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2 Université de Lorraine, CNRS, Inria, IECL, F57000 Metz, France
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Abstract: In this work, we consider a class of stage-structured Susceptible-Infectious (SI) epidemic
models which includes, as special cases, a number of models already studied in the literature. This class
allows for n different stages of infectious individuals, with all of them being able to infect susceptible
individuals, and also allowing for different death rates for each stage—this helps to model disease
induced mortality at all stages. Models in this class can be considered as a simplified modelling
approach to chronic diseases with progressive severity, as is the case with AIDS for instance. In
contradistinction to most studies in the literature, we consider not only the questions of local and
global stability, but also the observability problem. For models in this class, we are able to construct
two different state-estimators: the first one being the classical high-gain observer, and the second
one being the extended Kalman filter. Numerical simulations indicate that both estimators converge
exponentially fast, but the former can have large overshooting, which is not present in the latter. The
Kalman observer turns out to be more robust to noise in measurable data.
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1. Introduction

The dynamics of chronic diseases that are directly transmitted appears to be very simple at a first
glance: in the presence of infectious individuals, susceptible ones get infected according to some
assumed force of infection — in some cases there might be an exposed or latent stage. Thus, SI and
SEI models (or their modified versions with more general incidence terms) seem to be very simple
and appropriate descriptions of such dynamics. However, the development of such diseases is seldom
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as simple as described above. In many cases, an infected individual goes through different phases of
disease severity, with possibly diverse forces of infection and disease-induced mortality rates – e.g.
AIDS.

In this work, we analyse a class of stage-structured SI models with n infectious stages: Let x =

(S , I1, . . . , In)T ,and consider the following dynamics:

X(x) =



Λ −
∑n

i=1 βiIiϕ(S ) − µ0S∑n
i=1 βiIiϕ(S ) − (µ1 + γ1)I1

γ1I1 − (µ2 + γ2)I2
...

γn−2In−2 − (µn−1 + γn−1)In−1

γn−1In−1 − µnIn


.

Most studies in the literature of mathematical epidemiology modelling focus on the understanding of
both local and global stability features. The rationale behind this choice is that while local stability
of the disease free equilibrium (DFE) characterises the invasibility dynamics of the disease, global
stability describes the long term behaviour of the disease dynamics. In many models, these features
depend only on the basic reproduction number of the model — the so-called R0— with the DFE being
both locally and globally asymptotically stable when R0 ≤ 1, and an endemic equilibrium (usually
unique) satisfying these properties when R0 > 1. This led Shuai and van den Driessche to introduce
the concept of sharp threshold property (STP), cf. [1].

On the other hand, except perhaps for the simplest models, even when the STP is satisfied, the
time-scale between departure of the population state from the DFE and convergence to the EE is not
necessarily short and the transient dynamics can be of significant interest. Therefore, while combined
local-global analysis is mathematically correct, it can lead to an oversimplified view of the true dy-
namics.

This change of focus brings in additional issues: under the dichotomy of models with the STP,
one expects to find the population state either near the DFE or near the EE. When considering the
transient dynamics, this is no longer true. Moreover, when performing a long-term analysis the only
information about the initial condition is that it has infectious individuals — for the transient dynamics,
the knowledge of initial condition is important. Nevertheless, it is usually not possible to measure the
whole state of the system at any time — in particular, the initial condition is usually unknown. Indeed,
often one has access only to a partial information of the state.

These new issues lead quite naturally to the so-called observation problem: given some measurable
information about a population, we want to estimate its complete state. More precisely, let x(t) and
y(t) be the population state and the measurable information about this at time t — we will assume that
y(t) = h(x(t)), where h is a smooth function. Let X(s) be a Lipschitz vector field that generates a global
solution and consider the following problem:{

ẋ = X(x)
y = h(x)

(1.1)

Give an initial condition, x(t0) say, the quantities x(t) and y(t) are uniquely determined. On the other
hand, assume that only y(t) is known for t ∈ [t1, t2]. We are interested in identifying what kind of
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properties the vector field X, and the function h should satisfy in order that is possible to obtain an
asymptotic estimate x̂(t) of the state x(t). In addition, we also want to investigate how x̂(t) can be
computed using the vector field X and the measurable output y(t) — recall that we do not know the
initial condition x(t0), and hence we cannot integrate the differential equation ẋ = X(x). We assume
that the number of infected individuals in the last stage can be measured. Therefore, we have y =

h(x) = C.x = (0, . . . , 0, 1).x = In.
Our goal is the following: knowing In(t) for all t ≥ 0, how to derive estimates Ŝ (t), Îi(t) satisfying

limt→∞ Ŝ (t) − S (t) = 0 and limt→∞ Îi(t) − Ii(t) = 0 and the convergence should be as fast as possible.

Outline

The remaining of the paper is organised as follows: Section 2 is devoted to a quick review of the
asymptotic behaviour of the model: we give the expression of the basic reproduction number R0 and
we study the stability properties of the equilibria.

In Section 3, we will show that the system with the output y = In is observable and we give some
observers (state-estimators) that allow to give dynamical estimates of the unmeasured state variables
S (T ), I1(t), . . . , In−1(t). More precisely, we construct two different observer: the classical high-gain and
the extended Kalman filter.

Next, in section 4, we present numerical experiments that indicate that convergence of the estimates
x̂(t) delivered by these observers towards the state x(t) is exponentially fast. However, the high-gain
observer can display significant overshooting in the initial stages, while the Kalman filter observer does
not present this behaviour. The latter also is robust when measurements are noisy, whereas the former
might fail to converge in this case.

We finish with a discussion on the results in Section 5.

2. Revisiting a class of stage-structured epidemic models

We consider the following epidemic model with multiple infectious stages:

Ṡ = Λ −
∑n

i=1 βiIiϕ(S ) − µ0S ,
İ1 =

∑n
i=1 βiIiϕ(S ) − (µ1 + γ1)I1,

İ2 = γ1I1 − (µ2 + γ2)I2,
...

İn−1 = γn−2In−2 − (µn−1 + γn−1)In−1

İn = γn−1In−1 − µnIn.

(2.1)

where:
Λ is the recruitment, and βi is the per capita contact in the compartment Ii. The function ϕ is assumed

to be continuous, positive and increasing that models the exposure of susceptible individuals to contacts
with infectious ones. In particular, it allows for the specification of a more general incidence rate than

the standard bilinear one — for instance, one can use ϕ(S ) = S p or ϕ(S ) =
S

1 + aS
(with a > 0) to take

into account saturation effects. µ0 is the natural death rate of the susceptible individuals and µi is the
death rate of the infected individuals in stage i, in general µi = µ0 + di, di being the additional disease
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induced mortality rate. γi is the transition rate from stage i to stage i + 1. The stability of this model
with ϕ(S ) = S has already been studied in ( [2, 3]).

2.1. The equilibria and the basic reproduction number

It is easy to show that the set

Ω =

(S , I1, . . . , In) ∈ IRn+1
+ : S +

n∑
i=1

Ii ≤
Λ

µ0

 since µ0 = min
i=0,...,n

µi

is a positively invariant set for the system.

The disease free equilibrium is DFE = (
Λ

µ0
, 0, . . . , 0).

The basic reproduction number represents the number of secondary cases produced by one infective
host in entirely susceptible population. Following [4], we define by Fi(S , I) the rate of appearance
of new infections in compartment i, and by Vi(S , I) the rate of transfer individuals in and out the
compartment i by all others means. The matrix F andV are given by:

F =


∑n

i=1 βiIiϕ(S )
0
· · ·

0


and

V =


−(µ1 + γ1)I1

γ1I1 − (µ2 + γ2)I2

· · ·

γn−1In−1 − µnIn

 .
Note that our V is the opposite of the same used in [4]. The Jacobian matrices at the disease free
equilibrium are:

F = DF =


β1ϕ(Λ/µ0) β2ϕ(Λ/µ0) · · · βnϕ(Λ/µ0)

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


and

V = DV =



−(µ1 + γ1) 0 0 0 · · · 0 0
γ1 −(µ2 + γ2) 0 0 · · · 0 0
0 γ2 −(µ3 + γ3) 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · γn−1 −µn


.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4415–4432.



4419

The basic reproduction number is then given by R0 = ρ(−FV−1), and it is equal to:

R0 =

n−1∑
i=1

βiϕ(Λ/µ0)
∏i

j=1 γ j−1∏i
j=1(µ j + γ j)

+
βnϕ(Λ/µ0)

µn

n−1∏
j=1

γ j

µ j + γ j
with γ0 = 1

=

 n−1∑
i=1

βi

i∏
j=1

γ j−1

(µ j + γ j)
+
βn

µn

n−1∏
j=1

γ j

µ j + γ j

ϕ(Λ/µ0).

Proposition 2.1. If R0 > 1, then system (2.1) has a unique endemic equilibrium.

An endemic equilibrium (S ∗, I∗1, . . . , I
∗
n) satisfy :

I∗n =
γn−1I∗n−1

µn
and for i = n − 1 downto 2 , I∗i =

γi−1I∗i−1

µi + γi
.

Then for i = 2 to n − 1

I∗i =

i−1∏
j=1

γ j

µ j+1 + γ j+1
I∗1 =

i∏
j=2

γ j−1

µ j + γ j
I∗1, (2.2)

and

I∗n =

n−2∏
j=1

γ j

µ j+1 + γ j+1
×
γn−1

µn
I∗1. (2.3)

Replacing the expressions of I∗i in the second equation of (2.1) gives:β1 +

n−1∑
i=2

βi

i∏
j=2

γ j−1

µ j + γ j
+
βn

µn

∏n−1
j=1 γ j∏n−1

j=2(µ j + γ j)

ϕ(S ∗) = µ1 + γ1,

 n−1∑
i=1

βi

i∏
j=1

γ j−1

(µ j + γ j)
+
βn

µn

n−1∏
j=1

γ j

µ j + γ j

ϕ(S ∗) = 1

R0
ϕ(S ∗)
ϕ(Λ/µ0)

= 1

Thus,

ϕ(S ∗) =
ϕ(Λ/µ0)
R0

. (2.4)

Therefore, if R0 > 1 then
ϕ(Λ/µ0)
R0

< ϕ(Λ/µ0), and since ϕ is a continuous and increasing function,

it follows that there exists a unique S ∗ ∈ (0, Λ/µ0) satisfying equation (2.4), more precisely, S ∗ =

ϕ−1

(
ϕ(Λ/µ0)
R0

)
.

Furthermore, by replacing S ∗, ϕ(S ∗) and I∗i for i = 2 to n by their expressions, we get the expression
of I∗1. After this, the expressions of I∗i , i ∈ {2, . . . , n} are also uniquely determined from (2.2) and (2.3).
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2.2. Global stability of the disease free equilibrium

Theorem 2.1. If R0 ≤ 1, the disease free equilibrium is globally asymptotically stable.

Proof. Let us consider:

V =

∫ S

Λ/µ0

(1 −
ϕ(Λ/µ0)
ϕ(u)

)du + bI,

where
I = (I1, . . . , In)T

and

b = (1,
µ1 + γ1

γ1
−

β1ϕ(
Λ

µ0
)

γ1
, . . . , . . . ,

n−1∏
i=1

(µi + γi)
γi

−

n−1∑
i=1

βiϕ(Λ/µ0)

∏n−1
j=i+1(µ j + γ j)∏n−1

j=i γ j
).

On the other hand:

R0 =
β1ϕ(Λ/µ0)
µ1 + γ1

+
β2ϕ(Λ/µ0)γ1

(µ1 + γ1)(µ2 + γ2)
+

β3ϕ(Λ/µ0)γ1γ2

(µ1 + γ1)(µ2 + γ2)(µ3 + γ3)
+ . . . +

βnϕ(Λ/µ0)γ1 . . . γn−1

(µ1 + γ1) . . . (µn−1 + γn−1)µn

Since R0 ≤ 1, we have µ1 + γ1 − β1ϕ(Λ/µ0) > 0, and also

(µ1 + γ1)(µ2 + γ2) − β1ϕ(Λ/µ0)(µ2 + γ2) − β2ϕ(Λ/µ0)γ1 > 0,

and so on, until the last component of b,

n−1∏
i=1

(µi + γi)
γi

−

n−1∑
i=1

βiϕ(Λ/µ0)

∏n−1
j=i+1(µ j + γ j)∏n−1

j=i γ j
> 0.

This shows that V is positive in Ω. Its derivative is:

V̇ = (1 −
ϕ(Λ/µ0)
ϕ(S )

)Ṡ + b İ.

The terms containing Ii, for i ∈ {1, . . . , n − 1}, and βnInϕ(S ) cancel (thanks to the choice of b), and we
obtain

V̇ = (Λ − µS )(1 −
ϕ(Λ/µ0)
ϕ(S )

) + (
n∑

i=1

βiϕ(Λ/µ0)

∏n−1
j=i+1(µ j + γ j)∏n−1

j=i γ j
−

n−1∏
i=1

(µi + γi)
γi

)In.

This expression is equal to:

V̇ = Λ(1 −
S

Λ/µ0
)(1 −

ϕ(Λ/µ0)
ϕ(S )

) +

n−1∏
i=1

(µi + γi)µn

γi
(R0 − 1)In.

Since ϕ is an increasing positive function and R0 ≤ 1, we have V̇ ≤ 0. By LaSalle Invariance Principle
[5], the disease free equilibrium is globally asymptotically stable.

�
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2.3. Global stability of the endemic equilibrium

Theorem 2.2. If R0 > 1 then the unique endemic equilibrium EE is globally asymptotically stable.

Proof. We consider the following candidate Lyapunov function

V =

∫ S

S ∗
(1 −

ϕ(S ∗)
ϕ(u)

)du + cT (I1 − I∗1 ln I1, . . . , In − I∗n ln In)T ,

where

cT =

(
1,

µ1 + γ1

γ1
−
β1ϕ(S ∗)
γ1I∗1

,
(µ1 + γ1)(µ2 + γ2)

γ1γ2
−
ϕ(S ∗)
γ2I∗2

(β1I∗1 + β2I∗2), . . . ,

. . . ,
∏n−1

i=1
µi + γi

γi
−

ϕ(S ∗)
γn−1I∗n−1

∑n−1
i=1 βiI∗i

)
.

We have

For i = 2, . . . n : ci =
∏i−1

j=1
µ j + γ j

γ j
−

ϕ(S ∗)
γi−1I∗i−1

∑i−1
j=1 β jI∗j =

µ1 + γ1

µi + γi

I∗1
I∗i
−

ϕ(S ∗)
(µi + γi)I∗i

∑i−1
j=1 β jI∗j

=
1

(µi + γi)I∗i

(
(µ1 + γ1)I∗1 − ϕ(S ∗)

∑i−1
j=1 β jI∗j

)
=
ϕ(S ∗)

∑n
j=i β jI∗j

(µi + γi)I∗i
> 0.

The derivative of V along the solutions is:

V̇ = (1 −
ϕ(S ∗)
ϕ(S )

)
(
Λ −

∑n
i=1 βiIiϕ(S ) − µS

)
+ (1 −

I∗1
I1

)
(∑n

i=1 βiIiϕ(S ) − (µ1 + γ1)I1
)

+
∑n

i=2 ci(1 −
I∗i
Ii

) (γi−1Ii−1 − (µi + γi)Ii) ( with γn = 0)

= (Λ − µS ) −
(
Λ
ϕ(S ∗)
ϕ(S )

−
∑n

i=1 βiIiϕ(S ∗) − µS
ϕ(S ∗)
ϕ(S )

)
−(µ1 + γ1)I1 −

(∑n
i=1 βi

I∗1
I1

Iiϕ(S ) − (µ1 + γ1)I∗1

)
+

∑n
i=2 ci(1 −

I∗i
Ii

) (γi−1Ii−1 − (µi + γi)Ii)

=
(∑n

i=1 βiI∗i ϕ(S ∗) + µS ∗ − µS
)
−

((∑n
i=1 βiI∗i ϕ(S ∗) + µS ∗

) ϕ(S ∗)
ϕ(S )

−
∑n

i=1 βiIiϕ(S ∗) − µS
ϕ(S ∗)
ϕ(S )

)
−(µ1 + γ1)I1 −

(∑n
i=1 βi

I∗1
I1

Iiϕ(S ) − (µ1 + γ1)I∗1

)
+

∑n
i=2 ci(1 −

I∗i
Ii

) (γi−1Ii−1 − (µi + γi)Ii)

V̇ =
(∑n

i=1 βiI∗i ϕ(S ∗) + µS ∗ − µS
)
−

((∑n
i=1 βiI∗i ϕ(S ∗) + µS ∗

) ϕ(S ∗)
ϕ(S )

−
∑n

i=1 βiIiϕ(S ∗) − µS
ϕ(S ∗)
ϕ(S )

)
−(µ1 + γ1)I1 −

(∑n
i=1 βi

I∗1
I1

Iiϕ(S ) − (µ1 + γ1)I∗1

)
+

∑n
i=2 ci(1 −

I∗i
Ii

) (γi−1Ii−1 − (µi + γi)Ii)

= µ(S ∗ − S )
(
1 −

ϕ(S ∗)
ϕ(S )

)
+ β1I∗1ϕ(S ∗)

(
2 −

ϕ(S ∗)
ϕ(S )

−
ϕ(S )
ϕ(S ∗)

)
+

∑n
i=1 βiIiϕ(S ∗) − (µ1 + γ1)I1 +

∑n
i=2 ci (γi−1Ii−1 − (µi + γi)Ii)

+2
∑n

i=2 βiI∗i ϕ(S ∗) −
∑n

i=2 βiI∗i ϕ(S ∗)
ϕ(S ∗)
ϕ(S )

−
∑n

i=2 βi
I∗1
I1

Iiϕ(S ) −
∑n

i=2 ci

(
γi−1

I∗i
Ii

Ii−1 − (µi + γi)I∗i

)
Mathematical Biosciences and Engineering Volume 16, Issue 5, 4415–4432.
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On one hand, we have∑n
i=1 βiIiϕ(S ∗) − (µ1 + γ1)I1 +

∑n
i=2 ci (γi−1Ii−1 − (µi + γi)Ii)

=
∑n

i=2 ciγi−1Ii−1 +
∑n

i=1 (βiIiϕ(S ∗) − ci(µi + γi)Ii)

=
∑n−1

i=1 ci+1γiIi +
∑n

i=1 (βiIiϕ(S ∗) − ci(µi + γi)Ii)

=
∑n−1

i=1 (ci+1γi + βiϕ(S ∗) − ci(µi + γi)) Ii + (βnϕ(S ∗) − cnµn)In

= 0, since ci+1 =
ci(µi + γi) − βiϕ(S ∗)

γi
and cn =

βn

µn
ϕ(S ∗)

On the other hand,

ci(µi + γi)I∗i = (µ1 + γ1)I∗1 − ϕ(S ∗)
i−1∑
j=1

β jI∗j and ciγi−1
I∗i
Ii

Ii−1 =

(µ1 + γ1)I∗1 −
i−1∑
j=1

β jI∗jϕ(S ∗)

 I∗i Ii−1

IiI∗i−1
.

Therefore,

V̇ = µ(S ∗ − S )
(
1 −

ϕ(S ∗)
ϕ(S )

)
+ β1I∗1ϕ(S ∗)

(
2 −

ϕ(S ∗)
ϕ(S )

−
ϕ(S )
ϕ(S ∗)

)
+ A

with

A = ϕ(S ∗)
n∑

i=2

2βiI∗i +

n∑
j=i

β jI∗j − βiI∗i
ϕ(S ∗)
ϕ(S )

− βiI∗i
I∗1Iiϕ(S )

I1I∗i ϕ(S ∗)
−

n∑
j=i

β jI∗j
I∗i Ii−1

IiI∗i−1


=

n∑
i=2

βiI∗i ϕ(S ∗)
(
i + 1 −

ϕ(S ∗)
ϕ(S )

−
I∗1Iiϕ(S )

I1I∗i ϕ(S ∗)
−

I∗2I1

I2I∗1
−

I∗3I2

I3I∗2
− . . . −

I∗i Ii−1

IiI∗i−1

)
Hence,

V̇ = µ(S ∗ − S )(1 −
ϕ(S ∗)
ϕ(S )

) + β1I∗1ϕ(S ∗)[2 −
ϕ(S ∗)
ϕ(S )

−
ϕ(S )
ϕ(S ∗)

]

+β2I∗2ϕ(S ∗)[3 −
ϕ(S ∗)
ϕ(S )

−
I1I∗2
I∗1I2
−

I∗1I2ϕ(S )
I1I∗2ϕ(S ∗)

] + β3I∗3ϕ(S ∗)[4 −
ϕ(S ∗)
ϕ(S )

−
I∗1I3ϕ(S )
I1I∗3ϕ(S ∗)

−
I1I∗2
I∗1I2
−

I2I∗3
I∗2I3

]

+ . . . + βnI∗nϕ(S ∗)[n + 1 −
ϕ(S ∗)
ϕ(S )

−
I∗1Inϕ(S )
I1I∗nϕ(S ∗)

−
I1I∗2
I∗1I2
−

I2I∗3
I∗2I3
− . . . −

In−1I∗n
I∗n−1In

].

The monotonicity of ϕ together with the inequality between the arithmetic and geometric means show
that V̇ is negative definite with respect to EE. It follows that the endemic equilibrium EE is globally
asymptotically stable on the positive orthant IRn+1

+ minus the stable manifold of the DFE. �

3. Observation problem

3.1. Preliminary results

The state of System (2.1) will be denoted x(t) = (S (t), I1(t), . . . , In(t))T . We suppose that only the
number of infected in the last stage is available for measurement, i.e, the measurable output of the
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system is y(t) = In(t). Therefore we are interested in the observability properties of the following
system {

ẋ = f (x),
y = h(x).

(3.1)

where the expression of f is given in (2.1) and h(x) = x.(0, . . . , 1).
To study the observability of (3.1), we introduce (as usual) the following map using the successive

time derivatives of the output function along the trajectories of the system:

ψ : x 7−→


y
ẏ
...

y(n)


Lemma 3.1. The map ψ is a diffeomorphism from from

◦

Ω (the interior of Ω) onto ψ(
◦

Ω), and hence
system (3.1) is observable.

Proof. For k ∈ {1, . . . , n − 1}, the kth derivative of y is given by the following expression:

y(k) = (−1)kµk
nIn + (−1)k−1γn−1

∑k−1
i=0 (µn−1 + γn−1)k−1−iµi

nIn−1

+(−1)k−2γn−1γn−2

[∑k−2
i=0 (µn−2+i + γn−2+i)k−2−i((µn−1+i + γn−1+i)i + µi

n)

+
∑

i, j,l,0,i+ j+l=k−2(µn−2 + γn−2)i(µn−1 + γn−1) jµl
n

]
In−2 + . . . . . .

+(−1)k−p ∏k−p
i=1 γn−i

[∑k−p
i=0 (µn−p+i + γn−p+i)k−p−i((µn−p+1+i + γn−p+1+i)i + . . . + (µn−1 + γn−1)i + µi

n)

+
∑

il,0,i1+...+ip+1=k−p(µn−p + γn−p)i1 . . . (µn−1 + γn−1)ipµ
ip+1
n

]
In−p + . . . . . .

−
∏k−1

i=1 γn−i((µn−k+1 + γn−k+1) + (µn−k+2 + γn−k+2) + . . . + (µn−1 + γn−1) + µn)In−k+1

+
∏k

i=1 γn−iIn−k.

Denote by ck
In−p

the coefficient corresponding to the variable In−p. The expression for y(k) can be rewrit-
ten as:

y(k) =

k∑
p=0

ck
In−p

In−p, k ∈ {1, . . . , n − 1}.

Moreover, the expression of y(n) can be easily deduced from the expression of y(n−1):

y(n) =

n−2∑
p=0

cn−1
In−p

(
γn−p−1In−p−1 − (µn−p + γn−p)In−p

)
+ cn−1

I1

 n∑
i=1

βiIiϕ(S ) − (µ1 + γ1)I1

 .
The Jacobian matrix of ψ at x = (S , I1, I2, . . . , In) is:

∂ψ

∂x
=



0 · · · 0 0 1
0 · · · 0 c1

In−1
c1

In

0 · · · c2
In−2

c2
In−1

c2
In

... . .
. ...

...
...

cn
S · · · · · · cn

In−1
cn

In
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An inductive computation shows that every ci
In−i

, for i = 1 to n − 1, is uniquely determined, constant
and not equal to zero. The last coefficient cn

S , corresponding to the variable S in x, is given by:

cn
S = cn−1

I1

n∑
i=1

βiIiϕ
′(S ).

The absolute value of the determinant of the Jacobian matrix is

∣∣∣∣∣∣det
(
∂ψ

∂x

)∣∣∣∣∣∣ = cn
S
∏n−1

i=1 ci
In−i

. Since

ci
In−i
, 0 for all i ∈ {1, . . . , n − 1}, it follows that det

(
∂ψ

∂x

)
= 0 if and only if (I1, . . . , In) = (0, . . . , 0).

Therefore, the rank of
∂ψ

∂x
is then n + 1 on

◦

Ω the interior of Ω. Now, consider x and x′ such that
ψ(x) = ψ(x′). Then the equality of the first component of the vectors gives In = I′n, and therefore the
equality of the second component of ψ(x) and ψ(x′) gives that In−1 = I′n−1. By repeating this reasoning
until the nth−1 component, we get Ik = I′k, for k ∈ {1, . . . , n}. Using these equalities in the last equation
and the fact that ϕ is strictly increasing and continuous, we obtain that S = S ′. Then x = x′, which

prove that ψ is injective. The injectivity of ψ and the full rank of
∂ψ

∂x
show that ψ is a diffeomorphism

from
◦

Ω onto ψ(
◦

Ω). �

3.2. Some state estimators

We are now able to construct an observer for (3.1).
We begin by performing variable change z = ψ(x), and we determine ψ−1. Through the identification
zi = ψi(x), we obtain that:

In = z1, In−1 =
1
γn−1

z2 −
µn

γn−1
z1,

In−2 =
1

γn−1γn−2
z3 +

(µn−1 + γn−1) + µn

γn−1γn−2
z2 −

(µn−1 + γn−1)µn + 2µ2
n

γn−1γn−2
z1,

repeating this until the (n − 1)-th component, we show that:

In−k = (dk
1, . . . , d

k
k+1)(z1, . . . , zk+1),

and the n + 1 th component gives that:

S = ϕ−1
(
zn+1 + (dn+1

1 , . . . , dn+1
n )(z1, . . . , zn)

(d1, . . . , dn)(z1, . . . , zn)

)
,

recall that ϕ is continuous and strictly increasing.
With the new coordinate z, system (3.1) is given by the following:

ż =


0 1 0 · · · 0
0 0 1 · · · 0
. . . · · · 0
0 0 0 · · · 1
0 0 0 · · · 0


z +


0
0
.

0
Ψ(z(t))


,

h = z1 = (1, . . . , 0)z.

(3.2)
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We denote the matrix in (3.2) by A and C = (1, . . . , 0). It is easily shown that Ψ(z) = y(n+1)(ψ−1(z)) is
k-Lipschitzian on Ω. The observer of (3.2) is given by ( [6, 7]):

˙̂z = Aẑ + (0, . . . ,Ψ(ẑ(t)))T + Σ−1
θ CT (y −Cẑ),

where Σθ is the solution of the equation:

θΣθ + AT Σθ + ΣθA −CTC = 0.

The resolution of the equation leads to:

Σθ(i, j) = (−1)i+ j (i + j − 2)!
(i − 1)!( j − 1)!

1
θi+ j−1 .

The system

˙̂x = f (x̂) +

[
∂ψ

∂x

]−1

x̂
× Σ−1

θ CT (y − h(x̂))

is an observer for (3.1).
Application: We apply the result for n = 2 and ϕ(x) = x. The corresponding system is:

Ṡ = Λ − (β1I1 + β2I2)S − µ0S ,
İ1 = (β1I1 + β2I2)S − (µ1 + γ)I1,

İ2 = γI1 − µ2I2.

(3.3)

The output is y = I2 and

ψ(S , I1, I2) =


y
ẏ
ÿ

 =


I2

γI1 − µ2I2

γ(β1I1 + β2I2)S − γ(µ1 + µ2 + γ)I1 + µ2
2I2

.
Its Jacobian can be written as:

∂ψ

∂x
=


0 0 1
0 γ −µ2

γ(β1I1 + β2I2) γβ1S − γ(µ1 + µ2 + γ) γβ2S + µ2
2

 .
The determinant of the Jacobian is equal to det

(
∂ψ

∂x

)
= γ2(β1I1 + β2I2), which is positive in the

positively invariant open set Ω0 =

{
S > 0, I1 > 0, I2 > 0, S + I1 + I2 <

Λ

µ0

}
.

We give also the expression of Σθ:

Σθ =


θ −θ−2 θ−3

−θ−2 2θ−3 −3θ−4

θ−3 −3θ−4 6θ−5

 .
With the variable change, we have: z = ψ(S , I1, I2), which leads to:

z1 = I2, z2 = γI1 − µ2I2, I1 =
µ2

γ
z1 +

1
γ

z2,

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4415–4432.



4426

z3 = γ(β1I1 + β2I2)S − γ(µ1 + µ2 + γ)I1 + µ2
2I2,

S =
z3 + γ(µ1 + µ2 + γ)I1 − µ

2
2I2

γ(β1I1 + β2I2)
,

and when we replace I1 and I2 by their expression, we get:

S =
µ2(µ1 + γ)z1 + (µ1 + µ2 + γ)z2 + z3

(µ2β1 + γβ2)z1 + β1z2
.

The expression of ψ−1 is:

ψ−1 : z→



µ2(µ1 + γ)z1 + (µ1 + µ2 + γ)z2 + z3

(µ2β1 + γβ2)z1 + β1z2
,

µ2

γ
z1 +

1
γ

z2,

z1.

According to the expression of ψ−1 we deduce Ψ(z):

Ψ(z) = ((β1µ2 + β2γ)z2 + β1z3)
µ2(µ1 + γ)z1 + (µ1 + µ2 + γ)z2 + z3

(β1µ2 + β2γ)z1 + β1z2

+((β1µ2 + β2γ)z1 + β1z2)
(
Λ −

(µ1 + γ)µ2

γ
z1 −

µ1 + µ2 + γ

γ
z2 −

z3

γ

−µ0
µ2(µ1 + γ)z1 + (µ1 + µ2 + γ)z2 + z3

(β1µ2 + β2γ)z1 + β1z2

)
− (µ1 + γ)z2 − (µ1 + µ2 + γ)z3.

With the variable z, system (3.3) is given by:

ż = F(z) =


z2

z3

Ψ(z)

 (3.4)

Let Ψ̃ be a globally Lipschitz map on the whole IR3 whose restriction to Ω0 is Ψ, and ψ̃ an extension of
the diffeomorphism ψ to the whole IR3.

The observer of (3.4) is simply: 
˙̂z1 = ẑ2 + 3θ(z1 − ẑ1),
˙̂z2 = ẑ3 + 3θ2(z1 − ẑ1),
˙̂z3 = Ψ̃(ẑ) + θ3(z1 − ẑ1).

(3.5)

In the original coordinates, the expression of the observer is:

˙̂x = f (x̂) +

[
∂ψ̃

∂x

]−1

x̂
× Σ−1

θ CT (y − h(x̂))
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This can be written:

˙̂S = Λ − (β1 Î1 + β2 Î2)Ŝ − µ0Ŝ

−

(
3θ2(µ1 + µ2 + γ − β1Ŝ )

γ(β1 Î1 + β2 Î2)
+

θ3

γ(β1 Î1 + β2 Î2)

)
(Î2 − I2)

−
3θ

(
µ2(γ + µ1) − (β1µ2 + β2γ)Ŝ

)
γ(β1 Î1 + β2 Î2)

(Î2 − I2),

˙̂I1 = (β1 Î1 + β2 Î2)Ŝ − (γ + µ1)Î1 − 3
µ2θ + θ2

γ
(Î2 − I2),

˙̂I2 = γÎ1 − µ2 Î2 − 3θ(Î2 − I2).

(3.6)

For System (3.4), it is possible to construct another type of observer called extended Kalman filter (see,
for instance, [8]): 

˙̂z = F(ẑ) −
1
r
Σ(t)CT (Cẑ − y),

Σ̇ = Qθ + [A?(ẑ)]T Σ + ΣA?(ẑ) −
1
r

ΣCTCΣ,
(3.7)

where r, θ are positive real numbers, Qθ = θ∆−1
θ Q∆−1

θ , Q is a given symmetric positive definite n × n

matrix, and ∆θ = diag
(
1,

1
θ
, . . .

1
θ n−1

)
. A?(ẑ) is the Jacobian matrix of F(z) evaluated at z = ẑ, i.e,

A?(ẑ) =
∂

∂z
(F(z))

∣∣∣∣∣
z=ẑ

.

Once again, for θ ≥ 1 and large enough, the system (3.7) is an exponential observer for the system (3.4).

The difference with the Luenberger extended observer (3.5) is that the gain
1
r

Σ(t)CT used in the cor-
rection term is not constant but it is dynamically computed as a solution of a Riccati matrix differential
equation.

In the original coordinates, the observer is (with Σ(t) given by (3.7))

˙̂S = Λ − (β1 Î1 + β2 Î2)Ŝ − µ0Ŝ

−

(
Σ2,1(t)(µ1 + µ2 + γ − β1Ŝ )

γ(β1 Î1 + β2 Î2)
+

Σ3,1(t)

γ(β1 Î1 + β2 Î2)

)
(Î2 − I2)

−
Σ1,1(t)

(
µ2(γ + µ1) − (β1µ2 + β2γ)Ŝ

)
γ(β1 Î1 + β2 Î2)

(Î2 − I2),

˙̂I1 = (β1 Î1 + β2 Î2)Ŝ − (µ1 + γ)Î1 −
µ2Σ1,1(t) + Σ2,1(t)

γ
(Î2 − I2),

˙̂I2 = γÎ1 − µ2 Î2 − Σ1,1(t)(Î2 − I2).

(3.8)

This observer works very efficiently and, unlike observer (3.6), there is no initial overshoot of the
estimate.

Remark 3.1. It must be emphasized that use of the globally Lipschitz prolongations Ψ̃ and ψ̃ is not
only a mathematical delicacy, but it is also essential for applications. Absence of such global Lipschitz
prolongations can prevent convergence of the observer, as it is illustrated in [9]. However, it is not in
general an easy task to construct explicitly such globally Lipschitz prolongations.
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4. Simulations

We simulated the various observers in the example case of a two-stage infectious class – the model
given by System (3.3). The parameters used in these simulations were as follows: β1 = 0.01; β2 =

0.15; γ = 0.02; Λ = 40; µ0 = µ1 = 0.01; µ2 = 0.025.
The evolution of S (t) and the corresponding estimates using the Kalman observer — Equation (3.8)

— can be seen in Figure 1. These estimates are robust as it can be seen from the simulations in Figure 2,
where the measurable output y(t) = I2(t) was corrupted with noise.

S(t)

S(t)

equilibrium

1 2 3 4 5
time

50

100

150

S(t)

Figure 1. The evolution of S (t) and its estimate Ŝ (t) delivered by the observer (3.8).

Figure 2. The evolution of S (t) and its estimate Ŝ (t) delivered by the observer (3.8) when
the measurable output is corrupted by noise.
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In Figure 4 we plotted the evolution of I1(t) together with the Kalman observer estimates. Figure 4
displays the corresponding noisy simulations.

Figure 3. The evolution of I1(t) and its estimate Î1(t) delivered by the observer (3.8).

Figure 4. The evolution of I1(t) and its estimate Î1(t) delivered by the observer (3.8) when
the measurable output is corrupted by noise.

The estimates of S (t) and I1(t) provided by the High Gain observer are displayed in Figures 5 and 6.
In this case there is an initial overshoot of the estimate. When the measurable output, y(t), was cor-
rupted by noise, we were not always able to verify the convergence of this observer, and hence we do
not display any noisy results for the high gain observer.
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S(t)

S(t)

equilibrium

1 2 3 4 5
time

-200

-100

100

200
S(t)

Figure 5. The evolution of S (t) and its estimate Ŝ (t) delivered by the high-gain observer
(3.6). One can notice a very important initial overshoot (for t < 1) of the estimate.

I1(t)

I1
^
(t)

equilibrium

2 4 6 8 10
time

- 500

500

1000

I1(t)

Figure 6. The evolution of I1(t) and its estimate Î1(t) delivered by the high-gain observer
(3.6). Once again there is an initial overshoot of the estimate.
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5. Discussion

In this work we considered and analysed a class of stage-structured SI models, which included a
number of previously studied models in the literature — cf. [6, 8].

We begin by identifying an expression for the basic reproductive number (R0) for these models, and
we also show that they satisfy the Sharp Threshold Property [1]. We then proceed to present some
preliminary results on the observability of these models, and after that we derive two state-estimators.

These estimators are then put to work in Section 4 where various numerical experiments are pre-
sented. Both estimators show exponential convergence, but the extended Luenberger estimator usually
displays some initial overshooting in contradistinction to the extended Kalman filter. Indeed, the be-
haviour of the latter is very accurate, even when the measurable output y(t) = I2(t) is corrupted by
noise. On the other hand, the high-gain Luenberger observer is very sensitive to noisy measurements,
and it might fail to converge in this case.
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