
http://www.aimspress.com/journal/MBE

MBE, 16(5): 4559–4580
DOI: 10.3934/mbe.2019228
Received: 25 January 2019
Accepted: 09 May 2019
Published: 23 May 2019

Research article

Data-Loss resilience video steganography using frame reference and data
ensemble reconstruction

Fengyong Li1,∗, Jiang Yu2 and Yanli Ren3

1 College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai,
P.R.China

2 School of Information and Computer, Shanghai Business School, Shanghai, P.R.China
3 School of Communication and Information Engineering, Shanghai University, Shanghai, P.R.China

* Correspondence: Email: fyli@shiep.edu.cn.

Abstract: In this paper, we propose a robust video steganographic method, which can efficiently hide
confidential messages in video sequences, and ensure that these messages are perfectly reconstructed
by recipient. To apply proposed scheme to video sequences, we must be faced with two nontrivial
problems: (a) how to effectively minimize the total steganographic distortion for each video frame? (b)
how to recover the hidden messages if some frames are lost or damaged? We tackle the first question
by designing a new distortion function, which employs two continuous adjacent frames with the same
scene as side-information. The second question is addressed by data sharing. In this mechanism,
the original data is expanded and split into multiple shares by using multi-ary Vandermonde matrix.
Since these shares contain a lot of data redundancy, the recipient can recover the hidden data even if
some frames are damaged or lost during delivery. Extensive experiments show that proposed scheme
outperforms the state-of-the-arts in terms of robustness and diverse attacks.
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1. Introduction

Steganography is an efficient privacy communication measurement in which secret messages are
embedded into digital media, such as digital images, video or audio files, to implement the informa-
tion delivery [1–4]. As a countermeasure to steganography, steganalysis [5–8] is mainly used to detect
the presence of hidden data in a digital media. Traditional steganography mainly involves single dig-
ital image, and always combines the side-information based distortion function and Syndrome-Trellis
Codes (STC) [4] to implement steganography. For example, data hider uses the non-round coefficients
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from one uncompressed image to measure the steganography costs of each DCT coefficient and then
embed messages when saving them as compressed images. This strategy is consistently feasible in
the context of modern steganography, because the side-information is not available to the recipient
(or steganalyst). However, when the size of secret messages is too big, the steganography for single
image does not work. One feasible way is to hide the messages among a batch of images. We usually
name this scheme as batch steganography [9–11]. Nevertheless, batch steganography is not easy, at
least inconvenient, to apply in real world due to the following two reasons. First, traditional distor-
tion function mainly focuses on single image, the distortion definition for batch steganography is not
straightforward. Second, batch steganography needs a huge of homogeneous covers, which are hard to
be obtained due to diverse social networks.

One natural question arises: Is there a kind of media that can avoid the above two problems to
facilitate data hiding? The answer is positive. Video sequences provide this possibility because they
usually consist of a number of homogeneous image frames and thus have a higher capacity. Never-
theless, some ones may wonder if video steganography is as successful as traditional side-information
based image steganography, because most of videos from different acquisition devices, e.g. cell phones
or digital cameras, are always saved as JPEG format, not the uncompressed format. Accordingly, if
we use the video to hide the secret messages, it has to answer two key questions: (1) How to design
optimal distortion function by using continuous video frames with same (or approximate) scenes? (2)
How to design embedding strategy to ensure that stego videos can resist diverse network attacks, such
as usual noise attacks, video frame attacks and video compression attacks?

Aiming at the first question, since video always contains compressed image frames, the existing
distortion function based on side-information cannot be transplanted directly. Nevertheless, we can get
some inspiration from different definition of side-information, for example, designing the steganogra-
phy cost by using multiple image with the same scene. Actually, several works has been developed in
this direction. In [12], the authors proposed a new view to model the differences between the printed
image and its scan version. Unfortunately, this scheme is inconvenient due to two pitfalls: (1) this
scheme is rather labor-consuming due to requiring a large number of scan versions. (2) the difference
among scan images maybe lead to the complication increasing. To remove this weakness, in [13], the
authors designed a different type of side-information by multiple compressed images with the same
scene. This scheme avoided time-consuming and formed a more secure method even if only two im-
ages are used. Although a quite significant increasing for anti-detection can be obtained easily with
respect to the case of single image, this scheme is rather difficult to be practical because the image
database is hard to build.

Regarding the second question, existing video steganographic methods [14–19] can be divided into
two categories according to the information embedding domain. One is spatial domain based video
steganography, in which the data is embedded directly into raw pixel values, and they usually refer
to the processing of image steganography, such as Least Significant Bit (LSB) Matching method [1],
Spread Spectrum (SS) method [20], and BCH code [15] et al.. Although spatial methods can embed
high capacity messages, it is inevitable to loss the hidden messages once the stego videos are damaged
by unexpected network interference, such as noise, compression, or frame losing. Another type is the
joint-compression domain video steganography. In this category, most of methods embed data into
different types of compressed video, e.g. motion vectors (MVs) methods [17, 18], inter/intra predic-
tion methods [19], quantized DCT coefficients methods [14, 16] et al.. These compression domain
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based methods have a similarity, that is, lower embedding capacity. Moreover, although some com-
pression domain based methods can effectively resist double compression attack, the secret messages
are very hard to be recovered once the video frames are lost or damaged during delivery. Therefore,
the robustness for video steganography needs to be further improved. This paper tries to fill this gap.

Facing the aforementioned problems, we make the following novel contributions in video steganog-
raphy:

• We propose a robust video steganography scheme by a new distortion function and ensemble
reconstruction mechanism. The proposed solution can not only improve the security performance
of stego video, but also ensure the completeness of original data even if some video frames are
damaged in delivery.
• Proposed scheme investigates another form of side-information by referring the adjacent image

frames with the same scene, and then employs the side-information to design distortion func-
tion. This distortion function is effective because the message senders do not need to access the
uncompressed image frames.
• Vandermonde matrix is used to expand and divide original data to multiple shares, which are

embedded in the continuous frames by combining the designed distortion function and STC algo-
rithm. Subsequently, ensemble reconstruction mechanism is designed to ensure the completeness
and correctness of original data, even if partial data is damaged during delivery.
• Comprehensive experiments are performed with classical video sequences. The experimental

results demonstrate that proposed scheme can significantly improve the overall performance on
visual quality, robustness and anti-steganalysis, leading to a superiority for existing video stegano-
graphic methods.

The rest of this paper is organized as follows. Section 2 provides the details of proposed scheme by
introducing the procedure of distortion function and data ensemble reconstruction. Subsequently, com-
prehensive experiments are performed to evaluate the performance of proposed scheme. The experi-
mental results and corresponding discussions are presented in Section 3. Finally, Section 4 concludes
the paper.

2. Data-loss resilience video steganography

2.1. The framework of proposed scheme

The framework of our proposed robust video steganography scheme is shown in Figure 1. The
proposed scheme is mainly comprised of two parts: data embedding and data extraction. In the data
embedding stage, we firstly use a multi-ary Vandermonde matrix to expand original data and then di-
vide them into multiple small shares, which are considered as ”actual embedding data”. Secondly, we
consider the continuous adjacent frames with same scene as pre-cover to provide the side-information,
and then design an efficient distortion function by referring to the adjacent frames. Finally, the data
shares are embedded into each frame by an existing cost-based embedding scheme. In the data ex-
traction stage, we extract the undamaged shares from the received video frames, and then recover the
original data by an ensemble reconstruction mechanism, although the video frames might be damaged
or intercepted during the delivery. We claim that the original data can be recovered perfectly as long
as the recipient can obtain enough undamaged shares.
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Figure 1. Framework of proposed robust batch steganography scheme.

2.2. Data decomposition and reconstruction

A video sequence usually contains a lot of image frames with (approximately) same scene, if mes-
sage sender hopes to deliver secret messages by video sequence, he can spread the messages into con-
tinuous image frames. At the receiving end, the receiver extracts the secret messages from these image
frames according to a fixed order. Unfortunately, video sequences may be attacked/damaged during
transmission, such as the network noise or the warden who might try to remove the video frames. In
this case, it is unreasonable to assume that the recipient can receive the information completely and
accurately. To improve the robustness of video steganography, in this section, we try to use matrix de-
composition mechanism [11,21] to divide the original messages into multiple shares. Since each share
only carry a small portion of valid information, partial loss for these shares do not affect the recovery
for original messages. The corresponding details can be explained by Figure 2.

Assume that the given secret messages are a binary stream. To expand the original data, we first
present the original data into q-ary symbol system, where q is an odd prime. Actually, this procedure
is rather simple. The messages are segmented into multiple pieces. Each piece contains L1 bits, which
can be converted to L2 q-ary digits according to the following equation.

L1 =
⌊
L2 · log2q

⌋
. (2.1)

We can provide a simple sample to explain it graphically. Assume that L1 = 4, L2 = 2 and the
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original data is converted into 5-ary notational system. Three binary pieces, (1101 0110 1001), can be
converted to six 5-ary digits (23 11 14). Notably, the size reduction from L1 to L2 can be calculated by
the following equation.

r = 1 −
L1

L2 · log2q
(2.2)

Clearly, when L1 and L2 are very large, r is close to 0.
When the original data (binary stream) is converted completely, we integrate all q-ary digits as a

sequence and then expand them into multiple shares by the following steps.
Step 1 : Segment the q-ary digit sequence into K small blocks. Denote each of them as{

dk,1, dk,2, · · · , dk,m
}
, where m represents the length of a digital block and k ∈ [1,K].

Step 2 : Build Vandermonde matrix A

A =



1 1 · · · 1
a1 a2 · · · an

a2
1 a2

2 · · · a2
n

...
... · · ·

...

am−1
1 am−1

2 · · · am−1
n


mod q (2.3)

where a1, a2, · · · , an ∈ [0, q − 1] are named as the indices of A and they are different with each other.
In addition, m, n, and q must satisfy m ≤ n ≤ q.

Step 3 : With the following equation, each digital block {dk,1, dk,2, · · · , dk,m} can be expanded to n
shares.

[
tk,1 tk,2 tk,3 · · · tk,n

]
=

[
dk,1 dk,2 dk,3 · · · dk,m

]
· A, (2.4)

where the symbol ”·” in Equation (2.4) presents the multiplication operator in q-ary notational system.
In order to understand data decomposition mechanism easily, we provide an actual example. As-

sume that q = 7, n = 6, m = 3, and the original data are three 7-ary digits [2 1 4]. We set the indices
a1, a2, · · · , an of Vandermonde matrix as [5 3 1 0 2 4]. So, the Vandermonde matrix can be built easily
by Equation (2.3) and the original digit vector [2 1 4] can be expanded as [2 6 0 2 6 0] according to
Equation (2.4).

According to the above steps, m q-ary digits from the original data can be expanded easily to n q-ary
digits. Obviously, there is some redundancy in these n q-ary digits. We denote the redundancy rate as
Re, which can be calculated easily as follows.

Re = 1 −
m
n
. (2.5)

Obviously, as long as the loss (or damaged) rate for tk,1, tk,2, tk,3, · · · , tk,n is not more than Re, the
original digits dk,1, dk,2, dk,3, · · · , dk,m can be just reconstructed by Equation (2.6).
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�
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Figure 2. The procedure of original data decomposition using Vandermonde matrix.

[
dk,1 dk,2 dk,3 · · · dk,m

]
=

[
t′k,1 t′k,2 t′k,3 · · · t′k,m

]
· (A′)−1 (2.6)

where t′k,1, t′k,2, t′k,3, · · · , t′k,m are m undamaged digits, which are selected from the received digits (they
maybe contain the wrong digits). A′ is m × m Vandermonde matrix built by the indices a′1, a′2, · · · ,
a′m (referring to Equation (2.3)). A′−1 is the inversion matrix of A′ in q-ary notational system, whose
calculation details can be found in [11].

2.3. Distortion function based on frame reference

In this section, we describe the design details of a new distortion function when the sender possesses
more than two continuous frames with the (approximately) same scene. Since the continuous video
frames have strong correlation, when multiple continuous frames are used to carry the given messages,
we can consider the adjacent frames as pre-covers, and calculate steganographic cost (distortion) of
current cover to provide a better guidance for video steganography.

In the following, we describe the detailed designing procedure of distortion function when the
continuous three cover frames are available. These three frames are considered as JPEG version and
denoted F(1), F(2) and F(3). We denote the quantized DCT coefficients in three frames as x(1)

i j , x(2)
i j and

x(3)
i j , respectively. We then pronounce x(2)

i j as cover frame, x(1)
i j and x(3)

i j as side-information.
When x(1)

i j and x(3)
i j are considered as side-information, the message sender can calculate the stegano-

graphic cost of modifying coefficient x(2)
i j by -1 and +1. The corresponding costs are denoted as ρ(2)

i j (−1)
and ρ(2)

i j (+1). In order to ensure that the proposed distortion function can reflect the cost of chang-
ing the cover coefficient x(2)

i j more accurately, we select the classical embedding schemes, such as
J-UNIWARD [3], as the basis of calculating steganographic cost. Since the side-information is used
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to improve further the accuracy of distortion function, we keep the original costs (the costs calculating
by classical steganographic schemes) when x(1)

i j = x(2)
i j and x(2)

i j = x(3)
i j , otherwise, re-modulate them. In

other words, the values x(1)
i j and x(3)

i j are only useful when x(1)
i j , x(2)

i j OR x(2)
i j , x(3)

i j . Since proposed dis-
tortion function refers to two adjacent frames, the new cost ρ

′

i j (±1) can be explained by the following
four-cases procedures:

Case1 : When x(1)
i j = x(2)

i j and x(2)
i j = x(3)

i j ,

ρ
′

i j (±1) = ρ(2)
i j (±1) . (2.7)

Case2 : When x(1)
i j , x(2)

i j and x(2)
i j = x(3)

i j ,

ρ
′

i j

(
si j

)
=
α (Q) ρ(2)

i j

(
si j

)
+ ρ(2)

i j

(
si j

)
2

, (2.8)

where si j = sign
(
x(1)

i j − x(2)
i j

)
.

Case3 : When x(1)
i j = x(2)

i j and x(2)
i j , x(3)

i j ,

ρ
′

i j

(
si j

)
=
ρ(2)

i j

(
si j

)
+ β (Q) ρ(2)

i j

(
si j

)
2

, (2.9)

where si j = sign
(
x(3)

i j − x(2)
i j

)
.

Case4 : When x(1)
i j , x(2)

i j and x(2)
i j , x(3)

i j

ρ
′

i j

(
si j

)
=
α (Q) ρ(2)

i j

(
si j

)
+ β (Q) ρ(2)

i j

(
si j

)
2

, (2.10)

where si j = sign
(
x(1)

i j − x(2)
i j + x(3)

i j − x(2)
i j

)
.

Clearly, α (Q) and β (Q) are two modulation factors referring to the compression factor Q, where
α (Q), β (Q)∈ [0, 1] and Q ∈ [1, 100]. They are utilized to control the actual cost values calculated from
the side-information and will be discussed later.

Notably, in this section, we only design an new distortion function, which is considered to provide
a better steganographic cost measurement. An actual steganographic method can be formed by com-
bining the new distortion function and STC algorithm [4]. The corresponding details can be found in
following section.

2.4. Data embedding and ensemble reconstruction

2.4.1. Data embedding

Following data decomposition mechanism and distortion measurement, we design a robust video
steganographic scheme.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4559–4580



4566

Algorithm 1: Data Embedding in Video Sequence
Input: Video frames v1, v2, . . . , vS , T = {t1, t2, · · · , tn}, modulation parameters α(Q) and β(Q),

multi-ary parameter q.
Output: Stego video sequence V ′.

1 for t ← 1 to S − 2 do
2 Compute steganographic costs ρ(vt+1)

i j (−1) and ρ(vt+1)
i j (+1) from the cover frame x(vt+1)

i j ;
3 for i← 1 to M do
4 for j← 1 to N do
5 if x(vt)

i j = x(vt+1)
i j and x(vt+1)

i j = x(vt+2)
i j then

6 ρ
′

i j (±1) = ρ(vt+1)
i j (±1);

7 end
8 if x(vt)

i j , x(vt+1)
i j and x(vt+1)

i j = x(vt+2)
i j then

9 si j = sign
(
x(vt)

i j − x(vt+1)
i j

)
;

10 ρ
′

i j

(
si j

)
=

α(Q)ρ(vt+1)
i j (si j)+ρ

(vt+1)
i j (si j)

2 ;
11 end
12 if x(vt)

i j = x(vt+1)
i j and x(vt+1)

i j , x(vt+2)
i j then

13 si j = sign
(
x(vt+2)

i j − x(vt+1)
i j

)
;

14 ρ
′

i j

(
si j

)
=

ρ
(vt+1)
i j (si j)+β(Q)ρ(vt+1)

i j (si j)
2 ;

15 end
16 if x(vt)

i j , x(vt+1)
i j and x(vt+1)

i j , x(vt+2)
i j then

17 si j = sign
(
x(vt)

i j − x(vt+1)
i j + x(vt+2)

i j − x(vt+1)
i j

)
;

18 ρ
′

i j

(
si j

)
=

α(Q)ρ(vt+1)
i j (si j)+β(Q)ρ(vt+1)

i j (si j)
2 ;

19 end
20 end
21 end
22 Computing the total shares for the current frame vt+1 and then embed the corresponding

messages using costs ρ
′

i j and STC algorithm to obtain stego frame v′t+1;
23 end
24 Integrate all stego frames v′1, v

′
2, . . . , v

′
S to build stego video sequence V ′;

Denote the given secret messages Mo and video sequence as V . Proposed scheme tries to spread
Mo into video frames∗ and ensure that the recipient can get the complete messages even if the video
sequence is damaged during delivery. Therefore, proposed scheme is believed to be able to resist the
diverse video attacks, such as noise, frame cropping or removal. The specific embedding procedure
can be implemented as follows.

Step1 : Decompose the video sequence V to a batch of frames v1, v2, . . . , vS , which are ensured to

∗We do not consider that how the sender informs the recipient of the length of each share, or how many shares correspond to a frame
or a video sequence, because it could be solved by hiding the information in the frame or video header or by other secret channel.
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have the (approximate) same scenes†. We denote the quality factor of video frames as Q, and then get
two parameters α(Q) and β(Q) by referring to the modulation parameters table, which will be discussed
in the next section.

Step2 : Convert the original data Mo to binary stream, which is subsequently converted to a K × m
q-ary digital matrix D = {d1,d2, · · · ,dm}.

Step3 : Build Vandermonde matrix A by a1, a2, · · · , an and calculate the expanded data by the fol-
lowing equation.

T = D × A mod q (2.11)

where T = {t1, t2, · · · , tn} is a K × n matrix, ti = (t1,i, t2,i, · · · , tK,i)T is a data vector, i ∈ [1, n].
Since the indices of Vandermonde matrix must be delivered with the expanded data, we denote
(t1,i, t2,i, · · · , tK,i, ai)T as a complete share.

Step4 : With the expanded data T and the cover frames v1, v2, . . . , vS . We can embed these shares
into each frame by combining costs ρ

′

i j and STC algorithm. The detailed procedure can be found in
Algorithm 1.

2.4.2. Data ensemble reconstruction

Once stego video is delivered through insecure network channel, it might face to diverse network
attacks. According to proposed data reconstruction procedure, the recipient can reconstruct the origi-
nal information by ensemble decision, even if partial stego frames are removed or intercepted during
delivery. Assume that the remaining stego frames can extract m′ complete shares (maybe contain some
modified digits), n ≥ m′ ≥ m. We select m shares from the remaining stego frames, and then extract
their data vectors t′1, t′2, t′3, · · · , t′m and the corresponding indices a′1, a′2, · · · , a′m. The original infor-
mation can be recovered correctly by an ensemble reconstruction mechanism whose detailed procedure
is shown in Algorithm 2.

We also provide an actual example to explain our ensemble mechanism. According to the example
in Section 2.2 and results of data decomposition, the complete expanded data should be [2 6 0 2 6
0]. We assume two digits are modified in delivery, that is, the last digit is lost and the second digit is
changed (assuming ’6’ to ’4’). Thus, the digits that are received by recipient are [2 4 0 2 6]. Since
the original data have three digits, we can randomly select three digits from [2 4 0 2 6] and repeat four
times (corresponding to the parameter en = 4 in Algorithm 2). Assume that these four selections are
[0 2 6], [4 2 6], [2 0 6] and [2 4 2], respectively, we then calculate their Vandermonde inverse matrix
according the method in [11] and obtain four “suspicious” original data, [2 1 4], [2 0 1], [2 1 4] and [2
4 2]. Finally, the majority voting (corresponding to the MaxVoting function in Algorithm 2) is used to
give the final decision [2 1 4]. An actual example can be found in Figure 3. Although the recipient does
not know which digits are modified in video transmission, the ensemble mechanism probably makes a
correct decision by majority voting.

†In fact, the scene cuts are very common in video and always produce the frames with diversity contents. However, we do not discuss
this special case lonely, because when new scene is cut, video frames can be re-extracted from the new scene to ensure they have the
(approximate) same contents.
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Algorithm 2: Data Ensemble Reconstruction From Attacked Video
Input: m′ data vectors t′1, t′2, t′3, · · · , t′m′ , the indices a′1, a′2, · · · , a′m′ for m′ data vectors,

multi-ary parameter q, ensemble rounds en.
Output: D = {d1,d2, · · · ,dm}.

1 for i← 1 to en do
2 Randomly select m data vectors as T′ = {t′1, t′2, t′3, · · · , t′m}, and then denote their

corresponding indices as {a′1, a′2, · · · , a′m}.
3 Construct Vandermonde matrix A′ by the indice vector {a′1, a′2, · · · , a′m}.
4 Calculate the inverse matrix A′−1 by A′.
5 Di = T′ × A′−1 mod q.
6 end
7 D = MaxVoting(D1,D2,D3, · · · ,Den).
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Figure 3. An actual example for ensemble reconstruction mechanism.

2.5. Several important notes

We would like to raise the attention to readers that if too many shares are lost, for example, when
m′ < m, proposed scheme is not able to recover the original data. Actually, the main principle has been
explained by Equation (2.5).

In this algorithm, we use ensemble voting strategy (the function MaxVoting in Algorithm 2) to
decide the correct original data. Although the received shares are complete, they maybe contain some
modified digits, e.g. digit 3 may be changed to 7 due to the noise interference. Thus, the calculated
original data matrices D1,D2,D3, · · · ,Den in Algorithm 2 might be different. We can give the correct
decision by counting the maximum same occurrences for D1,D2,D3, · · · ,Den. Also, we do not set
m′ = m in data reconstruction, because if m′ = m, D1,D2,D3, · · · ,Den might be different each other,
this result is invalid in the ensemble strategy.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4559–4580



4569

Figure 4. The classical video sequences in our experiments.

Table 1. Detailed descriptions of video sequences.

Sequence Resolution Number of frames
Bus 352 × 288 150
City 352 × 288 300

Coastguard 352 × 288 300
Crew 352 × 288 300

Flower 352 × 288 250
Football 352 × 288 260
Foreman 352 × 288 300
Harbour 352 × 288 300
Highway 352 × 288 2000

Ice 352 × 288 240
Mobile 352 × 288 300
Paris 352 × 288 1065

Soccer 352 × 288 300
Tempete 352 × 288 260
Waterfall 352 × 288 260

3. Experimental results and analysis

3.1. Experimental setup

We carry out our experiments on a classical video database [22], e.g. Figure 4, which contains
15 test sequences with 4 : 2 : 0 YUV format. These video sequences have the same resolution of
352 × 288, and belong to diverse categories, including people, architecture, landscape, flowers, and so
on. The detailed descriptions are given in Table 1.

In addition, to verify our proposed method, each video is separated to a number of image frames.
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Table 2. Optimal modulation parameter combinations (α(Q), β(Q)) for different relative pay-
loads (bpf).

Payload r
Quality factor Q

70 75 80 85 90 95
0.1K (0.087, 0.086) (0.091, 0.092) (0.192, 0.201) (0.284, 0.291) (0.479, 0.464) (0.654, 0.662)
0.2K (0.095, 0.093) (0.114, 0.107) (0.190, 0.181) (0.286, 0.274) (0.457, 0.461) (0.623, 0.619)
0.3K (0.094, 0.099) (0.104, 0.117) (0.167, 0.163) (0.243, 0.252) (0.437, 0.431) (0.581, 0.597)
0.4K (0.085, 0.083) (0.090, 0.103) (0.150, 0.144) (0.248, 0.224) (0.407, 0.389) (0.563, 0.542)
0.5K (0.076, 0.079) (0.084, 0.091) (0.137, 0.129) (0.226, 0.224) (0.375, 0.370) (0.503, 0.489)

Then, all frames are compressed with same quality factor to avoid the influence of different quanti-
zation matrices for steganalysis. Since only the luminance contains a lot of non-zero coefficients for
video frames, we just hide the messages into Y component. On the other hand, for a given stegano-
graphic algorithm, all frames are embedded with random messages embedding and then create new
stego videos. Moreover, in order to test the performance of proposed scheme, we select some exper-
imental video to train the corresponding parameters, e.g. α(Q) and β(Q). The ensemble classifier is
employed to show the comparable results.

As the main concern of steganography, embedding capacity and anti-steganalysis performance are
two important focuses. In our experiments, we measure the embedding capacity by bit per frame (bpf
for short), which is explained as follows.

r =
The total number of embedding bits

The number of frames
(3.1)

Similarly, the anti-steganalysis performance is evaluated by minimum average classification proba-
bility error (PE in short).

PE = min
PFA

(PFA + PMD) /2 (3.2)

where PFA and PMD are the false-alarm and the missing detection rates of a detector, respectively.

3.2. Test optimal modulation parameters α(Q) and β(Q)

We design a series of experiments to test the contribution of two modulation parameters α(Q) and
β(Q) and give their optimal values, which are determined when the PE has the minimum.

Two video sequences, Highway and Paris, are used to perform this experiment because they contain
more frames (2000+1065 = 3065). We save these frames with different quality factors and then divide
them equally into training and testing sets. Gabor Filter Residual (GFR) feature set [7] and ensemble
classifier [23] are used to provide the experimental results because they can effectively detect modern
steganography, e.g. J-UNIWARD [3]. We determine the optimal modulation factors experimentally
by getting the minimal PE. Six quality factors, 70, 75, 80, 85, 90, 95, are tested to obtain the optimal
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Figure 5. The modulation parameters α(Q) and β(Q) with JPEG quality factor Q increasing.
The relative payload is r = 0.2 Kbpf.

modulation parameters. In Figure 5, we give the changing trend of two parameters under relative
payloads r = 0.2Kbpf. As can be seen in this figure, there is only a slight difference between α(Q) and
β(Q). This is because the adjacent frames have the same scene (same content). When the continuous
adjacent frames are used as the reference (pre-cover) of current frame, there might have a (approximate)
same steganographic costs. In addition, we can see that the modulation value becomes significantly
bigger with the quality factors increasing. In fact, this interesting phenomenon is mainly related to the
calculation procedure of original distortion function.

Table 2 shows the optimal modulation parameters for different payloads by carrying out a series
of experiments. It can be observed that the optimal modulation parameter values gradually decrease
with the payload increasing. Actually, since the new distortion depends on the original distortion (e.g.
ρi j (±1) in Section 2.3), with respect to embedding in single frame, the new distortion function referring
to the continuous adjacent frames will significantly increase empirical security, especially for the large
payloads and small quality factors.

3.3. Robustness analysis for proposed scheme

In our proposed scheme, we introduce Vandermonde matrix to divide the original data into multiple
shares (e.g. Figure 2), and then hide these shares in a series of video frames by combining new
distortion function and STC algorithm. In this section, we analyze the robustness of proposed scheme.

With the Equation (2.4) and Figure 2, we know that m q-ary digits can be expanded to n q-ary
digits by Vandermonde matrix. Obviously, n q-ary digits carry m original digits. In other words, for n
expanded digits, each of them only carries m

n valid original digits. Therefore, there is some redundancy
in n expanded digits, which can be calculated by n−m

n (referring to Equation (2.5)). As such, as long
as the recipient can receive no less than m digits from n expanded digits, he can recover the m original
digits. Actually, this procedure can be deduced easily from the Figure 2. For example, we assume that
the recipient has received m′ shares, m ≤ m′ ≤ n. He selects m ones from m′ shares, and then extract m
expanded data vectors t′1, t′2, t′3, · · · , t′m and their corresponding indices a′1, a′2, · · · , a′m. According to
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Figure 6. The relationship between redundancy rate Re and two parameters m and n. Six
different values, m = 4, m = 15, m = 31, m = 49, m = 101, m = 171, are tested and satisfy
the condition m ≤ n ≤ q.

Equation (2.3), a Vandermonde matrix A′ can be built according to m indices.

A′ =



1 1 · · · 1
a′1 a′2 · · · a′m
(a′1)2 (a′2)2 · · · (a′m)2

...
... · · ·

...

(a′1)m−1 (a′2)m−1 · · · (a′m)m−1


mod q. (3.3)

We can prove that matrix A′ has an inverse matrix in q-ary notational system because it is a full-rank
matrix. We omit the actual proof [11] here due to space limitations. Denote A′−1 as the inverse matrix
of A′, the original data D = {d1,d2, · · · ,dm} can be calculated easily by the following equation.

D =
[

d1 d2 d3 · · · dm

]
=

[
t′1 t′2 t′3 · · · t′m

]
· (A′)−1 (3.4)

In general, the redundancy rate Re depends on the parameters m and n. It can be up very high if we
set an extreme gap between m and n. Table 3 shows the relationship between redundancy rate Re and
parameters m and n. As can been in this table, when the parameter m is fixed, Re will become higher
with n increasing. This conclusion can be also validated theoretically by the trend of lines in Figure 6.

3.4. Comparison with the state of the arts

In this section, we compare the proposed video steganographic scheme with other state-of-the-arts.
The performance comparison mainly focuses on three aspects: visual quality, robustness, and anti-
steganalysis. We should raise the readers’ attention that we do not use the video sequences Highway
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Table 3. Different parameter combinations (m, n) and different redundancy rate Re.

m n q Re

5 9 11 44.44%
5 13 17 61.54%
5 29 31 82.76%
5 71 73 92.96%
5 251 251 98.01%

(a) Original frame (Flower) (b) Payload=0.1Kbpf (c) Payload=0.2Kbpf (d) Payload=0.3Kbpf

(e) Original frame (Foreman) (f) Payload=0.1Kbpf (g) Payload=0.2Kbpf (h) Payload=0.3Kbpf

(i) Original frame (Mobile) (j) Payload=0.1Kbpf (k) Payload=0.2Kbpf (l) Payload=0.3Kbpf

Figure 7. Visual quality of original and stego frames for Flower (frame 48), Foreman (frame
30) and Mobile (frame 63). The relative payloads are 0.1 Kbpf, 0.2 Kbpf, and 0.3 Kbpf.

and Paris in the following experiments, because they are used in Section 3.2 to find the optimal mod-
ulation parameters. If these two video sequences are re-used, the corresponding experiments might
encounter the over-fitting.
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Table 4. PSNR(dB) comparison by using three steganographic methods with payload r =

0.1K bpf. All testing video sequences are used in this experiment to give the average results.

Sequence Cover Chang et al. [14] Liu et al. [15] Mstafa et al. [16] Proposed Scheme
Bus 33.378 32.963 33.084 33.190 33.212
City 34.898 34.657 34.775 34.782 34.804

Coastguard 34.562 34.157 34.321 34.379 34.483
Crew 37.012 36.792 36.801 36.887 36.901

Flower 34.501 34.125 34.301 34.374 34.423
Football 35.928 35.645 35.709 35.756 35.811
Foreman 36.068 35.798 35.887 35.892 35.975
Harbour 34.040 33.724 33.882 33.910 33.922

Ice 39.556 39.084 39.163 39.192 39.221
Mobile 33.476 33.003 33.098 33.104 33.192
Soccer 35.518 35.241 35.287 35.296 35.332

Tempete 34.531 34.302 34.339 34.387 34.401
Waterfall 34.668 34.012 34.206 34.213 34.279

3.4.1. Visual quality comparison

The imperceptibility is very important for video steganography. It is always required that the
steganographic method should not cause severe visual quality degradation.

In our experiment, we use J-UNIWARD algorithm to calculate original distortion and then employ
proposed new distortion function to further improve the original distortion. Peak signal-to-noise ratio
(PSNR for short) is used to evaluate the visual quality of stego video sequences. Since the video frames
are compressed format, we calculate the PSNR (dB) by comparing the uncompressed video sequence
before data embedding and the decompression reconstructed video sequence after data embedding. We
test all video sequences with three payloads 0.1Kbpf, 0.2Kbpf, and 0.3Kbpf. Figure 7 shows the visual
quality of proposed scheme with three payloads. As can be seen in this figure, the stego frames and
original frames are apparently difficult to distinguish. This demonstrates that proposed steganographic
scheme has a high visual quality. Additionally, Table 4 lists the PSNR values of all video sequences
by comparing three steganographic methods, Chang’s method [14], Liu’s method [15], and Mstafa’s
method [16]. The payload is fixed to 0.1K bpf. We can get the conclusion from this table that proposed
scheme has a slight visual quality degradation after data hiding, but, comparison with other methods,
it still has a significant superior performance.

3.4.2. Robustness testing

We further test the robustness of proposed scheme with a series of experiments. The corresponding
experiments can be performed by three attack forms: usual attack, frame attack and video compression
attack.

We firstly test the robustness of proposed scheme for usual attack forms. Three usual attack forms,
including Salt&Peppers noise, Gaussian noise and Median filtering, are used to provide testing results.
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In these experiments, we set data decomposition parameter combination as (m = 5, n = 13, q = 17),
the redundancy rate is thus Re = 61.54%. In other words, as long as the expanded data is lost (or
damaged) no more than 61.54%, the original data can be recovered perfectly. In data embedding
procedure, we evenly hide the expanded data (multiple shares) in each frame with payload 0.2K bpf.
For Salt&Peppers noise attack, the noise intention is fixed I = 0.01 and 0.05, and for Gaussian noise
attack, we also fix the parameters V = 0.01 and 0.05, while for Median filtering, the size of block is set
to 3× 3. We verify proposed scheme by using and un-using ensemble mechanism, where the ensemble
rounds are 11 (corresponding to en = 11 in Algorithm 2). Each experiment is run 100 times. Each
time, we randomly extract data from the remaining (complete) frames. The results are from average
calculation as the times that the original data can be recovered correctly over the total testing times.
Table 5 shows the experimental results. It can be observed that, for three usual attack forms, when
the ensemble mechanism is not used, the ratio that original data can be recovered perfectly is rather
low, only 67% for Salt&Peppers noise with I = 0.01, 63% for Gaussian noise with V = 0.01 and 79%
for Median filtering. This is because the noise might modify the embedding information so that the
recovered original data is wrong even if they seem to be complete.

In addition, we also test two video frame attack forms, frame cropping and frame removal. For
frame cropping, we set two cases, only one frame cropping and all frames cropping. The cropping
scales are fixed 20% and 40%. For frame removal, five removal ratios are tested for all frames, 20%,
40%, 50%, 60% and 70%. The corresponding experimental results are shown in Table 6. As can be
seen from this table, when the cropping for all frames is more than 40%, the data reconstruction ability
for non-ensemble scheme becomes inferior. When the removal ratio is up to 70%, the original data
cannot be recovered because the lost ratio has exceeded the redundancy rate Re = 61.54%. Overall,
proposed scheme can implement a robust recovery for the original data even if they are lost or damaged
during delivery.

Moreover, in order to gain more insight, we also test the proposed scheme by using the H.264 video
compression with different quantization parameters (QP for short). In this attack from, compression
is applied to every macroblock of video frame and QP is used to control the level of compression.
Table 7 presents the experimental results. We can observe from this table that the data reconstruction
ability significantly becomes inferior with QP value increasing, because lower QP value maybe cause
an inferior video quality, leading to a larger data modification. Also, for compression testing with
different QP values, QP = 10, 20, 30, 40, we further test PSNR for three video steganographic schemes,
Chang’s scheme [14], Dalal’s scheme [24] and proposed scheme. Three video sequences, Bus, Flower
and Foreman, are used to give the experimental results, which are shown in Table 8. As can be seen
that increasing of QP value results in more compression and leads to a lower video quality.

3.4.3. Anti-steganalysis testing

As a good video steganographic method, the anti-steganalysis capability is also an important focus.
Since video steganographic schemes consistently hide the messages in a batch of video frame, we use
three batch steganographic detection schemes (also named steganographer detection methods), hierar-
chical clustering scheme (HC) [25], local outlier factor detection (LOF) [26], and ensemble clustering
scheme (EC) [27], to demonstrate the security performance of different video steganographic schemes
against steganalysis.

Table 9 shows the comparison results between proposed scheme and three state-of-the-art schemes
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Table 5. Robustness testing for three usual attack forms, Salt&Peppers noise, Gaussian noise
and Median filtering. We test proposed scheme with ensemble mechanism (Ensemble) and
without ensemble mechanism (Non-Ensemble), respectively. All testing video sequences are
used in this experiment to give the average results.

Attacking Attacking
Non-Ensemble Ensemble

Forms Parameters

Salt&Peppers
I = 0.01 67% 100%
I = 0.05 46% 94%

Gaussian noise
V = 0.01 63% 98%
V = 0.05 42% 92%

Median filtering 3 × 3 block 79% 100%

Table 6. Robustness testing for two video frame attack forms, frame cropping and frame
removal. We test proposed scheme with ensemble mechanism (Ensemble) and without en-
semble mechanism (Non-Ensemble), respectively. All testing video sequences are used in
this experiment to give the average results.

Attacking Attacking
Non-Ensemble Ensemble

Forms Parameters

Frame Cropping

20% (One frame) 100% 100%
40% (One frame) 100% 100%
20% (All frames) 82% 98%
40% (All frames) 53% 90%

Frame Removal

20% frames 100% 100%
40% frames 100% 100%
50% frames 68% 100%
60% frames 15% 62%
70% frames 0% 0%

Table 7. Robustness testing for H.264 video compression attack with different quantization
parameter (QP). We test proposed scheme with ensemble mechanism (Ensemble) and without
ensemble mechanism (Non-Ensemble), respectively.

Attacking Attacking
Non-Ensemble Ensemble

Forms Parameters

H.264 Compression

QP = 40 31% 78%
QP = 30 44% 84%
QP = 20 52% 95%
QP = 10 73% 100%
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Table 8. When H.264 compression attacks with different quantization parameter (QP) are
used, PSNR(dB) comparison for three video steganographic schemes, Chang’s scheme [14],
Dalal’s scheme [24] and proposed scheme. Three video sequences, Bus, Flower and Fore-
man, are used in this experiment.

Schemes Video
Quantization parameter QP

QP = 10 QP = 20 QP = 30 QP = 40
Bus 33.544 33.012 32.910 32.874

Chang et al. Flower 34.890 34.576 34.250 34.011
[14] Foreman 35.169 35.083 34.980 34.911

Bus 33.788 33.654 33.540 33.217
Dalal et al. Flower 35.014 34.983 34.756 34.669

[24] Foreman 36.701 36.542 36.102 35.818

Proposed
Bus 34.095 34.013 33.953 33.881

Flower 35.870 35.704 35.556 35.231
Foreman 37.017 36.809 36.544 36.223

with three payloads r = 0.01K, 0.02K, 0.03K bpf, respectively. In this experiment, we regard each
video sequence as a cluster (total 13 clusters). Each experiment, we randomly choose 7 clusters (video
sequences), and select 50 frames from each one. Then, one cluster is randomly chosen as the guilty
who uses three payloads mentioned above to hide messages, respectively. Each experiment is repeated
100 times and the overall identification accuracy rate is used to evaluate anti-steganalysis that is de-
noted by the number of correctly identification over the total testing number. From Table 9, we can
observe that proposed scheme has a lower accuracy rate than that of other schemes. This illustrates
that proposed scheme is more secure. In addition, we find that the EC method is conclusively more
efficient comparing with HC and LOF methods. This is because EC method uses the ensemble cluster-
ing mechanism containing a number of sub-clustering, it can experimentally give a superior detection
performance. Actually, this interesting phenomenon has been conclusively verified in [27].

4. Conclusions and future works

In this paper, we proposed a robust video steganographic scheme. We first expand original data to
multiple shares. This mechanism can ensure that the recipient recover the original data successfully
even if they only obtain a part of data. Then, a new distortion function is designed by using continuous
adjacent video frames as side-information, which can further improve the security performance of
steganography. Proposed scheme is robust in the sense that the recipient can recover the hidden data
even if some frames are damaged or lost during delivery. Extensive experiments are performed to
show that our proposed schemes outperform existing video steganographic schemes in terms of visual
quality, robustness and anti-steganalysis.

While proposed scheme has shown a good performance in the diverse tests, we should note that
it has an obvious short on the utilization of video sequences because proposed scheme consistently
expands the original data to multiple shares, this makes that the actual hidden data become more and
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Table 9. Overall identification accuracy rate for four video steganographic schemes. Three
steganalysis methods, HC, LOF and EC, are used.

Schemes Payload r HC method LOF method EC method
0.1K 82% 88% 90%

Chang et al. 0.2K 84% 89% 92%
[14] 0.3K 88% 94% 97%

0.1K 79% 82% 87%
Liu et al. 0.2K 82% 90% 91%

[15] 0.3K 86% 90% 93%
0.1K 77% 80% 84%

Mstafa et al. 0.2K 80% 85% 90%
[16] 0.3K 85% 86% 89%

Proposed
0.1K 73% 78% 79%
0.2K 78% 82% 86%
0.3K 81% 84% 88%

more, leading to a significant cover-consuming. Nevertheless, we believe that this is only a small
problem because we can easily obtain massive video sequences from the Internet. Moreover, although
our method is robust in social networks, if too many shares are damaged or lost, proposed scheme will
do not work.

Finally, we believe that there may be some room for further improvement. For example, the dis-
tortion function can be designed by involving more adjacent frames, although the complexity may rise
sharply. In addition, we should consider to further reduce the computational complexity for inverse
matrix in q-ary notation system. The above two issues are left as our future works.
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