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Abstract: Cholera is a common infectious disease caused by Vibrio cholerae, which has different
infectivity. In this paper, we propose a cholera model with hyperinfectious and hypoinfectious
vibrios, in which both human-to-human and environment-to-human transmissions are considered.
By analyzing the characteristic equations, the local stability of disease-free and endemic equilibria
is established. By using Lyapunov functionals and LaSalle’s invariance principle, it is verified that
the global threshold dynamics of the model can be completely determined by the basic reproduction
number. Numerical simulations are carried out to illustrate the corresponding theoretical results and
describe the cholera outbreak in Haiti. The study of optimal control helps us seek cost-effective
solutions of time-dependent control strategies against cholera outbreaks, which shows that control
strategies, such as vaccination and sanitation, should be taken at the very beginning of the outbreak
and become less necessary after a certain period.
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1. Introduction

Cholera is an acute disease caused by Vibrio cholerae O-group 1 or O-group 139, which can give
rise to diarrhea and vomit. The World Health Organization (WHO) estimates that there are 1.3 to 4
million cholera cases per year with about 21,000 to 143,000 deaths all over the world [1]. Beginning
in April 2017, a major cholera epidemic occurred in Yemen, with about 500,000 reported cases and
2,000 deaths. Due to the deterioration of health systems and associated infrastructures, cholera spreads
more seriously. The WHO has announced that as many as 30,000 health care workers are devoted to
the treatment in Yemen. At present, the epidemic situation of major cities including Sanaa, Hajja, and
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Amran, is under control [1]. In order to better understand the transmission dynamics of cholera and
provide some valuable insights on the prevention and control, some cholera models have been proposed
(see, for example, [2, 3, 4, 5, 6]). In [2], Tien and Earn considered the following cholera model with
both human-to-human and environment-to-human transmissions:

dS (t)
dt

= µN − (βhI(t) + βB(t)) S (t) − µS (t),

dI(t)
dt

= (βhI(t) + βB(t)) S (t) − (γ + µ)I(t),

dR(t)
dt

= γI(t) − µR(t),

dB(t)
dt

= ξI(t) − δB(t),

(1.1)

where S (t), I(t) and R(t) denote the densities of susceptible, infected and recovered individuals,
respectively; B(t) denotes the concentration of V. cholerae in contaminated water; µ is the birth and
natural death rate; βh and β are the human-to-human transmission rate and environment-to-human
transmission rate, respectively; γ is the recovery rate of infected individuals; ξ is the contribution rate
of each infected individual to the concentration of V. cholerae; δ is the net death rate of V. cholerae.

In [7], Hartley et al. found that short-lived, hyperinfectious state of vibrios decays in a matter of
hours into a state of lower infectiousness, and incorporated this hyperinfectious state into a cholera
model to provide a much better fit with the observed epidemic pattern. Besides, Neilan et al. [8]
formulated a mathematical model to include two classes of bacterial concentrations, one is
hyperinfectious and another is less-infectious. Furthermore, in [9], Mukandavire et al. indicated that
human-to-human transmission is a very fast transmission process with a lower infectious dose as a
result of immediate water or food contamination by hyperinfectious vibrios from freshly passed
human stool. Besides, Mukandavire et al. pointed out that if vibrios have been in the environment for
a sufficiently long period (anywhere from 5 to 18 hours), they are no longer hyperinfectious, namely,
in a hypoinfectious state.

Note that the incidence rate in system (1.1) is bilinear, which regards the infection rate per density
of infected individuals or per concentration of vibrios as a constant. Actually, the incidence rate is
influenced by the inhibition effect from behavioral change of susceptible individuals and the crowding
effect of vibrios. In [10], experimental studies indicated that the probability of infection depends on
the concentration of vibrios in the contaminated water and only enough inoculum of vibrios can lead to
cholera. In [11], Codeço introduced a new form βB/(k + B) to measure the effect of saturation, where
β measures the infection force of vibrios and B/(k + B) measures the inhibition effect and crowding
effect. There have been several works on cholera models with saturation incidence in the literature
(see, for example, [3, 4, 6, 12]).

Motivated by the works of Tien and Earn [2], Mukandavire et al. [9], and Codeço [11], in the
present paper, we are concerned with the effects of hyperinfectious and hypoinfectious vibrios, both
human-to-human and environment-to-human transmissions on the global dynamics of cholera.
Besides, vaccination is widely used to prevent and control cholera, thus some susceptible individuals
become vaccinated individuals. In [13], A.P. Lemos-Paião et al. proposed a cholera model including
vaccination and illustrated the importance of vaccination campaigns on the control and eradication of
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a cholera outbreak. To this end, we consider the following differential equations:

dS (t)
dt

= µN −
(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
S (t) − (µ + φ)S (t),

dV(t)
dt

= φS (t) − σ
(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
V(t) − µV(t),

dI(t)
dt

=

(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
(S (t) + σV(t)) − (γ + µ)I(t),

dR(t)
dt

= γI(t) − µR(t),

dBH(t)
dt

= ξI(t) − χBH(t),

dBL(t)
dt

= χBH(t) − δLBL(t),

(1.2)

where S (t), V(t), I(t), R(t), BH(t), BL(t) and other parameters are described in Table 1. Corresponding
flowchart of cholera transmission in system (1.2) is depicted in Figure 1.

Figure 1. Flowchart of cholera transmission in system (1.2).

The initial condition for system (1.2) takes the form

S (0) = S 0, V(0) = V0, I(0) = I0, R(0) = R0, BH(0) = B0
H, BL(0) = B0

L, (1.3)

where constants S 0, V0, I0, R0, B0
H, B0

L are defined on [0,∞). It can be proved by the fundamental
theory of functional differential equations [14] that system (1.2) has a unique solution
(S (t),V(t), I(t),R(t), BH(t), BL(t)) satisfying the initial condition (1.3). It is easy to show that all
solutions of system (1.2) with initial condition (1.3) are defined on [0,+∞) and remain positive for all
t ≥ 0, while, Ω is a positively invariant set for system (1.2), where

Ω = {(S ,V, I,R, BH, BL) |S ,V, I,R < N, BH < ξN/χ, BL < ξN/δL} ,

which implies that S (t),V(t), I(t),R(t), BH(t) and BL(t) are bounded in the invariant set Ω.
This paper is organized as follows. In Section 2, we calculate the basic reproduction number to

system (1.2) and establish the existence of disease-free and endemic equilibria. In Section 3, the
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local asymptotic stability of each of the equilibria is studied. In Section 4, we investigate the global
asymptotic stability of each of the equilibria. In Section 5, we carry out a study of optimal control
to seek cost-effective solutions of control strategies for cholera. In Section 6, we present numerical
simulations to illustrate the theoretical results and describe the cholera outbreak in Haiti. Furthermore,
we obtain the optimal control solution by the Forward-Backward Sweep Method. The paper ends with
a conclusion in Section 7.

Table 1. Definitions of frequently used variables.

Variables Description
S (t) the density of susceptible individuals at time t
V(t) the density of vaccinated individuals at time t
I(t) the density of infected individuals at time t
R(t) the density of recovered individuals at time t
BH(t) the concentration of hyperinfectious vibrios at time t
BL(t) the concentration of hypoinfectious vibrios at time t
N the constant of total population
µ birth and natural death rate
βh transmission rate of infected individuals
βH transmission rate of hyperinfectious vibrios
βL transmission rate of hypoinfectious vibrios
kH the concentration of hyperinfectious vibrios in contaminated water

that yields 50% chance of catching cholera
kL the concentration of hypoinfectious vibrios in contaminated water

that yields 50% chance of catching cholera
φ vaccination rate of susceptible individuals
σ reduction rate of vaccination due to the infection (less than one)
γ recovery rate of infected individuals
ξ the contribution rate of each infected individual to the concentration

of V. cholerae
χ the decay rate from hyperinfectious state to reduced infectiousness
δL net death rate of V. cholerae

2. Basic reproduction number and feasible equilibria

System (1.2) always has a disease-free equilibrium E0(S 0,V0, 0, 0, 0, 0) = (µN/(µ + φ), φN/(µ +

φ), 0, 0, 0, 0). By the method of van den Driessche and Watmough [15], the associated next generation
matrices are given by

F =


βh(µN+σφN)

µ+φ

βH(µN+σφN)
kH(µ+φ)

βL(µN+σφN)
kL(µ+φ)

0 0 0
0 0 0

 ,
Mathematical Biosciences and Engineering Volume 16, Issue 5, 4339–4358.
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and

V =


γ + µ 0 0
−ξ χ 0
0 −χ δL

 .
Then, the basic reproduction number is determined by the spectral radius of FV−1, namely,

R0 = ρ(FV−1) =

(
βh +

βHξ

χkH
+
βLξ

δLkL

)
(µ + σφ) N

(µ + φ) (µ + γ)
,

which represents the average number of new infections generated by a single newly infectious
individual during the full infectious period. It can be shown that system (1.2) has an endemic
equilibrium E∗(S ∗,V∗, I∗,R∗, B∗H, B

∗
L) if R0 > 1, which satisfies that

S ∗ = µN
(
βhI∗ +

βHξI∗

χkH + ξI∗
+

βLξI∗

δLkL + ξI∗
+ µ + φ

)−1

,

V∗ = φS ∗
(
βhσI∗ +

βHξσI∗

χkH + ξI∗
+

βLσξI∗

δLkL + ξI∗
+ µ

)−1

,

R∗ =
γI∗

µ
, B∗H =

ξI∗

χ
, B∗L =

ξI∗

δL
,

(2.1)

and I∗ is the positive real root of the following equation:

s1I∗6 + s2I∗5 + s3I∗4 + s4I∗3 + s5I∗2 + s6I∗ + s7 = 0, (2.2)

where

s1 =σξ4(µ + γ),
s2 =2σξ3(µ + γ) (βHξ + βLξ + kHχ + kLδL) + βhσξ

4(µ + γ)(µ + φ) + βhµξ
4(µ + γ) − µσξ4N,

s3 =2σξ2(µ + γ) (βLξχkH + βHξδLkL + βhχδLkHkL) + σξ2(µ + γ)(βHξ + βLξ + χkH + δLkL)2

+ ξ3(µ + γ) (βhδLkL + βhχkH + βHξ + βLξ)
[
σ(µ + φ) + µ

]
+ βhξ

3(µ + γ)(δLkL + χkH)
[
σ(µ + φ) + µ

]
+ µξ4 (µ + γ) (µ + φ)

− βhµξ
4N (µ + σφ) − 2µσξ3N (βHξ + βLξ + χkH + δLkL) ,

s4 =2σξ (µ + γ) (βHξ + βLξ + χkH + δLkL) (βLξχkH + βHξδLkL + βhχδLkHkL)

+ ξ2(µ + γ) (βhχδLkHkL + βHξδLkL + βLξχkH)
[
σ(µ + φ) + µ

]
+ ξ2(µ + γ)(δLkL + χkH) (βhδLkL + βhχkH + βHξ + βLξ)

[
σ(µ + φ) + µ

]
+ βhδLχξ

2kHkL(µ + γ)
[
σ(µ + φ) + µ

]
+ 2µξ3(µ + γ)(µ + φ) (χkH + δLkL)

− βhµξ
3N (µ + σφ) (χkH + δLkL) − 2µσξ2N (βLξχkH + βHξδLkL + βhχδLkHkL)

− µσξ2N(βHξ + βLξ + χkH + δLkL)2
− µξ3N (µ + σφ) (βhδLkL + βhχkH + βHξ + βLξ) ,

s5 =σ (µ + γ) (βLξχkH + βHξδLkL + βhχδLkHkL)2

+ ξδLχkHkL(µ + γ) (βhδLkL + βhχkH + βHξ + βLξ)
[
σ(µ + φ) + µ

]
+ (βLξχkH + βHξδLkL + βhχδLkHkL)
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×

[
ξ(µ + γ)(δLkL + χkH)

[
σ(µ + φ) + µ

]
−µξ2N (µ + σφ) − 2µσξN (βHξ + βLξ + kHχ + kLδL)

]
− µξ2N (µ + σφ) (δLkL + χkH) (βhδLkL + βhχkH + βHξ + βLξ)

− βhµχδLξ
2kLkHN (µ + σφ) + µξ2(µ + γ)(µ + φ)

(
δ2

Lk2
L + 4χδLkHkL + χ2k2

H

)
,

s6 =δLχkHkL(µ + γ) (βhχkHδLkL + βHξδLkL + βLξχkH)
[
σ(µ + φ) + µ

]
+ 2χµδLξkHkL(µ + γ)(µ + φ) (χkH + δLkL)

− µξN (µ + σφ) (δLkL + χkH) (βhχkHδLkL + βHξδLkL + βLξχkH)

− µχδLξkHkLN (µ + σφ) (βhδLkL + βhχkH + βHξ + βLξ)

− µσN(βLkHξχ + βHkLξδL + βhkHkLχδL)2,

s7 =k2
Hk2

Lµχ
2δ2

L(µ + φ)(µ + γ) (1 − R0) .

Denote the left side of (2.2) by P(I∗). Note that lim
I∗→+∞

P(I∗) = +∞ and P(0) = s7 < 0 if R0 > 1, thus
system (1.2) has a positive equilibrium E∗.

3. Local asymptotic stability

In this section, we are concerned with the local asymptotic stability of disease-free and endemic
equilibria. The approach of proofs is to analyze the distribution of roots for corresponding
characteristic equations.

Theorem 3.1. If R0 < 1, the disease-free equilibrium E0 of system (1.2) is locally asymptotically
stable; if R0 > 1, E0 is unstable.

Proof. The characteristic equation of system (1.2) at E0 is

(λ + χ) (λ + δL) (λ + µ)2 (λ + µ + φ) (λ + µ + γ)

=
(µ + σφ) N
µ + φ

(λ + µ)2 (λ + µ + φ)
[
βh (λ + χ) (λ + δL) +

βHξ

kH
(λ + δL) +

βLχξ

kL

]
.

(3.1)

It is clear that (3.1) has negative real roots λ = −µ, λ = −(µ + φ) and other roots are determined by the
following equation:

(λ + χ) (λ + δL) (λ + µ + γ) −
(µ + σφ) N
µ + φ

[
βh (λ + χ) (λ + δL) +

βHξ

kH
(λ + δL) +

βLχξ

kL

]
= 0. (3.2)

Denote R0 = R01 + R02 + R03, where

R01 =
βh (µ + σφ) N
(µ + φ) (µ + γ)

, R02 =
βHξ (µ + σφ) N

χkH (µ + φ) (µ + γ)
, R03 =

βLξ (µ + σφ) N
δLkL (µ + φ) (µ + γ)

.

Substituting R0,R01,R02 into (3.2) yields(
λ2

δLχ
+
λ

δL
+
λ

χ
+ 1

) (
λ

µ + γ
+ 1

)
=

[
R01

λ2

δLχ
+ (R01 + R02)

λ

δL
+ R01

λ

χ
+ R0

]
. (3.3)
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Now, we claim that all roots of (3.3) have negative real parts. Otherwise, system (1.2) has a root
λ1 = x1 + iy1 with x1 ≥ 0. In this case, if R0 < 1, it is easy to see that∣∣∣∣∣∣ λ2

1

δLχ
+
λ1

δL
+
λ1

χ
+ 1

∣∣∣∣∣∣ >
∣∣∣∣∣∣R01

λ2
1

δLχ
+ (R01 + R02)

λ1

δL
+ R01

λ1

χ
+ R0

∣∣∣∣∣∣ ,
∣∣∣∣∣ λ1

µ + γ
+ 1

∣∣∣∣∣ > 1.

It follows that∣∣∣∣∣∣
(
λ2

1

δLχ
+
λ1

δL
+
λ1

χ
+ 1

) (
λ1

µ + γ
+ 1

)∣∣∣∣∣∣ >
∣∣∣∣∣∣R01

λ2
1

δLχ
+ (R01 + R02)

λ1

δL
+ R01

λ1

χ
+ R0

∣∣∣∣∣∣ ,
which contradicts to (3.3). Therefore, if R0 < 1, all roots of (3.1) have negative real parts and E0 is
locally asymptotically stable. If R0 > 1, we denote the left side of (3.1) by G(λ):

G(λ) = (λ + χ) (λ + δL) (λ + µ)2 (λ + µ + φ) (λ + γ + µ)

−
(µ + σφ) N
µ + φ

(λ + µ)2 (λ + µ + φ)
[
βh (λ + χ) (λ + δL) +

βHξ

kH
(λ + δL) +

βLχξ

kL

]
,

where G(0) = δLχµ
2(µ + φ)(γ + µ)(1 − R0) < 0 and G(λ) → ∞ as λ → ∞. Noting that G(λ) is

a continuous function with respect to λ, if R0 > 1, Eq. (3.1) has a positive real root, then E0 is
unstable. �

Theorem 3.2. If R0 > 1, the endemic equilibrium E∗ of system (1.2) is locally asymptotically stable.

Proof. The characteristic equation of system (1.2) at E∗ is

(λ + µ) (λ + χ) (λ + δL) (λ + µ + γ) (λ + µ + φ + XI∗) (λ + µ + σXI∗)

= (λ + µ)2 (λ + χ) (λ + δL)
[
S ∗ (λ + µ + φ + σXI∗) + σV∗ (λ + µ + φ + XI∗)

]
Y,

(3.4)

where

X = βh +
βHξ

χkH + ξI∗
+

βLξ

δLkL + ξI∗
,

Y = βh +
βHξ

χkH + ξI∗
χkH

χkH + ξI∗
χ

λ + χ
+

βLξ

δLkL + ξI∗
δLkL

δLkL + ξI∗
χ

λ + χ

δL

λ + δL
.

It is obvious that (3.4) has a negative real root λ = −µ and other roots are determined by the following
equation:

(λ + χ) (λ + δL) (λ + µ + γ) (λ + µ + φ + XI∗) (λ + µ + σXI∗)

= (λ + χ) (λ + δL) (λ + µ)
[
S ∗ (λ + µ + φ + σXI∗) + σV∗ (λ + µ + φ + XI∗)

]
Y.

(3.5)

For the sake of contradiction, let λ2 = x2 + iy2 with x2 ≥ 0. Noting that X (S ∗ + σV∗) = µ + γ and
σ < 1, we have

|(λ2 + µ + γ) (λ2 + µ + φ + XI∗)|
> |X (S ∗ + σV∗) (λ2 + µ + φ + XI∗)|

>
∣∣∣X [

S ∗ (λ2 + µ + φ + σXI∗) + σV∗ (λ2 + µ + φ + XI∗)
]∣∣∣

>
∣∣∣Y [

S ∗ (λ2 + µ + φ + σXI∗) + σV∗ (λ2 + µ + φ + XI∗)
]∣∣∣ .

(3.6)
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Hence, we obtain that

|(λ + χ) (λ + δL) (λ2 + µ + γ) (λ2 + µ + φ + XI∗) (λ2 + µ + σXI∗)|

>
∣∣∣(λ + χ) (λ + δL) (λ2 + µ)

[
S ∗ (λ2 + µ + φ + σXI∗) + σV∗ (λ2 + µ + φ + XI∗)

]
Y
∣∣∣ ,

which contradicts to (3.5). Therefore, if R0 > 1, all roots of (3.4) have negative real parts and E∗ is
locally asymptotically stable. �

4. Global asymptotic stability

In this section, we study the global stability of each of the equilibria to system (1.2). The approach
of proofs is to use suitable Lyapunov functionals and LaSalle’s invariance principle. Since the variable
R(t) does not appear explicitly in the first three and last two equations in system (1.2), we don’t need
to consider it in later analysis.

Theorem 4.1. If R0 < 1, the disease-free equilibrium E0 of system (1.2) is globally asymptotically
stable.

Proof. Let (S (t),V(t), I(t), BH(t), BL(t)) be any positive solution of system (1.2) with initial condition
(1.3). Define

V1(t) = S 0

(
S (t)
S 0
− 1 − ln

S (t)
S 0

)
+ V0

(
V(t)
V0
− 1 − ln

V(t)
V0

)
+ I(t) + c1BH(t) + c2BL(t),

where constants c1 and c2 will be determined later. Calculating the derivative of V1(t) along positive
solutions of system (1.2) yields

V̇1(t) =

(
1 −

S 0

S (t)

) [
µN −

(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
S (t) − (µ + φ)S (t)

]
+

(
1 −

V0

V(t)

) [
φS (t) − σ

(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
V(t) − µV(t)

]
+

(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
(S (t) + σV(t)) − (γ + µ)I(t)

+ c1 (ξI(t) − χBH(t)) + c2 (χBH(t) − δLBL(t)) .

(4.1)

Substituting S 0 = µN/(µ + φ),V0 = φN/(µ + φ) into (4.1), we obtain that

V̇1(t) =
µ2N
µ + φ

(
2 −

S (t)
S 0
−

S 0

S (t)

)
+
µφN
µ + φ

(
3 −

S 0

S (t)
−

V(t)
V0
−

S (t)V0

S 0V(t)

)
+

[
βhN (µ + σφ)

µ + φ
+ c1ξ − (γ + µ)

]
I(t) +

βL (µ + σφ) NBL(t)
(µ + φ) (kL + BL(t))

− c2δLBL(t)

+
βH (µ + σφ) NBH(t)
(µ + φ) (kH + BH(t))

+ c2χBH(t) − c1χBH(t).

(4.2)

Choose

c1 =
N (µ + σφ)
µ + φ

(
βH

χkH
+

βL

δLkL

)
, c2 =

βLN (µ + σφ)
δLkL (µ + φ)

.
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From (4.2), we have

V̇1(t) =
µ2N
µ + φ

(
2 −

S (t)
S 0
−

S 0

S (t)

)
+
µφN
µ + φ

(
3 −

S 0

S (t)
−

V(t)
V0
−

S (t)V0

S 0V(t)

)
−

βHN (µ + σφ)B2
H(t)

kH(µ + φ) (kH + BH(t))
−

βLN (µ + σφ)B2
L(t)

kL(µ + φ) (kL + BL(t))
+ (R0 − 1) (γ + µ)I(t).

It follows from the inequality of arithmetic and geometric means that V̇1(t) ≤ 0 with equality holding
if and only if S = S 0,V = V0, I = BH = BL = 0. It can be verified that M0 = {E0} ⊂ Ω is the largest
invariant subset of {(S (t),V(t), I(t), BH(t), BL(t)) : V̇1(t) = 0}. Noting that if R0 < 1, E0 is locally
asymptotically stable, thus we obtain the global asymptotic stability of E0 from LaSalle’s invariance
principle. �

Theorem 4.2. If R0 > 1, the endemic equilibrium E∗ of system (1.2) is globally asymptotically stable.

Proof. Let (S (t),V(t), I(t), BH(t), BL(t)) be any positive solution of system (1.2) with initial condition
(1.3). Define

V2(t) =S ∗
(
S (t)
S ∗
− 1 − ln

S (t)
S ∗

)
+ V∗

(
V(t)
V∗
− 1 − ln

V(t)
V∗

)
+ I∗

(
I(t)
I∗
− 1 − ln

I(t)
I∗

)
+ l1B∗H

(
BH(t)
B∗H

− 1 − ln
BH(t)
B∗H

)
+ l2B∗L

(
BL(t)
B∗L
− 1 − ln

BL(t)
B∗L

)
,

where constants l1 and l2 will be determined later. Calculating the derivative of V2(t) along positive
solutions of system (1.2) yields

V̇2(t) =

(
1 −

S ∗

S (t)

) [
µN −

(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
S (t) − (µ + φ)S (t)

]
+

(
1 −

V∗

V(t)

) [
φS (t) − σ

(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
V(t) − µV(t)

]
+

(
1 −

I∗

I(t)

) [(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
(S (t) + σV(t)) − (γ + µ)I(t)

]
+ l1

(
1 −

B∗H
BH(t)

)
(ξI(t) − χBH(t)) + l2

(
1 −

B∗L
BL(t)

)
(χBH(t) − δLBL(t)) .

(4.3)
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Substituting (2.1) into (4.3) yields

V̇2(t) =S ∗ (µ + βhI∗)
(
2 −

S ∗

S (t)
−

S (t)
S ∗

)
+ V∗ (µ + βhσI∗)

(
3 −

S ∗

S (t)
−

S (t)V∗

S ∗V(t)
−

V(t)
V∗

)
+
βHS ∗B∗H
kH + B∗H

2 − S ∗

S (t)
−

S (t)I∗BH(t)
(
kH + B∗H

)
S ∗I(t)B∗H (kH + BH(t))


+
βLS ∗B∗L
kL + B∗L

2 − S ∗

S (t)
−

S (t)I∗BL(t)
(
kL + B∗L

)
S ∗I(t)B∗L (kL + BL(t))


+
βHσV∗B∗H
kH + B∗H

3 − S ∗

S (t)
−

S (t)V∗

S ∗V(t)
−

V(t)I∗BH(t)
(
kH + B∗H

)
V∗I(t)B∗H (kH + BH(t))


+
βLσV∗B∗L
kL + B∗L

3 − S ∗

S (t)
−

S (t)V∗

S ∗V(t)
−

V(t)I∗BL(t)
(
kL + B∗L

)
V∗I(t)B∗L (kL + BL(t))


+

[
l1χB∗H − (S ∗ + σV∗)

(
βLB∗L

kL + B∗L
+

βH B∗H
kH + B∗H

)]
I(t)
I∗

+ (S ∗ + σV∗)
βH BH(t)

kH + BH(t)
− l1χBH(t) − l1χB∗H

I(t)B∗H
I∗BH(t)

+ l1χB∗H + l2δLB∗L

+ (S ∗ + σV∗)
βLBL(t)

kL + BL(t)
− l2δLBL(t) + l2δLB∗L

BH(t)
B∗H

− l2δLB∗L
B∗LBH(t)
BL(t)B∗H

.

Choose

l1 =
(S ∗ + σV∗)

χB∗H

(
βLB∗L

kL + B∗L
+

βH B∗H
kH + B∗H

)
, l2 =

(S ∗ + σV∗)
δLB∗L

βLB∗L
kL + B∗L

.

Direct calculation shows that

V̇2(t) =S ∗ (µ + βhI∗)
(
2 −

S ∗

S (t)
−

S (t)
S ∗

)
+ V∗ (µ + βhσI∗)

(
3 −

S ∗

S (t)
−

S (t)V∗

S ∗V(t)
−

V(t)
V∗

)
+
βHS ∗B∗H
kH + B∗H

4 − S ∗

S (t)
−

I(t)B∗H
I∗BH(t)

−
kH + BH(t)
kH + B∗H

−
S (t)I∗BH(t)

(
kH + B∗H

)
S ∗I(t)B∗H (kH + BH(t))


+
βLS ∗B∗L
kL + B∗L

5 − S ∗

S (t)
−

I(t)B∗H
I∗BH(t)

−
B∗LBH(t)
BL(t)B∗H

−
kL + BL(t)
kL + B∗L

−
S (t)I∗BL(t)

(
kL + B∗L

)
S ∗I(t)B∗L (kL + BL(t))


+
βHσV∗B∗H
kH + B∗H

5 − S ∗

S (t)
−

S (t)V∗

S ∗V(t)
−

I(t)B∗H
I∗BH(t)

−
kH + BH(t)
kH + B∗H

−
V(t)I∗BH(t)

(
kH + B∗H

)
V∗I(t)B∗H (kH + BH(t))


+
βLσV∗B∗L
kL + B∗L

6 − S ∗

S (t)
−

S (t)V∗

S ∗V(t)
−

I(t)B∗H
I∗BH(t)

−
B∗LBH(t)
BL(t)B∗H

−
kL + BL(t)
kL + B∗L

−
V(t)I∗BL(t)

(
kL + B∗L

)
V∗I(t)B∗L (kL + BL(t))


−
βHkH (S ∗ + σV∗)

(
BH(t) − B∗H

)2(
kH + B∗H

)2
(kH + BH(t))

−
βLkL (S ∗ + σV∗)

(
BL(t) − B∗L

)2(
kL + B∗L

)2
(kL + BL(t))

.
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Thus, it follows from the inequality of arithmetic and geometric means that V̇2(t) ≤ 0 with equality
holding if and only if S = S ∗,V = V∗, I = I∗, BH = B∗H, BL = B∗L. It can be proved that M∗ = {E∗} ⊂ Ω
is the largest invariant subset of {(S (t),V(t), I(t), BH(t), BL(t)) : V̇2(t) = 0}. Noting that if R0 > 1, E∗ is
locally asymptotically stable, we therefore obtain the global asymptotic stability of E∗ from LaSalle’s
invariance principle. �

5. Optimal control strategies

Optimal control methods help us find cost-effective strategies to control various kinds of diseases.
We aim to minimize the number of infected individuals and the corresponding cost of the strategies
during the course of an epidemic. Control strategies, such as quarantine, vaccination, treatment, and
sanitation, can realize the control of cholera at different cost.

Let X = (S ,V, I,R, BH, BL). Define a control function set as U = {ui|i = 1, 2, 3, 4}, where the
meanings of ui are listed as follows:

(1) u1 is a quarantine strategy which is used to reduce the contact between susceptible individuals
and infected individuals;

(2) u2 is a vaccination strategy that can improve the immunocompetence of susceptible individuals;
(3) u3 is a treatment strategy that aims at increasing the recovery rate of infected individuals;
(4) u4 is a sanitation strategy that aims at killing vibrios in contaminated water.
Due to the limitation of medical technology or cost, each of control strategies ui has upper bound

uimax. The model with control strategies is given by the following system of nonlinear ordinary
differential equations:

dS (t)
dt

= µN −
[
(1 − u1(t)) βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

]
S (t) − (µ + u2(t))S (t),

dV(t)
dt

= u2(t)S (t) − σ
[
(1 − u1(t)) βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

]
V(t) − µV(t),

dI(t)
dt

=

[
(1 − u1(t)) βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

]
(S (t) + σV(t)) − (u3(t) + µ)I(t),

dR(t)
dt

= u3(t)I(t) − µR(t),

dBH(t)
dt

= ξI(t) − (u4(t) + χ) BH(t),

dBL(t)
dt

= χBH(t) − (u4(t) + δL) BL(t).

(5.1)

The set X of admissible trajectories is given by

X =
{
X(·) ∈ W1,1

(
[0,T ];R6

)
|(1.3) and (5.1) are satisfied

}
,

and the admissible control setU is given by

U =
{
U(·) ∈ L∞

(
[0,T ];R4

)
|0 < ui ≤ uimax < 1,∀t ∈ [0,T ]

}
.

From [16, 17], we consider the objective functional

J(X(·),U(·)) =

∫ T

0

(
AI +

B1

2
u1

2 +
B2

2
u2

2 +
B3

2
u3

2 +
B4

2
u4

2
)
dt.
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Thereinto, A denotes the weight constant of the infected individuals, while, B1, B2, B3 and B4 are the
weight constants for the control strategies. B1u1

2/2, B2u2
2/2, B3u3

2/2 and B4u4
2/2 describe the cost

associated with quarantine, vaccination, treatment, and sanitation strategies, respectively. The square
of the control variables shows the severity of the side effects of the four strategies [17]. Our aim is to
minimize the number of infected individuals and corresponding cost of the strategies. The optimal
control problem consists of determining the vector function
X�(·) = (S �(·),V�(·), I�(·),R�(·), BH

�(·), BL
�(·)) ∈ X associated with an admissible control U�(·) ∈ U

on the time interval [0,T ], minimizing the objective functional J, i.e.,

J
(
X�(·),U�(·)

)
= min

X(·),U(·)∈X×U
J (X(·),U(·)) . (5.2)

The existence of an optimal control U(·) comes from the convexity of the objective functional J
with respect to the controls and the regularity of the system (5.1): see, e.g., [18, 19].

According to the Pontryagin Maximum Principle [20], if U(·) ∈ X is optimal for problem (5.2)
with fixed final time T , then there exists a nontrivial absolutely continuous mapping λ : [0,T ] → R6,
λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)), called the adjoint vector, such that

(1) the control system:

S ′ =
∂H
∂λ1

, V ′ =
∂H
∂λ2

, I′ =
∂H
∂λ3

, R′ =
∂H
∂λ4

, BH
′ =

∂H
∂λ5

, BL
′ =

∂H
∂λ6

;

(2) the adjoint system:

λ1
′ = −

∂H
∂S

, λ2
′ = −

∂H
∂V

, λ3
′ = −

∂H
∂I
, λ4

′ = −
∂H
∂R

, λ5
′ = −

∂H
∂BH

, λ6
′ = −

∂H
∂BL

;

(3) the minimization condition:

H
(
X�(t),U�(t), λ�(t)

)
= min

0<ui≤ui max
H

(
X�(t),U(t), λ�(t)

)
,

(4) hold for almost all t ∈ [0,T ], where the function H, defined by

H(X,U, λ) =AI +
B1

2
u1

2 +
B2

2
u2

2 +
B3

2
u3

2+
B4

2
u4

2

+ λ1

{
µN −

[
(1 − u1) βhI +

βH BH

kH + BH
+

βLBL

kL + BL

]
S − (µ + u2)S

}
+ λ2

{
u2S − σ

[
(1 − u1) βhI +

βH BH

kH + BH
+

βLBL

kL + BL

]
V − µV

}
+ λ3

{[
(1 − u1) βhI +

βH BH

kH + BH
+

βLBL

kL + BL

]
(S + σV) − (u3 + µ)I

}
+ λ4 (u3I − µR) + λ5

[
ξI − (u4 + χ) BH

]
+ λ6

[
χBH − (u4 + δL) BL

]
,

is called the Hamiltonian.
(5) Moreover, the following transversality conditions also hold:

λi(T ) = 0, i = 1, . . . , 6.

From [18, 19, 20, 21], it is not difficult to show the following theorem.
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Theorem 5.1. The optimal control problem (5.2) with fixed final time T admits a unique optimal
solution (S �(·),V�(·), I�(·),R�(·), BH

�(·), BL
�(·)) associated with an optimal control U(t) for t ∈ [0,T ].

Moreover, there exist adjoint functions λi
�(·) (i = 1, . . . , 6) such that

dλ�1
dt

=λ�1 (µ + u2) + λ�1

[
(1 − u1) βhI� +

βH B�H
kH + B�H

+
βLB�L

kL + B�L

]
− λ�2u2 − λ

�
3

[
(1 − u1) βhI� +

βH B�H
kH + B�H

+
βLB�L

kL + B�L

]
,

dλ�2
dt

=λ�2σ

[
(1 − u1) βhI� +

βH B�H
kH + B�H

+
βLB�L

kL + B�L

]
+ λ�2µ

− λ�3σ

[
(1 − u1) βhI� +

βH B�H
kH + B�H

+
βLB�L

kL + B�L

]
,

dλ�3
dt

= − A + λ�1 (1 − u1) βhS � + λ�2 (1 − u1) βhσV�

− λ�3βh (1 − u1)
(
S � + σV�

)
+ λ�3 (u3 + µ) − λ�4u3 − λ

�
5ξ,

dλ�4
dt

=λ�4µ,

dλ�5
dt

=λ�1βHS �
kH(

kH + B�H
)2 + λ�2βHσV�

kH(
kH + B�H

)2

− λ�3βH
(
S � + σV�

) kH(
kH + B�H

)2 + λ�5 (u4 + χ) − λ�6χ,

dλ�6
dt

=λ�1βLS �
kL(

kL + B�L
)2 + λ�2βLσV�

kL(
kL + B�L

)2

− λ�3βL
(
S � + σV�

) kL(
kL + B�L

)2 + λ�6 (u4 + δL) ,

(5.3)

with transversality conditions
λi
�(T ) = 0, i = 1, . . . , 6.

Furthermore,
u�i = max[0,min(ũi, ui max)], (5.4)

where

ũ1 =

(
λ�3 − λ

�
1

)
βhS �I� +

(
λ�3 − λ

�
2

)
βhσV�I�

B1
,

ũ2 =

(
λ�1 − λ

�
2

)
S �

B2
, ũ3 =

(
λ�3 − λ

�
4

)
I�

B3
, ũ4 =

λ�5B�H + λ�6B�L
B4

.

In the next section, we solve u�i by a numerical method. Numerical techniques for optimal control
problems can often be classified as either direct or indirect. In terms of disease control, indirect
methods, such as the Forward-Backward Sweep Method, approximate solutions to optimal control
problems by numerically solving the boundary value problem for the differential-algebraic system
generated by the Maximum Principle [22].

Mathematical Biosciences and Engineering Volume 16, Issue 5, 4339–4358.



4352

6. Numerical simulations

In this section, we want to illustrate the theoretical results for system (1.2) by numerical simulations.
Besides, we transform system (1.2) to simulate the cholera outbreak in Haiti. Furthermore, by Forward-
backward Sweep Method, we obtain the optimal control strategies and show the graph trajectories of
infected individuals as well as hyperinfectious and hypoinfectious vibrios with optimal control and
without optimal control.

6.1. Dynamical behaviors of the model

Following [8, 11, 24, 25, 26], we choose appropriate parameter values and simulate each of the
equilibria, respectively.

Table 2. List of parameters.

Variables Case 1 Case 2 Source
N 10, 000 10, 000 assumed
µ 0.023/year 0.023/year [24]
βh 0.00005/day 0.00011/day [24]
βH 0.0075/day 0.0075/day [8]
βL 0.00012/day 0.00012/day [8]
kH 2.86 × 103 cells/ml 1.43 × 103 cells/ml [11]
kL 2 × 106 cells/ml 106 cells/ml [26]
φ 70% 70% [24]
σ 25% 25% [24]
γ 0.5/day 0.2/day [25]
ξ 10 cells/ml/day 10 cells/ml/day [25]
χ 0.8/h 0.2/h [26]
δL 0.132/day 0.033/day [24]

Case 1: By simple computing, we obtain that R0 = 0.4335 < 1. From Theorem 3.1, we derive
that disease-free equilibrium E0(318.12, 9681.88, 0, 0, 0, 0) is locally asymptotically stable. Figure 2
shows the results of simulations using parameters from Case 1 in Table 2. The six figures plot the time
evolution of the six variables S (t),V(t), I(t),R(t), BH(t) and BL(t), respectively. In fact, we can observe
in Figure 2 that infected and recovered individuals, as well as hyperinfectious and hypoinfectious
vibrios, die out.

Case 2: Similarly, we derive that R0 = 4.5718 > 1. From Theorem 3.2, we obtain that endemic
equilibrium E∗(297.01, 5809.58, 401.57, 3491.84, 20078.04, 121685.53) is locally asymptotically
stable. Figure 3 shows the results of simulations using parameters from Case 2 in Table 2. Each figure
plots the time evolution of the corresponding variable, too. From Figure 3, we see that infected and
recovered individuals, as well as hyperinfectious and hypoinfectious vibrios, persist at the endemic
level.
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Figure 2. The graph trajectories of S (t), V(t), I(t), R(t), BH(t) and BL(t) versus t of system
(1.2) where R0 = 0.4335 < 1.

0 20 40 60 80 100

t / day

0

1000

2000

3000

4000

5000

6000

7000

S(
t)

0 100 200 300 400 500

t / day

3000

4000

5000

6000

7000

V
(t

)

0 100 200 300 400 500

t / day

0

500

1000

1500

2000
I(

t)

0 100 200 300 400 500

t / day

0

2000

4000

6000

R
(t

)

0 100 200 300 400 500

t / day

0

2

4

6

8

B
H

(t
)

×104

0 100 200 300 400 500

t / day

0

0.5

1

1.5

2

2.5

B
L
(t

)

×105

Figure 3. The graph trajectories of S (t), V(t), I(t), R(t), BH(t) and BL(t) versus t of system
(1.2) where R0 = 4.5718 > 1.

6.2. Simulations of the cholera outbreak in Haiti

The first cholera cases in Haiti started to be reported on 14 October 2010 in the department of
Artibonite from where the outbreak rapidly spread along the Artibonite river affecting several
departments. In the beginning of November 2010, the overall case fatality rate (CFR) in hospitals was
3.8%. This high CFR reflects the lack of experience of the healthcare system to deal with case
management as well as the fact that patients reached the health facilities too late [28]. In Figure 4,
weekly reported cholera cases in Haiti from 1 November 2010 to 1 May 2011 are plotted in blue line.
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To simulate this cholera outbreak, we remove the vaccinated individuals from system (1.2) and carry
out the following subsystem without vaccination:

dS (t)
dt

= µN −
(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
S (t) − µS (t),

dI(t)
dt

=

(
βhI(t) +

βH BH(t)
kH + BH(t)

+
βLBL(t)

kL + BL(t)

)
S (t) − (γ + µ)I(t),

dR(t)
dt

= γI(t) − µR(t),

dBH(t)
dt

= ξI(t) − χBH(t),

dBL(t)
dt

= χBH(t) − δLBL(t).

(6.1)

Meanwhile, considering the medical treatment and public health of Haiti, we decrease the recovery
rate of infected individuals from 0.2/day to 0.05/day. The constant of total population N is adjusted to
50000. From Figure 4, we observe that the numerical simulation of infected individuals in subsystem
(6.1) (red dashed curve) is approximately in accord with the real cholera cases in Haiti (blue line). Once
taking the vaccination control strategy, as we can see, the numerical simulation of infected individuals
in system (1.2) (green curve) decreases quickly to a lower level.

Figure 4. Cholera cases in Haiti (blue line), numerical simulations of infected individuals
in subsystem (6.1) (red dashed curve) and in system (1.2) (green curve), where the related
parameter values are the same as Case 2 in Table 2 except for the recovery rate and the total
population.

6.3. Optimal control solution

The idea exploited by Forward-Backward Sweep Method is that the initial value problem of the
state equation is solved forward in time, using an estimate for the control and costate variables, then the
costate final value problem is solved backward in time (see, for example, [12, 17, 23]). In [27], Lenhart
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and Workman employed the Forward-Backward Sweep Method combined with progressive-regressive
Runge-Kutta fourth-order schemes to get the optimal solution. Based on Lenhart and Workman’s
method, our numerical simulations are performed by using a MATLAB code. The MATLAB function
linspace creates n + 1 = 101 equally spaced nodes between 0 and 1, including 0 and 1. Here, ~x =

(x1, . . . , xn+1) and ~λ = (λ1, . . . , λn+1) are the vector approximations for the state and adjoint. The related
parameter values in systems (5.1) and (5.3) are the same as Case 1 in Table 2. A rough outline of the
algorithm is given below.

(1) Make an initial guess for ~u over the interval;

(2) Using the initial condition x(0) and the values for ~u, solve ~x forward in time according to system
(5.1). Specifically, given a step size h and an ODE x′(t) = f (t, x(t)), the approximation of x(t +h) given
x(t) is

x(t + h) ≈ x(t) +
h
6

(k1 + 2k2 + 2k3 + k4) , (6.2)

where

k1 = f (t, x(t)), k2 = f
(
t +

h
2
, x(t) +

h
2

k1

)
, k3 = f

(
t +

h
2
, x(t) +

h
2

k2

)
, k4 = f (t + h, x(t) + hk3) .

(3) Using the transversality condition λn+1 = λ(T ) = 0 and the values for ~u and ~x, solve ~λ backward
in time according to system (5.3) by a similar way as (6.2);

(4) Update ~u by entering the new ~x and ~λ values into the characterization of the optimal control
(5.4);

(5) Check convergence. If variable values in this iteration and the last iteration are negligibly close,
output the current values as solutions. If values are not close, return to Step 2.

When all steps are complete, we obtain the optimal control strategies, which can be seen in Figure
5(a). On account of medical technology and cost, each of control strategies has limitation, thus we set
u1 max = 0.8, u2 max = 0.7, u3 max = 0.6 and u4 max = 0.9. We observe that u2(t), namely, vaccination
strategy, could be reduced 82 days later from the beginning of the cholera outbreak, which saves
much cost of vaccination. Similarly, After 27 days, u4(t), namely, sanitation strategy, is not much
necessary and could be canceled gradually. In Figure 5(b)–Figure 5(d), we compare the graph
trajectories of infected individuals as well as hyperinfectious and hypoinfectious vibrios with optimal
control and without optimal control. It is clear that infected individuals, as well as hyperinfectious
and hypoinfectious vibrios, have been reduced due to the control strategies. From Figure 5, we
suggest that taking control strategies at the very beginning of cholera outbreaks can reduce the
number of infected individuals remarkably, which are also cost-effective optimal strategies.
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Figure 5. Figure 5(a) is the graph trajectories of four optimal control strategies; Figure 5(b)–
Figure 5(d) are the graph trajectories of I(t), BH(t), BL(t) with optimal control and without
optimal control.

7. Discussion

In this paper, we have considered a cholera model including hyperinfectious and hypoinfectious
vibrios, both human-to-human and environment-to-human transmissions. By a complete
mathematical analysis, the threshold dynamics of the model was established and it can be fully
determined by the basic reproduction number. If R0 < 1, the disease-free equilibrium E0 is locally and
globally asymptotically stable; if R0 > 1, the endemic equilibrium E∗ is locally and globally
asymptotically stable. Numerical simulations vividly illustrate our main results of stability analysis
for system (1.2). Besides, we simulated the cholera outbreak in Haiti. Furthermore, we obtained the
optimal solution by the Forward-Backward Sweep Method.

At the beginning of cholera epidemic, hyperinfectious vibrios freshly-shed from infected individuals
play an important role in cholera transmission, due to that they are likely to come into contact with
other individuals [7]. Therefore, the strategies of quarantine and sanitation can effectively control the
cholera epidemic. Besides, vaccination strategy is still the most efficient control strategy to prevent,
control and eradicate cholera. As for treatment strategy, it is an essential method to fight cholera and
reduce the death rate due to the disease. In contrast to the control strategies in [12, 29], Modnak or
Lemos-Paião et al. only considered a single control method, vaccination or quarantine. In a word, a
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combination with all the above strategies could yield the best control effect of cholera.
With the development of economy and society, the rate of population movement has accelerated in

recent years. In view of this, considering the heterogeneity of each individual is an important factor in
constructing more realistic models, that is, spatially heterogeneous epidemic models. The theoretical
analysis of these models may be more complicated and we leave it for further investigation.
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