(t − τ1)) −
x(t − τ1)y(t − τ1)
x2(t − τ1) + ω4

−
ω5y
ω6

+
x(t − τ1)y(t − τ1)
x2(t − τ1) + ω4

−
y(t)z(t)

ω6(y2 + ω7)
.

And by using the positivity of solutions, we get

dσ
dt
≤ x(t − τ1)(1 − x(t − τ1)) −

ω5y
ω6

.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4660–4691.



4666

Then adding ω5σ(t) on the both side of above inequality, we get

dσ
dt

+ ω5σ(t) ≤ x(t − τ1)(1 − x(t − τ1)) + ω5x(t − τ1).

Since, max{x(t − τ1)(1 − x(t − τ1))} = 1
4 , implies,

dσ
dt

+ ω5σ(t) ≤
1
4

+ ω5x(t − τ1)

≤
1
4

+ ω5.

Therefore, by using the lemma (2) given in [46], we obtain

σ(t) ≤
(

1
4ω5

+ 1
)
−

(
1

4ω5
+ 1 − σ(T̃1)

)
e−ω5(t−T̃1), for t ≥ T̃1 ≥ 0.

If T̃1 = 0, then

σ(t) ≤
(

1
4ω5

+ 1
)
−

(
1

4ω5
+ 1 − σ(0)

)
e−ω5(t−0),

therefore

lim sup
t→+∞

σ(t) ≤
(

1
4ω5

+ 1
)
,

i.e.
x(t − τ1) +

y(t)
ω6
≤

1
4ω5

+ 1, for large t > 0,

thus,
y(t) ≤

ω6

4ω5
= M2, for large t.

Again for boundedness of z(t), we construct another function

γ(t) = x(t − τ1 − τ2) +
y(t − τ2)
ω6

+
z(t)
ω6ω9

.

By differentiating above equation with respect to time t, we have

dγ(t)
dt

=
dx(t − τ1 − τ2)

dt
+

1
ω6

dy(t − τ2)
dt

+
1

ω6ω9

dz(t)
dt

.

Now, by using system (2.2), we obtain

dγ(t)
dt

= x(t − τ1 − τ2)(1 − x(t − τ1 − τ2)) −
ω5

ω6
y(t − τ2) −

ω8

ω6ω9
z(t).

And by adding δγ(t) on the both side of above inequality, where δ < min{ω5, ω8}, we obtain

dγ(t)
dt

+ δγ(t) ≤ x(t − τ1 − τ2)(1 − x(t − τ1 − τ2)) + δx(t − τ1 − τ2)

≤
1
4

+ δx(t − τ1 − τ2).
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Then using the boundedness of x(t), we obtain

dγ
dt

+ δγ(t) ≤
1
4

+ δ.

Therefore, from lemma 2 given in [46], we have

γ(t) ≤
(

1
4δ

+ 1
)
−

(
1
4δ

+ 1 − γ(T̃2)
)

e−δ(t−T̃2), for t ≥ T̃2 ≥ 0.

If T̃2 = 0, then,

γ(t) ≤
(

1
4δ

+ 1
)
−

(
1
4δ

+ 1 − γ(0)
)

e−δ(t−0).

Therefore

lim sup
t→+∞

γ(t) ≤
(

1
4δ

+ 1
)
,

where

γ(t) = x(t − τ1 − τ2) +
y(t − τ2)
ω6

+
z(t)
ω6ω9

≤

(
1
4δ

+ 1
)
, for large t > 0.

Thus

z(t) ≤
ω6ω9

4

(
ω5 − δ

ω5δ

)
= M3.

�

3.3. Equilibria analysis

Steady state solutions are obtained analytically by putting ẋ = 0, ẏ = 0 and ż = 0, which are
independent of time delays τ1 and τ2. The model has four equilibrium points.

(i) Trivial equilibrium point P0(0, 0, 0) always exists.
(ii) Predators free axial equilibrium point P1(1, 0, 0) exists.

(iii) Top predator free planar equilibrium point P2(x̄, ȳ, 0), where ȳ = (1 − x̄)(x̄2 + ω4), and x̄ is a
solution of the equation

f (x) = ω5x2 − ω6x + ω4ω5 = 0,

which has positive solution x̄ if
ω2

6 ≥ 4ω4ω
2
5. (3.3)

Notice that ȳ > 0 iff x̄ < 1.
Following we discuss the existence conditions of P2 for three cases.

(a)

f (1) > 0 and
ω6

2ω5
< 1⇔ ω5 − ω6 + ω4ω5 > 0, ω6 < 2ω5

⇔ ω6 < min {2ω5, ω5(1 + ω4)} =

2ω5, if ω4 ≥ 1,
ω5(1 + ω4), if ω4 < 1.

(3.4)

⇔ 0 < x̄± < 1, ȳ± > 0.
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(b)

f (1) < 0⇔ ω6 > ω5(1 + ω4)
⇔ 0 < x̄− < 1 < x̄+

⇒ 0 < x̄− < 1, ȳ− > 0.

(c)

f (1) > 0 and
ω6

2ω5
> 1⇔ ω5 − ω6 + ω4ω5 > 0, ω6 > 2ω5

⇔ 2ω5 < ω6 < ω5(1 + ω4) (implies ω5 < ω4ω5, i.e. ω4 > 1)
⇒ x̄± > 1, so no P2 exists.

(iv) Positive coexistence equilibrium point P3(x∗, y∗, z∗) exists provided

ω2
9 > 4ω7ω

2
8 and ω5 <

ω6x∗

x∗2 + ω4
, (3.5)

where y∗ =
ω9±
√
ω2

9−4ω2
8ω7

2ω8
, z∗ = (y∗2 + ω7)(−ω5 +

ω6 x∗

x∗2+ω4
), and x∗ is the positive root of following

equation

x∗3 − x∗2 + ω4x∗ + y∗ − ω4 = 0. (3.6)

Let f (x∗) = x∗3 − x∗2 + ω4x∗ + y∗ − ω4, then f (0) = (y∗ − ω4), f (0) < 0 if y∗ < ω4 , i.e.
ω4ω9 < ω8(ω7 + ω2

4) and f (1) = y∗ > 0. Since f (0) f (1) < 0, by intermediate value theorem, Eq.
(3.6) has a positive root lies in (0,1) when

y∗ < ω4, i.e. ω4ω9 < ω8(ω7 + ω2
4) and ω9 < 2ω4ω8. (3.7)

Positive equilibrium point P3(x∗, y∗, z∗) exists if the conditions (3.5) and (3.7) hold.

In the absence of both delays, the general variational matrix of model (2.2) at any arbitrary point (x, y, z)
is given by

A =


1 − 2x − y(ω4−x2)

(x2+ω4)2 − x
x2+ω4

0
ω6y(ω4−x2)

(x2+ω4)2 −ω5 −
z(ω7−y2)
(y2+ω7)2 +

ω6 x
x2+ω4

−
y

y2+ω7

0 ω9z(ω7−y2)
(y2+ω7)2 −ω8 +

ω9y
y2+ω7

 .
The behaviour of equilibrium points is summarized as follows.

(i) Eigenvalues of variational matrix at P0(0, 0, 0) are 1, −ω5, −ω8. Therefore, P0 is a saddle point
having unstable manifold along x-direction and stable manifold along y and z-direction.

(ii) Eigenvalues of variational matrix at P1(1, 0, 0) are −1, −ω5 +
ω6

1+ω4
, −ω8. Therefore, P1 is locally

asymptotically stable (LAS) provided ω6
1+ω4

< ω5.

(iii) At P2(x̄, ȳ, 0), the variational matrix becomes

A =


1 − 2x̄ − ȳ(ω4−x̄2)

(x̄2+ω4)2 −
x̄

x̄2+ω4
0

ω6ȳ(ω4−x̄2)
(x̄2+ω4)2 0 −

ȳ
ȳ2+ω7

0 0 −ω8 +
ω9ȳ

ȳ2+ω7

 .
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A is stable iff

1 − 2x̄ −
ȳ(ω4 − x̄2)
(x̄2 + ω4)2 < 0, (3.8)

ω4 − x̄2 > 0⇔ x̄ <
√
ω4, (3.9)

− ω8 +
ω9ȳ

ȳ2 + ω7
< 0. (3.10)

Define f (x) = ω5x2 − ω6x + ω4ω5. Then we have f (x̄) = 0, and

x̄ > 0⇔ ω2
6 ≥ 4ω4ω

2
5. (3.11)

Since f (
√
ω4) = 2ω4ω5 − ω6

√
ω4 ≤ 0, we have x̄− <

√
ω4 < x̄+. Hence by (3.9), P+

2 = (x̄+, ȳ+, 0)
is always unstable. From (3.10), we have ω8ȳ2 − ω9ȳ + ω7ω8 > 0. Hence ȳ > 0 if ω2

9 < 4ω7ω
2
8.

That is, (3.10) is satisfied if there exists no P3(x∗, y∗, z∗).
Now let’s consider the case where no P3 exists. For this case, (3.10) is satisfied for any ȳ > 0 and
(3.9) is satisfied for x̄−. Since ȳ− = (1 − x̄−)(x̄2

− + ω4), we have

1 − 2x̄− −
ȳ−(ω4 − x̄2

−)
(x̄2
− + ω4)2

= 1 − 2x̄− −
(1 − x̄−)(ω4 − x̄2

−)
x̄2
− + ω4

< 0

⇔ 3x̄2
− − 2x̄− + ω4 > 0. (3.12)

(a) When ω4 > 1/3, (3.12) is satisfied for any x̄− ≥ 0. Hence, P−2 is LAS when ω4 > 1/3 and no
P3 exists.

(b) When ω4 < 1/3,

(3.12)⇔ x̄− <
1 −
√

1 − 3ω4

3
or x̄− >

1 −
√

1 + 3ω4

3
, (3.13)

where x̄− =
ω6−
√
ω2

6−4ω4ω
2
5

2ω5
.

Hence P−2 is LAS when ω4 < 1/3 and no P3 exists and (3.13) is satisfied.

4. Local stability analysis and Hopf-bifurcation

In this section, we discuss the effect of discrete delays on the dynamics of model (2.2).
At P0, characteristic equation is

(λ − 1)(λ + ω5)(λ + ω8) = 0.

There are one positive root λ1 = 1 and two negative roots λ2 = −ω5, λ3 = −ω8, which are independent
of τ1 and τ2. Hence P0 is unstable for any τ1 ≥ 0 and τ2 ≥ 0.

At P1, characteristic equation is

(λ + ω5 −
ω6

1 + ω4
e−λτ1)(λ + 1)(λ + ω8) = 0.

There are one root λ1 = −ω5 +
ω6

1+ω4
e−λτ1 and two negative roots λ2 = −1, λ3 = −ω8.
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Following we consider the equation

λ + ω5 −
ω6

1 + ω4
e−λτ1 = 0. (4.1)

If τ1 = 0, then λ1 = −ω5 +
ω6

1+ω4
. It shows that P1 is LAS when ω6

1+ω4
< ω5. If τ1 > 0, let us suppose that

λ1 = iω (ω > 0) is a pure imaginary root of equation (4.1). Separating the real and imaginary parts, we
have

ω5 =
ω6

1 + ω4
cosωτ1,

−ω =
ω6

1 + ω4
sinωτ1.

(4.2)

Squaring and adding both sides of above equations lead to the following equation

ω2 =
ω2

6 − ω
2
5(1 + ω4)2

(1 + ω4)2 . (4.3)

This shows that P1 is LAS for any τ1, τ2 ≥ 0 if ω6
1+ω4

< ω5.

If ω6
1+ω4

> ω5, then equation (4.3) has one positive root ω−1 =
√

(ω6+ω5(1+ω4))(ω6−ω5(1+ω4))
1+ω4

.

Solving equation (4.2) for τ1 yields

τ
( j)
1 =

1
ω−1

(
2π − arccos

ω5(1 + ω4)
ω6

+ 2 jπ
)
, j = 0, 1, 2, · · ·. (4.4)

The minimum value of τ( j)
1 is renamed as

τ−1 = τ(0)
1 =

1
ω−1

(
2π − arccos

ω5(1 + ω4)
ω6

)
. (4.5)

Then, we have the following theorem.

Theorem 4.1. (i) P0 is unstable for any τ1 ≥ 0 and τ2 ≥ 0.
(ii) P1 is LAS for any τ1, τ2 ≥ 0 if ω6

1+ω4
< ω5.

(iii) P1 is LAS for 0 ≤ τ1 < τ−1 and any τ2 ≥ 0 if ω6
1+ω4

> ω5, where τ−1 is given by (4.5). Furthermore,
model (2.2) undergoes Hopf-bifurcation to periodic solutions at P1 when τ1 = τ−1 .

For P2, we consider two cases.
Case a: τ1 > 0, τ2 = 0.
At P2, characteristic equation is

(λ + ω8 −
ω9ȳ

ȳ2 + ω7
)
(
λ2 − e11λ + e11d22 + e−λτ1(−e22λ + e11e22 − e12e21)

)
= 0, (4.6)

where

e11 =
−x̄(3x̄2 − 2x̄ + ω4)

x̄2 + ω4
, e12 = −

x̄
x̄2 + ω4

< 0, e21 =
ω6(1 − x̄)(ω4 − x̄2)

x̄2 + ω4
,

e22 =
ω6 x̄

x̄2 + ω4
> 0, e33 = −ω8 +

ω9ȳ
ȳ2 + ω7

, d22 = −ω5 < 0.
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One characteristic root is λ1 = −ω8 +
ω9ȳ

ȳ2+ω7
. It is easy to show that λ1 < 0 for any τ1 ≥ 0 and τ2 ≥ 0 if

and only if ω9ȳ
ȳ2+ω7

< ω8.
Following we consider the equation

λ2 − e11λ + e11d22 + e−λτ1(−e22λ + e11e22 − e12e21) = 0. (4.7)

Let iω (ω > 0) be a root of equation (4.7), then we have

− ω2 − e11iω + e11d22 + (cosωτ1 − i sinωτ1)(−e22iω + e11e22 − e12e21) = 0. (4.8)

Simplifying and equating real and imaginary part of equation (4.8), we get

e22ω sinωτ1 − (e11e22 − e12e21) cosωτ1 = −ω2 + e11 + d22, (4.9)

e22ω cosωτ1 + (e11e22 − e12e21) sinωτ1 = −e11ω. (4.10)

Squaring and adding equations (4.9) and (4.10) we get

ω4 + p0ω
2 + q0 = 0, (4.11)

where
p0 = e11

2 − e22
2 − 2(e11 + d22),

q0 = (e11 + d22)2 − (e11e22 − e12e21)2.

We define

G0(ω) = ω4 + p0ω
2 + q0, (4.12)

G0(0) = q0 = (e11 + d22)2 − (e11e22 − e12e21)2, G1(∞) = ∞.
Let

(e11 + d22)2 − (e11e22 − e12e21)2 < 0, (4.13)

then G0(0) < 0 and G0(∞) = ∞. Thus, equation (4.31) has at least one positive root. Without loss of
generality, we assume that it has finite number of positive roots saying ω1, ω2, ω3, · · · , ωN . For every
fixed ωk, k = 1, 2, 3, · · · ,N, there exist a sequence {τk, j

10 | j = 0, 1, 2, · · · }, where

τ
(k, j)
10 =



1
ωk

(
arccos

−e12e21ω
2 − (e11 + d22)(e11e22 − e12e21)

e22
2ω2 + (e11e22 − e12e21)2 + 2 jπ

)
, j = 0, 1, 2, · · · ,

if − e22ω
2 + (e11 + d22)e22 − e11(e11e22 − e12e21) ≥ 0,

1
ωk

(
2π − arccos

−e12e21ω
2 − (e11 + d22)(e11e22 − e12e21)

e22
2ω2 + (e11e22 − e12e21)2 + 2 jπ

)
, j = 0, 1, 2, · · · ,

if − e22ω
2 + (e11 + d22)e22 − e11(e11e22 − e12e21) < 0,

(4.14)

Let
τ∗10 = τ(k0,0)

10 = min
k∈{1,··· ,N}

{
τ(k,0)

10

}
, ω∗ = ωk0 . (4.15)
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Case b: τ1 = 0, τ2 > 0.
At P2, characteristic equation is(

λ + ω8 −
ω9ȳ

ȳ2 + ω7
e−λτ2

) (
λ2 + h1λ + h2

)
= 0, (4.16)

where h1 =
ȳ(ω4−x̄2)
(x̄2+ω4)2 + 2x̄ − 1 > 0 if the condition (3.8) is satisfied, h2 = x̄

x̄2+ω4

ω6(1−x̄)(ω4−x̄2)
x̄2+ω4

> 0 if the
condition (3.9) is satisfied. Hence the equation λ2 + h1λ+ h2 = 0 have two negative roots if and only if
the conditions (3.8) and (3.9) are satisfied. Following we consider the equation

λ + ω8 −
ω9ȳ

ȳ2 + ω7
e−λτ2 = 0. (4.17)

Following a similar analysis of P1, we obtain the critical value

τ
( j)
2 =

1
ω−2

(
2π − arccos

ω8(ȳ2 + ω7)
ω9ȳ

+ 2 jπ
)
, j = 0, 1, 2, · · ·, (4.18)

where ω−2 =

√
(ω9ȳ+ω8(ȳ2+ω7))(ω9ȳ−ω8(ȳ2+ω7))

ȳ2+ω7
. The minimum value of τ( j)

2 is renamed as

τ−2 = τ(0)
2 =

1
ω−2

(
2π − arccos

ω8(ȳ2 + ω7)
ω9ȳ

)
. (4.19)

Then, we have the following theorem.

Theorem 4.2. (i) Suppose that τ1 > 0, τ2 = 0 and ω9ȳ
ȳ2+ω7

< ω8 are satisfied. Then P2(x̄, ȳ, 0) is LAS
for τ1 < τ∗10 and unstable for τ1 > τ∗10. Further, the system (2.2) undergoes the Hopf-bifurcation about
P2 when τ1 = τ∗10.
(ii) Suppose that τ1 = 0, τ2 > 0, the conditions (3.8) and (3.9) are satisfied. Then P2(x̄, ȳ, 0) is LAS for
any τ2 > 0 if ω9ȳ

ȳ2+ω7
< ω8. And P2(x̄, ȳ, 0) is LAS for τ2 < τ

−
2 if ω9ȳ

ȳ2+ω7
> ω8, where τ−2 is given by (4.19).

Furthermore, model (2.2) undergoes Hopf-bifurcation to periodic solutions at P2 when τ2 = τ−2 .

Next we obtain the characteristic equation of model (2.2) about interior equilibrium point
P3(x∗, y∗, z∗) by linearizing the model (2.2). Let x̄(t) = x(t) − x∗, ȳ(t) = y(t) − y∗, z̄(t) = z(t) − z∗ be the
perturbed variables about P3(x∗, y∗, z∗). Then the linearized form of model (2.2) is given by (bar
signed are dropped for simplicity)

d
dt


x(t)
y(t)
z(t)

 = A1


x(t)
y(t)
z(t)

 + A2


x(t − τ1)
y(t − τ1)
z(t − τ1)

 + A3


x(t − τ2)
y(t − τ2)
z(t − τ2)

 ,
where

A1 =


1 − 2x∗ − y∗(ω4−x∗2)

α2 − x∗
α

0
0 −ω5 −

z∗(ω7−y∗2)
β2 −

y∗

β

0 0 −ω8

 =


a11 a12 0
0 a22 a23

0 0 a33

 ,
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A2 =


0 0 0

ω6y∗(ω4−x∗2)
α2

ω6 x∗

α
0

0 0 0

 =


0 0 0

b21 b22 0
0 0 0

 ,

A3 =


0 0 0
0 0 0
0 ω9z∗(ω7−y∗2)

β2
ω9y∗

β

 =


0 0 0
0 0 0
0 c32 c33

 ,
and α = x∗2 + ω4, β = y∗2 + ω7.
Thus, the characteristic equation of the linearized system is given by

det(A1 + e−λτ1 A2 + e−λτ2 A3 − λI3) = 0, (4.20)

where I3 is an identity matrix of order 3.
Furthermore, equation (4.20) can be rewritten as the simplified form,

λ3 + B2λ
2 + B1λ + B0 + e−λτ1(C2λ

2 + C1λ + C0) + e−λτ2(D2λ
2 + D1λ + D0) + e−λ(τ1+τ2)(E1λ + E0) = 0,

(4.21)

where
B2 = −(a11 + a22 + a33), B1 = a11a22 + a11a33 + a22a33, B0 = −a11a22a33,

C2 = −b22, C1 = a11b22 + b22a33 − a12b21, C0 = a12b21a33 − a11b22a33,

D2 = −c33, D1 = a11c33 + a22c33 − a23c32, D0 = a11a23c32 − a11a22c33,

E1 = b22c33, E0 = a12b21c33 − a11b22c33.

Now we discuss the following cases.
Case I: τ1 = 0 = τ2.

In this case, equation (4.21) becomes

λ3 + F12λ
2 + F11λ + F10 = 0, (4.22)

where F12 = B2 + C2 + D2, F11 = B1 + C1 + D1 + E1, F10 = B0 + C0 + D0 + E0. Therefore, by
Routh-Hurwitz criterion, P3 = (x∗, y∗, z∗) is LAS in the absence of delay if

F12 > 0, F10 > 0, F12F11 − F10 > 0.

Straight forward calculation shows that F12 > 0, if

2x∗2y∗

α2 +
2y∗2z∗

β2 < x∗. (4.23)

F10 > 0, if

y∗2 < ω7. (4.24)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4660–4691.



4674

(F12F11 − F10) > 0, if

y∗

α5β4

{
4y∗3z∗2α3(x∗α2 − 2x∗2y∗) + β2ω6x∗(x∗α2β2 − 2x∗2y∗β2 − 2y∗2z∗α2)(ω4 − x∗2)

}
>

2y∗2z∗

α4β5

{
(−x∗α2 + 2x∗2y∗)2β3 + α4ω9y∗z∗(ω7 − y∗2)

} (4.25)

and

x∗2 < ω4. (4.26)

Based on the above analysis, we have constructed the following theorem for stability of model (2.2)
about E∗(x∗, y∗, z∗) in the absence of delay.

Theorem 4.3. Suppose that the interior equilibrium point P3(x∗, y∗, z∗) exists. Then, P3 is LAS
provided the conditions (4.23)–(4.26) hold.

Case II: τ1 > 0, τ2 = 0.
In this case, equation (4.21) becomes

λ3 + (B2 + D2)λ2 + (B1 + D1)λ + B0 + D0 + e−λτ1
(
C2λ

2 + (C1 + E1)λ + C0 + E0

)
= 0. (4.27)

Let iω (ω > 0) be a root of equation (4.27), then we have

− iω3 + (B2 + D2)(−ω2) + (B1 + D1)(iω) + (B0 + D0)

+ (cosωτ1 − i sinωτ1)
(
−C2ω

2 + i(C1 + E1)ω + (C0 + E0)
)

= 0.
(4.28)

Simplifying and equating real and imaginary part of equation (4.28), we get

−ω3 + ω(B1 + D1) = (−C2ω
2 + C0 + E0) sinωτ1 − ω(C1 + E1) cosωτ1, (4.29)

−ω2(B2 + D2) + (B0 + D0) = −(−C2ω
2 + C0 + E0) cosωτ1 − ω(C1 + E1)) sinωτ1. (4.30)

Squaring and adding equations (4.29) and (4.30) we get

ω6 + p1ω
4 + q1ω

2 + r1 = 0, (4.31)

where
p1 = (B2 + D2)2 − 2(B1 + D1) −C2

2,

q1 = (B1 + D1)2 − 2(B2 + D2)(B0 + D0) + 2C2(C0 + E0) − (C1 + E1)2,

r1 = (B0 + D0)2 − (C0 + E0)2.

We define

G1(ω) = ω6 + p1ω
4 + q1ω

2 + r1. (4.32)

Then G1(0) = r1 = (B0 + D0)2 − (C0 + E0)2, G1(∞) = ∞.
Let

(B0 + D0)2 − (C0 + E0)2 < 0, (4.33)
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then G1(0) < 0 and G1(∞) = ∞. Thus, equation (4.31) has at least one positive root. Without loss of
generality, we assume that it has finite number of positive roots saying ω1, ω2, ω3, · · · , ωN . For every
fixed ωk, k = 1, 2, 3, · · · ,N, there exist a sequence {τk, j

1 | j = 0, 1, 2, · · · }, where

τ
(k, j)
1 =



1
ωk

arccos

[(C1 + E1) −C2(B2 + D2)]ωk
4 + [(B2 + D2)(C0 + E0)

− (B1 + D1)(C1 + E1)]ω2
k + (B0 + D0)(C0 + E0)

(−C2ω
2
k + C0 + E0)2 + ω2

k(C1 + E1)2
+ 2 jπ

 , j = 0, 1, 2, · · · ,

if C2ωk
4 + ((B2 + D2)(C1 + E1) −C2(B1 + D1) − (C0 + E0))ωk

2

+ C0 + E0 − (B0 + D0)(C1 + E1) ≥ 0,

1
ωk

2π − arccos

[(C1 + E1) −C2(B2 + D2)]ωk
4 + [(B2 + D2)(C0 + E0)

− (B1 + D1)(C1 + E1)]ω2
k + (B0 + D0)(C0 + E0)

(−C2ω
2
k + C0 + E0)2 + ω2

k(C1 + E1)2
+ 2 jπ

 , j = 0, 1, 2, · · · ,

if C2ωk
4 + ((B2 + D2)(C1 + E1) −C2(B1 + D1) − (C0 + E0))ωk

2

+ C0 + E0 − (B0 + D0)(C1 + E1) < 0.
(4.34)

Let
τ∗1 = τ(k0,0)

1 = min
k∈{1,··· ,N}

{
τ(k,0)

1

}
, ω∗ = ωk0 . (4.35)

By differentiating the equation (4.27) with respect to τ1, we have the following transversality conditionRe
(

dλ
dτ1

)−1
 ∣∣∣∣

τ1=τ∗1

=
L1(ωk)S 1(ωk) + R1(ωk)T1(ωk)

(L1(ωk))2 + (R1(ωk))2 > 0,

provided L1(ωk)S 1(ωk) + R1(ωk)T1(ωk) > 0, where

L1(ωk) = ω∗(C0 + E0) −C2ω
∗3,

R1(ωk) = −ω∗2(C1 + E1),

S 1(ωk) = (−3ω∗2 + B1 + D1) sinω∗τ1 + 2ω∗(B2 + D2) cosω∗τ1 + 2ω∗C2,

T1(ωk) = (−3ω∗2 + B1 + D1) cosω∗τ1 − 2ω∗(B2 + D2) sinω∗τ1 + (C1 + E1).

Then, we have the following theorem.

Theorem 4.4. Suppose that τ1 > 0, τ2 = 0 and conditions (4.23)–(4.26) are satisfied. Then the
interior equilibrium point P3(x∗, y∗, z∗) is LAS for τ1 < τ∗1 and unstable for τ1 > τ∗1. Further, the
system (2.2) undergoes the Hopf-bifurcation about P3(x∗, y∗, z∗) when τ1 = τ∗1.

Case III: τ1 ∈ (0, τ∗1), τ2 > 0.
In this case, we assume that τ1 is arbitrarily fixed within the stable interval (0, τ∗1), while consider τ2 as
free parameter. Let iω ( ω > 0) be a root of equation (4.21), then we have

− iω3 − B2ω
2 + B1ωi + B0 + e−iωτ1(−C2ω

2 + C1ωi + C0)
+ e−iωτ2(−D2ω

2 + D1ωi + D0) + e−iω(τ1+τ2)(E1ωi + E0) = 0.
(4.36)
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Simplifying and equating real and imaginary part, we obtain

− ω3 + B1ω + C1ω cosωτ1 − (−C2ω
2 + C0) sinωτ1

= (−D1ω − E1ω cosωτ1 + E0 sinωτ1) cosωτ2 + (−D2ω
2 + D0 + E1ω sinωτ1 + E0 cosωτ1) sinωτ2,

(4.37)

B2ω
2 − B0 − (−C2ω

2 + C0) cosωτ1 −C1ω sinωτ1

= (−D2ω
2 + D0 + E0 cosωτ1 + E1ω sinωτ1) cosωτ2 − (−D1ω − E1ω cosωτ1 + E0 sinωτ1) sinωτ2.

(4.38)

Squaring and adding above equations (4.37) and (4.38), we obtain

ω6 + p̃2ω
4 + q̃2ω

2 + 2r̃2 sinωτ1 + 2s̃2 cosωτ1 + t̃2 = 0, (4.39)

where

p̃2 = B2
2 + C2

2 − 2B1 − D2
2,

q̃2 = B2
1 − 2C2C0 − 2B2B0 + C2

1 − D2
1 − E2

1 + 2D2D0,

r̃2 = ω3(−C2ω
2 + C0) − B1ω(−C2ω

2 + C0) − B2C1ω
3 + C1B0ω + D1E0ω − E1ω(−D2ω

2 + D0),
s̃2 = −C1ω

4 + B1C1ω
2 − B2ω

2(−C2ω
2 + C0) + B0(−C2ω

2 + C0) − D1E1ω
2 − E0(−D2ω

2 + D0),
t̃2 = B2

0 + C2
0 − E2

0 − D2
0.

Following the same analysis as in Case II, equation (4.39) has finite number of positive roots, saying
ω1, ω2, ω3, · · · , ωN , when

(B0 + C0)2 − (D0 + E0)2 < 0. (4.40)

For every fixed ωk, k = 1, 2, 3, · · · ,N, there exist a sequence {̃τk, j
2 | j = 0, 1, 2, · · · }, where

τ̃
k, j
2 =



1
ωk

(
arccos

M2(ωk)K2(ωk) + F2(ωk)Q2(ωk)
(M2(ωk))2 + (F2(ωk))2 + 2 jπ

)
, j = 0, 1, 2, · · · ,

if F2(ωk)K2(ωk) ≥ M2(ωk)Q2(ωk),
1
ωk

(
2π − arccos

M2(ωk)K2(ωk) + F2(ωk)Q2(ωk)
(M2(ωk))2 + (F2(ωk))2 + 2 jπ

)
, j = 0, 1, 2, · · · ,

if F2(ωk)K2(ωk) < M2(ωk)Q2(ωk),

(4.41)

where
M2(ωk) = (−D2ω

2
k + D0) + E0 cosωkτ1 + E1ωk sinωkτ1,

F2(ωk) = −D1ωk − E1ωp cosωkτ1 + E0 sinωkτ1,

K2(ωk) = B2ω
2
k − B0 − (−C2ω

2
k + C0) cosωkτ1 −C1ωk sinωkτ1,

Q2(ωk) = −ω3
k + B1ωk + C1ωk cosωkτ1 − (−C2ω

2
k + C0) sinωkτ1.

Let
τ̃∗2 = τ(k0,0)

2 = min
k∈{1,··· ,N}

{
τ(k,0)

2

}
, ω̃∗ = ωk0 . (4.42)
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And assuming that Re
(
dλ(τ2)

dτ2

)−1
 ∣∣∣∣

λ=iω̃∗
, 0. (4.43)

Then, we have the following theorem.

Theorem 4.5. Suppose that conditions (4.23)–(4.26) are satisfied and τ1 ∈ (0, τ∗1). Then the coexisting
equilibrium point P3(x∗, y∗, z∗) is LAS when τ2 < τ̃∗2 and it is unstable when τ2 > τ̃∗2. Moreover, Hopf-
bifurcation occurs when τ2 = τ̃∗2.

Case IV: τ1 = 0, τ2 > 0.
From the equation (4.21), we have

λ3 + (B2 + C2)λ2 + (B1 + C1)λ + (B0 + C0) + e−λτ2(D2λ
2 + (D1 + E1)λ + (D0 + E0)) = 0. (4.44)

Let iω (ω > 0) be a root of equation (4.44), then we have

− iω3 − (B2 + C2)ω2 + (B1 + C1)iω+ (B0 + C0) + e−iωτ2(−D2ω
2 + (D1 + E1)iω+ (D0 + E0)) = 0. (4.45)

Equating real and imaginary part of equation (4.45), we obtain

− ω3 + ω(B1 + C1) + ω(D1 + E1) cosωτ2 − (−D2ω
2 + D0 + E0) sinωτ2 = 0,

− ω2(B2 + C2) + (B0 + C0) + (−D2ω
2 + D0 + E0) cosωτ2 + ω(D1 + E1) sinωτ2 = 0.

(4.46)

Squaring and adding both equations of system (4.46), we obtain

ω6 + p2ω
4 + q2ω

2 + r2 = 0, (4.47)

where
p2 = (B2 + C2)2 − 2(B1 + C1) − D2

2,

q2 = (B1 + C1)2 − 2(B2 + C2)(B0 + C0) + 2D2(D0 + E0) − (D1 + E1)2,

r2 = (B0 + C0)2 − (D0 + E0)2.

Now, similarly as in the Case II, we define

G2(ω) = ω6 + p2ω
4 + q2ω

2 + r2,

G2(0) = r2 = (B0 + C0)2 − (D0 + E0)2 and G2(∞) = ∞.
Let {

(B0 + C0)2 − (D0 + E0)2
}
< 0. (4.48)

Then G2(0) < 0 and G2(∞) > 0, thus equation (4.47) has atleast one positive root. Without loss of
generality, we have assume that it has finite number of positive roots say ω1, ω2, ω3, · · · , ωN . For every
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ωk, k = 1, 2, 3, · · · ,N, there exists a sequence {τk, j
2 | j = 0, 1, 2, · · · }, where

τ
(k, j)
2 =



1
ωk

arccos

[(D1 + E1) − D2(B2 + C2)]ωk
4 + [(B2 + C2)(D0 + E0)

− (B1 + C1)(D1 + E1)]ω2
k + (B0 + C0)(D0 + E0)

(−D2ω
2
k + D0 + E0)2 + ω2

k(D1 + E1)2
+ 2 jπ

 , j = 0, 1, 2, · · · ,

if D2ωk
4 + ((B2 + C2)(D1 + E1) − D2(B1 + C1) − (D0 + E0))ωk

2

+ D0 + E0 − (B0 + C0)(D1 + E1) ≥ 0,

1
ωk

2π − arccos

[(D1 + E1) − D2(B2 + C2)]ωk
4 + [(B2 + C2)(D0 + E0)

− (B1 + C1)(D1 + E1)]ω2
k + (B0 + C0)(D0 + E0)

(−D2ω
2
k + D0 + E0)2 + ω2

k(D1 + E1)2
+ 2 jπ

 , j = 0, 1, 2, · · · ,

if D2ωk
4 + ((B2 + C2)(D1 + E1) − D2(B1 + C1) − (D0 + E0))ωk

2

+ D0 + E0 − (B0 + C0)(D1 + E1) < 0.
(4.49)

Let
τ∗2 = τ(k0,0)

2 = min
k∈{1,··· ,N}

{
τ(k,0)

2

}
, ω∗ = ωk0 . (4.50)

Differentiating the equation (4.44) with respect to τ2, we have the following transversality conditionRe
(

dλ
dτ2

)−1
 ∣∣∣∣

τ2=τ∗2

=
L2(ωk)S 2(ωk) + R2(ωk)T2(ωk)

(L2(ωk))2 + (R2(ωk))2 > 0,

provided L2(ωk)S 2(ωk) + R2(ωk)T2(ωk) > 0, where

L2(ωk) = −D2ω
3
k + (D0 + E0)ωk,

R2(ωk) = −(D1 + E1)ω2
k ,

S 2(ωk) = (B1 + C1 − 3ω2
k) sinωkτ2 + 2ωk(B2 + C2) cosωkτ2 + 2D2ωk,

T2(ωk) = (B1 + C1 − 3ω2
k) cosωkτ2 − 2ωk(B2 + C2) sinωkτ2 + (D1 + E1).

Then, we have the following theorem.

Theorem 4.6. Suppose that τ1 = 0, τ2 > 0 and conditions (4.23)–(4.26) are satisfied. Then the
equilibrium point P3 is LAS for τ2 < τ∗2 and unstable for τ2 > τ∗2. Further, the system (2.2) undergoes
the Hopf-bifurcation around P3(x∗, y∗, z∗) when τ2 = τ∗2.

Case V: τ2 ∈ (0, τ∗2), τ1 > 0.
In this case, we fix τ2 at some value from its stability range (0, τ∗2) and choose τ1 as free parameter, by
the similar procedure used in Case III. Stability results are summarized in the following theorem.

Theorem 4.7. Suppose that the parameters of model (2.2) are such that conditions (4.23)-(4.26) are
satisfied, τ2 ∈ (0, τ∗2) and condition (B0 +D0)2 < (E0 +C0)2 also holds. Then the coexisting equilibrium
point P3 is LAS, when τ1 ∈ (0, τ̃∗1) and it is unstable when τ1 > τ̃

∗
1. Moreover, Hopf-bifurcation occurs

when τ1 = τ̃∗1, where
τ̃∗1 = τ(k0,0)

1 = min
k∈{1,··· ,N}

{
τ(k,0)

1

}
, ω̃∗ = ωk0 , (4.51)
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with

τ̃
k, j
1 =



1
ωk

(
arccos

M1(ωk)K1(ωk) + F1(ωk)Q1(ωk)
(M1(ωk))2 + (F1(ωk))2 + 2 jπ

)
, j = 0, 1, 2, · · · ,

if F1(ωk)K1(ωk) ≥ M1(ωk)Q1(ωk),
1
ωk

(
2π − arccos

M1(ωk)K1(ωk) + F1(ωk)Q1(ωk)
(M1(ωk))2 + (F1(ωk))2 + 2 jπ

)
, j = 0, 1, 2, · · · ,

if F1(ωk)K1(ωk) < M1(ωk)Q1(ωk),

(4.52)

and where

M1(ωk) = (−C2ω
2
k + C0) + E1ωk sinωkτ2 + E0 cosωkτ2,

F1(ωk) = −C1ωk + E0 sinωkτ2 − E1ωk cosωkτ2,

K1(ωk) = B2ω
2
k − B0 − (−D2ω

2
k + D0) cosωkτ2 − D1ωk sinωkτ2,

Q1(ωk) = −ω3
k + B1ωk + D1ωk cosωkτ2 − (−D2ω

2
k + D0) sinωkτ2.

5. Numerical experiment results

In this section, analytical findings and the various dynamics of model (2.2) have been illustrated
with the help of numerical examples. In the following, we present three examples corresponding to
stable positive equilibrium, limit cycles and chaos of the non-delay model, and we show how time
delays influence the non-delay model.

Example 1. Taking ω4 = 1.4, ω5 = 0.22, ω6 = 0.8, ω7 = 2.29, ω8 = 0.09, ω9 = 0.6 in the
model (2.2), yields the following system:

dx
dt

= x(1 − x) −
xy

x2 + 1.4
,

dy
dt

= −0.22y +
0.8x(t − τ1)y(t − τ1)

x2(t − τ1) + 1.4
−

yz
y2 + 2.29

,

dz
dt

= −0.09z +
0.6y(t − τ2)z(t − τ2)

y2(t − τ2) + 2.29
.

(5.1)

Initial densities of species are taken as (x0, y0, z0) = (0.3, 0.3, 0.3). Simulations are carried out in the
non-delay system by Matlab. Unique positive interior equilibrium point is obtained as
P3 = (0.825453, 0.363298, 0.235593). Here we have taken all numerical numbers with 6 digits after
decimal to unify the results obtained from Mathematica.
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Figure 1. Time evolution of species x, y, z for system (5.1). Case I, when τ1 = τ2 = 0,
positive interior equilibrium P3 (0.825453, 0.363298, 0.235593) is LAS. In Case II, system
remains stable for all τ1 ≥ 0, τ2 = 0. In Case III, system is LAS for τ2 = 2.20 < τ̃∗2 = 3.0405
and unstable for τ2 = 3.10 > τ̃∗2 = 3.0405 by choosing τ1 = 1.0. In Case IV (τ1 = 0),
system remains LAS for τ2 = 2.50 < τ∗2 = 2.88823 and shows oscillatory behaviour for
τ2 = 3.0 > τ∗2 = 2.88823. In Case V, system is LAS for all τ1 ≥ 0 at τ2 = 2.50.

Now, for system (5.1) we have verified all five cases with the help of numerical simulations.

(i) Case I (τ1 = τ2 = 0): F12 = 0.700569 > 0, F10 = 0.005547 > 0 and F12F11 − F10 = 0.008031 >
0. Thus, all the conditions of Case I are satisfied. Numerical simulation results show that the
interior equilibrium point, P3 = (0.825453, 0.363298, 0.235593) is LAS (see Figure 1 (Case I:
τ1 = τ2 = 0)).

(ii) Case II (τ1 > 0, τ2 = 0): Conditional stability condition (4.33) is not satisfied, as (B0 + D0)2 −

(C0 + E0)2 = 0.000031 > 0. We have not obtained any positive root of equation (4.31). Thus, we
are not able to find any value of τ1, where system experiences Hopf-bifurcation. System is LAS
for all τ1 > 0 (see Figure 1 (Case II(i): τ1 = 1.0, τ2 = 0 and Case II(ii): τ1 = 10.0, τ2 = 0)).

(iii) Case III (τ1 ∈ (0, τ∗1), τ2 > 0): As in Case II, system not bifurcates for any value of τ1, thus
all values of τ1 comes in its stability range. (B0 + C0)2 − (E0 + D0)2 = −0.000019 < 0, so
conditional stability condition (4.40) is satisfied. In particular, we have taken τ1 = 1.0, for this
value of τ1, ω = 0.069338 and critical value of τ2 is obtained as τ̃2

∗
= 3.0405. System is LAS

for τ2 = 2.2 < τ̃2 = 3.0405 and unstable for τ2 = 3.1 > τ̃2
∗

= 3.0404. Hopf-bifurcation occurs at
τ̃2
∗

= 3.0404 (see Figure 1 (Case III(i): τ1 = 1.0, τ2 = 2.20 and Case III(ii):τ1 = 1.0, τ∗2 = 3.10)).
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(iv) Case IV (τ1 = 0, τ2 > 0): (B0 + C0)2 − (D0 + E0)2 = −0.000019 < 0, thus conditional stability
condition (4.48) is satisfied. Critical value of τ2 for ω = 0.0794052 is obtained as τ∗2 = 2.88823.Re

(
dλ(τ2)

dτ2

)−1
 ∣∣∣∣

τ2=τ∗2=2.88823
= 135.057 > 0, (5.2)

thus transversality condition is also satisfied at τ∗2 = 2.88823. System is LAS for τ2 = 2.5 <

τ∗2 = 2.88823 and shows oscillations for τ2 = 3.0 > τ∗2 = 2.88823 (see Figure 1 (Case IV(i):
τ1 = 0, τ2 = 2.50 and Case IV(ii): τ1 = 0, τ2 = 3.0)). Hopf-bifurcation occurs at critical value of
τ2 = τ∗2 = 2.88823.

(v) Case V (τ1 > 0, τ2 ∈ (0, τ∗2)): In this case, for τ2 = 2.5 from its stability range (0, 2.88823),
conditional stability condition is not satisfied as (B0 + D0)2− (E0 +C0)2 = 0.000031 > 0. Also we
have not get any critical value of τ1, in the stability range of τ2. Thus, system not bifurcates for
any value of τ1 in the stability range of τ2. System is LAS for all τ1 ≥ 0, τ2 ∈ (0, 2.88823) (see
Figure 1 Case V(i): τ1 = 1.50, τ2 = 2.50, V(ii) τ1 = 6.50, τ2 = 2.50).
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Figure 2. Bifurcation diagram for system (5.1) showing the effect of gestation delay τ2 (for
top predator z) at τ1 = 0. Figure shows that the system is stable for τ2 < τ∗2 = 2.88823 and
unstable for τ2 > τ

∗
2 = 2.88823. Hopf-bifurcation occurs at τ∗2 = 2.88823.

Bifurcation diagram with respect to τ2 keeping τ1 = 0 is shown in Figure 2. This illustrates that
the bifurcation occurs at critical value of τ∗2 = 2.88823, and below this value system (5.1) is stable and
above this value system (5.1) shows oscillatory behaviour.

The two dimensional bifurcation diagram for the system (5.1) in τ1 − τ2 plane has been presented
in Figure 3. In this figure, the blue line denotes Hopf-bifurcation line i.e., at any point (τ1, τ2) on this
blue line, system experiences Hopf-bifurcation. The regions which lie below and above this line are
stability and instability regions, respectively. For τ2 < τ∗2 = 2.88823, system (5.1) remains stable for

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4660–4691.



4682

all τ1 ≥ 0 and for τ2 > τ∗2 = 2.88823, system (5.1) becomes unstable for all values of τ1 ≥ 0. Here,
we have only one critical value τ∗2, below which the system is stable and above which system becomes
unstable and it remains unstable, thus the system does not exhibit stability switching [47] with further
increase in values of delay parameters.

0 1 2 3 4 5
0

1

2

3

τ
1

τ 2

Hopf bifurcation line

τ*
2
=2.88823

Unstable region

Stable region

Figure 3. Hopf-bifurcation diagram for the system (5.1) in τ1 − τ2 plane. The blue line is the
Hopf-bifurcation line on which system switches its stability via Hopf-bifurcation.

Table 2. Stability results of system (5.1) with ω7 = 3.29.

Case Conditions Critical value of delay Delay value Status Figure (3)

I
F12 = 0.556105
F10 = 0.003450

F12F11 − F10 = 0.017281
NA τ1 = 0, τ2 = 0 Stable Case I

II
(B0 + D0)2 − (C0 + E0)2

= 0.000012 > 0
with conditions of Case I

NA
τ1 = 0.50, τ2 = 0
τ1 = 5.0, τ2 = 0

Stable
Case II(i)
Case II(ii)

III
(B0 + C0)2 − (E0 + D0)2

= 7.48222 × 10−6 > 0
with the conditions of Case I

NA
τ1 = 0.50, τ2 = 0.50
τ1 = 0.50, τ2 = 5.0

Stable
Case III(i)
Case III(ii)

IV
(B0 + C0)2 − (D0 + E0)2

= 7.48222 × 10−6 > 0
with the conditions of Case I

NA
τ1 = 0, τ2 = 0.5
τ1 = 0, τ2 = 5.0

Stable
Case IV(i)
Case IV(ii)

V
(B0 + D0)2 − (C0 + E0)2

= 0.000011 > 0
with the conditions of Case I

NA
τ1 = 0.50, τ2 = 1.0
τ1 = 0.50, τ2 = 5.0

Stable
Case V(i)
Case V(ii)

NA stands for not applicable.
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Further, in the numerical Example 1, we have taken ω7 = 3.29, i.e. slightly increase the value of ω7

(protection provided by environment to the middle predator). Coexistence equilibrium point is obtained
as P3 = (0.720293, 0.536708, 0.287340). Then, in the absence of delay, system in Example 1 is LAS
(see Figure 4 (Case I)). We have numerically discussed all the Cases (II-V) for different values of τ1,
τ2 and observed that system remains stable (see Figure 4 (Case II-V)). Thus, for sufficiently high value
of environmental protection to the intermediate predator, system remains stable around coexistence
equilibrium point and not bifurcates for any value of τ1 and τ2 (gestation delays for middle and top
predators respectively). Detail description of all the Cases (I-V) is given in Table 2.
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Figure 4. Time evolution of species x, y, z for model (5.1) with ω7 = 3.29, in
Case I (τ1 = τ2 = 0), system is LAS around coexistence equilibrium point P3 =

(0.720293, 0.536708, 0.287340) and remains stable for all possible values of τ1 and τ2, Case
II-V.

Example 2. Consider the following model with a new parameter set

dx
dt

= x(1 − x) −
xy

x2 + 0.5
,

dy
dt

= −0.22y +
0.8x(t − τ1)y(t − τ1)

x(t − τ1)2 + 0.5
−

yz
y2 + 1.76

,

dz
dt

= −0.09z +
0.6y(t − τ2)z(t − τ2)

y(t − τ2)2 + 1.76
.

(5.3)

Note that parameter values of system (5.3) are the same as those of system (5.1), except for ω4 and
ω7. That is, the protection provided by the environment to the prey and intermediate predator is
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decreased in Example 2. Dynamics of the original system (2.2) have been explored with the help of
Example 2. It is observed that system (5.3) shows the limit cycle behaviour in the absence of delay
(see Figure 5(a)). Now, we have investigated the effect of both delays τ1 and τ2 individually on the
dynamics of system (5.3). It is clear from the Figure 5(b), when τ1 crosses the value τ∗1 = 4.85 for
τ2 = 0, system (5.3) becomes stable and remains stable for τ1 > τ∗1 = 4.85, τ2 = 0. Thus, oscillatory
behaviour of coexisting equilibrium point is settled down to the stable dynamics. Again, effect of
delay τ2 for τ1 = 0, is determined by the Figure 5(c), which shows that increasing value of τ2 makes
the system dynamics chaotic through the period doubling sequences. The combined effect of both the
gestation delay τ1 and τ2 on the system dynamics is given in the Figure 5(d). Figure 5(d) is plotted at
τ1 = 7.1 (value of τ1 at which system (5.3) is stable in the absence of τ2 ) while taking τ2 as
bifurcating parameter. It is observed that the stable coexistence of species is lost by increasing the
value of τ2 and oscillatory coexistence is obtained for higher value of τ2.
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Figure 5. (a) Time evolution of model (5.3) in the absence of delay. (b) Bifurcation diagram
as a function of τ1 keeping τ2 = 0. (c) Bifurcation diagram as a function of τ2 keeping τ1 = 0.
(d) Bifurcation diagram as a function of τ2 for τ1 = 7.10.
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Example 3. Again, consider the following example with new set of parameter values

dx
dt

= x(1 − x) −
xy

x2 + 0.3
,

dy
dt

= −0.348y +
0.59x(t − τ1)y(t − τ1)

x2(t − τ1) + 0.3
−

yz
y2 + 0.74

,

dz
dt

= −0.126z +
0.573y(t − τ2)z(t − τ2)

y2(t − τ2) + 0.74
.

(5.4)

Chaotic behaviour of model (2.2) is illustrated with the help of Example 3. To determine the chaotic
behaviour of system, we have plotted the 3D phase portrait of the system. A chaotic attractor is obtained
around which system tends to evolve for wide variety of initial conditions and for given sufficient time
(see Figure 6(a)). Sensitivity on initial condition (SIC) test is one of the most intuitive tool to check the
chaotic behaviour. SIC test tells that if the trajectories owning the slightly different initial conditions
grow until their differences become as large as the signal then this ensures the existence of chaotic
dynamics in the system. SIC test is given by Figure 6(b).
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Figure 6. (a) 3D Phase portrait in xyz space showing the chaotic behaviour of system. (b) SIC
test: dot-dashed lines for initial density of x, increased by 0.005 keeping y, z fixed, similarly
for y and z plot.

To describe the effect of gestation delay τ1 and τ2 on the chaotic dynamics of system, bifurcation
diagram for x as a function of τ1 keeping τ2 = 0.8 is given by Figure 7(d), which shows that the
period halving Hopf-bifurcation phenomenon. Therefore, increase in the value of τ1 leads to the stable
limit cycle dynamics through sequence of chaotic dynamics and different order limit cycles (see Figure
7(a)–(c)).

Bifurcation diagrams of the species x, y, z are also presented taking ω7 as bifurcating parameter for
system (5.4) in the absence of delay. Period halving Hopf-bifurcation phenomenon is observed. It is
clear from the bifurcation figure that, for higher value of ω7, i.e., protection provided by environment
to the intermediate predator, species x, y will survive and remain stable, moreover species z will extinct
(see Figure 8).
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Figure 7. Phase portrait in xyz space and bifurcation diagram for the system (5.4) showing
the influence of τ1 on the system dynamics for fixed value of τ2 = 0.80. (a) τ1 = 0.25 (chaotic
dynamics). (b) τ1 = 0.545 (higher order limit cycle). (c)τ1 = 0.95 (1-period limit cycle). (d)
Bifurcation diagram as a function of τ1, varied in the range [0.001, 1.4].

6. Discussion and Conclusion

Empirical results supporting the existence of chaos in real ecological systems are very rare. McCann
et al. [48] suggested that it might be due to weak links of species, which may provide stability to these
systems. In addition, it is difficult to obtain accurate data on the intrinsic role of species interactions due
to measurement error, weather fluctuation, and seasonal disturbances. Experimental demonstrations of
chaos in a three species food chain system of ciliate Tetrahymena pyriformis, rod-shaped Pedobacter
and coccus Brevundimonas were given by Becks et al. [49] and Becks and Arndt [50]. In contrast to
experimental evidences, chaotic behavior can be observed in interacting population model of species
predation, competition, etc. [46, 51–53].

In this work, we have examined a three species food chain system with nonmonotonic functional
response. The system is highly nonlinear and applicable for modeling the large variety of natural
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Figure 8. Bifurcation diagrams of species x, y, z for system (5.4) (taking τ1 = τ2 = 0) with
ω7 as bifurcating parameter.

systems. Gestation delays are incorporated in the system for more realistic consideration. Various
interesting dynamical conclusions have been drawn. Stability properties of the system about the
equilibrium points are discussed for both delayed and non-delayed systems. Boundedness, positive
invariance and conditions for stability of the system are derived. Hopf-bifurcation analysis is
discussed for all possible combinations of time delays τ1 and τ2. Extensive numerical simulations are
performed to validate the analytical findings and to explore the various complex dynamical structures.

From numerical simulation results, we have observed that gestation delay τ1 has stabilizing effect on
the model dynamics (see Figure 5(b)), which is rare as signature feature of time delay is destabilization
[18, 22, 41]. Recently, stabilizing effect of maturation time delay has been discussed by Banerjee and
Takeuchi [25]. However, increasing the value of time delay τ2 makes the model dynamics chaotic
(see Figure 5(c)). Thus, gestation delay for the top predator, τ2 has a destabilizing effect on the model
dynamics. We have obtained the critical value of τ∗2 = 2.88823, below which system shows stable
dynamics and above this value system starts showing oscillations through Hopf-bifurcation. Hopf-
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bifurcation diagram for species x, y and z, taking ω7 as bifurcating parameter are also plotted for the
non-delayed system. Main findings of our work can be summarized as follows:

(i) New periodic activities are induced in the stable dynamics of the system due to the incorporation
of GDTP, τ2 and periodic activities are suppressed due to the introduction of GDMP, τ1.

(ii) Numerically, it has been explained that for the sufficiently high value of ω7 (environmental
protection to intermediate predator), if the system is stable about coexisting equilibrium point in
the absence of delay then it will remain stable for all possible combination of τ1 and τ2.

(iii) Existence of chaotic dynamics in the system has been observed which is confirmed by the SIC
test. Effect of gestation delays τ1 and τ2 on the chaotic dynamics is studied with the help of
bifurcation diagram and phase portrait.
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