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Abstract: This paper focuses on numerical approximation of the basic reproduction number R0,
which is the threshold defined by the spectral radius of the next-generation operator in epidemiology.
Generally speaking, R0 cannot be explicitly calculated for most age-structured epidemic systems. In
this paper, for a deterministic age-structured epidemic system and its stochastic version, we discretize
a linear operator produced by the infective population with a theta scheme in a finite horizon, which
transforms the abstract problem into the problem of solving the positive dominant eigenvalue of the
next-generation matrix. This leads to a corresponding threshold R0,n. Using the spectral approximation
theory, we obtain that R0,n → R0 as n → +∞. Some numerical simulations are provided to certify the
theoretical results.
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1. Introduction

Many classical SIS (Susceptible-Infective-Susceptible) and SIRS (Susceptible-Infective-
Recovered-Susceptible) models have been developed to study disease outbreaks [1–5]. Since
certain diseases (e.g., childhood diseases) are age dependent, age-structured epidemic models have
attracted the attention of many scholars [6–11]. In [6], Busenberg found that a sharp threshold (defined
by the spectral radius of a positive linear operator) exists and can determine the global behavior of
an age-structured epidemic model. In [7], Cao investigated the existence and global stability of all
equilibria for an age-structured epidemic model with imperfect vaccination and relapse. It was found

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019204


4108

that, if the threshold is less than 1, the disease-free equilibrium is globally and asymptotically stable;
if the threshold is greater than 1, the endemic equilibrium is globally stable. In reference [9], by
discretizing the multigroup model, the authors transformed a PDE (Partial Differential Equations)
system into an ODE (Ordinary Differential Equations) system, and proved that the global asymptotic
stability of each equilibrium of the discretized system is completely determined by threshold R0. The
threshold is defined as the basic reproduction number, which denotes the expected value of secondary
cases produced by infective individuals during the entire infectious period when the entire population
are susceptible [12].

As the threshold that controls disease outbreaks, R0 plays an extremely important role in assessing
disease transmission trend and in reducing disease burden. However, for most age-structured epidemic
equations such as the system in [13], the basic reproduction number, R0 =

∫ a†
0

k(σ)e−
∫ σ

0 µ(η)dη 1
γ
(1 −

e−γσ)dσ
∫
R

P̃(ω)dω, is merely a theoretical expression of the next generation operator, and is always
difficult to calculate. It is a common practice to use numerical approaches to approximate the threshold
value [10,14]. Since many widely used epidemic models do not satisfy the global Lipschitz coefficients
required for using the explicit Euler-Maruyama (EM) scheme, we propose the semi-implicit theta-
scheme [15, 16], which is known as the backward EM when θ = 1, to approximate the exact basic
reproduction number. We also estimate the approximate error of the exact basic reproduction number
and the numerical threshold.

The novelty of this paper is that we use the theta scheme to discrete the linear operator produced
by the infective population in a finite dimensional horizon, so that we can find out the spectral radius,
which is the positive dominant eigenvalue of a nonnegative irreducible matrix defined by the next-
generation operator. Subsequently, based on the spectral approximation theory [17], we obtain the
threshold that converges to the exact basic reproduction number under a relatively weak condition (i.e.,
the compactness of the next-generation operator needs to be satisfied). These results are expected to
be useful for studying infectious diseases.

The rest of this paper is organized as follows: in Section 2, the theta scheme is constructed based
on the operator theory, and the scheme yields the numerical approximation of the basic reproduction
number for a deterministic and a stochastic age-structure epidemic system. Section 3 presented several
numerical simulations to illustrate the theoretical results. Concluding remarks are given in Section 4.

2. Numerical approximation for the basic reproduction number

2.1. Theta scheme approximation for the deterministic age-structured SIRS system

In this section, we first present the age-structured SIRS epidemic model developed by [11],

( ∂
∂t + ∂

∂a )S (t, a) = −µ(a)S (t, a) − λ(a, t)S (t, a) + γ(a)R(t, a),
( ∂
∂t + ∂

∂a )I(t, a) = λ(a, t)S (t, a) − (µ(a) + ν(a) + δ(a))I(t, a),
( ∂
∂t + ∂

∂a )R(t, a) = ν(a)I(t, a) − (µ(a) + γ(a))R(t, a),
S (t, 0) = Λ, t ∈ [0,+∞), S (0, a) = S 0(a), a ∈ (0, A)
I(t, 0) = 0, t ∈ [0,+∞), I(0, a) = I0(a), a ∈ (0, A)
R(t, 0) = 0, t ∈ [0,+∞), R(0, a) = R0(a), a ∈ (0, A)

(2.1)
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where S (t, a), I(t, a) and R(t, a) denote the density of susceptible, infective and recovered individuals
of age a at time t, respectively. Define the force of infectious λ(a, t) by

λ(a, t) =

∫ A

0
β(a, %)I(%, t)d%.

The condition S (t, 0) = Λ means that the newborns are all susceptible, Λ is the recruitment rate of the
population. S 0(a), I0(a) and R0(a) ∈ L1(0, A) for ∀a ∈ [0, A]. All parameters are positive and their
meanings are shown in Table 1.

Table 1. Meanings of all parameters.

Parameters Meanings
µ(a) the natural mortality of the population
β(a, %) the age-dependent transmission coefficient
γ(a) the rate of removed individuals who lose immunity returning to the susceptible class

A the maximum age
ν(a) the natural recovery rate of the infective individuals
δ(a) the disease inducing death rate

Let us consider system (2.1) on the Banach space X := L1(0, A) × L1(0, A) × L1(0, A). Let T be a
linear operator defined by

Tϕ(a) :=


T1ϕ1(a)
T2ϕ2(a)
T3ϕ3(a)

 =


−

dϕ1(a)
da

− µ(a)ϕ1(a) − λ(a, t)ϕ1(a)

−
dϕ2(a)

da
− (µ(a) + ν(a) + δ(a))ϕ2(a)

−
dϕ3(a)

da
− (µ(a) + γ(a))ϕ3(a)


, (2.2)

ϕ(a) = (ϕ1(a), ϕ2(a), ϕ3(a))> ∈ D(T ), where the domain D(T ) is given as

D(T ) :=
{
ϕ ∈ X : ϕi is absolutely continuous on [0, A],

d
da
ϕi ∈ X and ϕ(0) = (0, 0, 0)>

}
.

The disease-free equilibrium of model (2.1) is E =
(
E0(a), 0, Er(a)

)
, where Er(a) = e−

∫ a
0 (µ(η)+γ(η))dη, and

E0(a) = γ(a)Er(a)
∫ a

0
e−

∫ a
%
µ(η)dηd% is the density of the susceptible population at age a in the disease-

free state. Then we define a nonlinear operator F : X → X by

Fϕ(a) :=


F1ϕ1(a)
F2ϕ2(a)
F3ϕ3(a)

 =


γ(a)ϕ3(a)

E0(a)
∫ A

0
β(a, %)ϕ2(%)d%

ν(a)ϕ2(a)

 . (2.3)

Let u(t) = (S (t, ·), I(t, ·).R(t, ·))>, together with (2.2) and (2.3), system (2.1) has been rewritten as the
following abstract Cauchy problem

d
dt

u(t) = Tu(t) + Fu(t), u(0) = u0 ∈ X. (2.4)
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Next, we mainly consider the second equation of (2.1). By simple calculation, the positive inverse
(−T2)−1 is defined as follows

(−T2)−1ϕ2(a) :=
∫ a

0
e−

∫ a
%

(µ(η)+ν(η)+δ(η))dηϕ2(%)d%, ϕ2 ∈ Y := L1(0, A).

Then, according to [11], we can give the next generation operator K by

Kϕ2(a) := F2(−T2)−1ϕ2(a) = E0(a)
∫ A

0
β(a, %)

∫ %

0
e−

∫ %
ρ

(µ(η)+ν(η)+δ(η))dηϕ2(ρ)dρd%.

Based on the definition in [12], the basic reproduction number R0 is defined as r(K), where r(K) is the
spectral radius of the operator K .

Since the form of r(K) is abstract, we can not calculate R0 explicitly. To avoid misunderstanding,
we let B = T2,G = F2, ϕ2 = ~ ∈ D(B),

D(B) :=
{
~ ∈ Y : ~ is absolutely continuous on [0, A],

d
da
~ ∈ Y and ~(0) = 0

}
.

Hence, we discretize the following system

d
dt

I(t) = BI(t) + GI(t), I(0) = I0 ∈ Y (2.5)

into a system of ordinary differential equations in Yn := Rn, n ∈ N. Let ∆a = A/n, ak := k∆a, βk j :=
β(ak, a j), µk := µ(ak), νk := ν(ak) and δk := δ(ak), k = 0, 1, . . . , n, j = 1, 2, . . . , n. Then the abstract
Cauchy system (2.5) is discretized as

d
dt

I(t) = BnI(t) + GnI(t), I(0) = I0 ∈ Yn, (2.6)

where I(t) and I0 are n−column vectors, Bn and Gn are n−square matrices with the following form

Bn :=


−θM1 −

1
∆a 0 · · · 0

1
∆a − (1 − θ)M1 −θM2 −

1
∆a · · · 0

...
. . .

. . .
...

0 · · · 1
∆a − (1 − θ)Mn−1 −θMn −

1
∆a


n×n

,

Gn :=


N0[(1 − θ)β01 + θβ11]∆a N0[(1 − θ)β02 + θβ12]∆a · · · N0[(1 − θ)β0n + θβ1n]∆a
N1[(1 − θ)β11 + θβ21]∆a N1[(1 − θ)β12 + θβ22]∆a · · · N0[(1 − θ)β1n + θβ2n]∆a

...
...

. . .
...

Nn−1[(1 − θ)βn−1,1 + θβn1]∆a Nn−1[(1 − θ)βn−1,2 + θβn2]∆a · · · Nn−1[(1 − θ)βn−1,n + θβnn]∆a

 ,
where Mi = µi +νi +δi(i = 1, · · · , n), Ni = (1−θ)E0

i +θE0
i+1(i = 0, · · · , n−1). The additional parameter

θ ∈ [0, 1] allows us to control the implicitness of the numerical scheme [16], for technical reasons we
always require θ ≥ 1

2 . Here we denote the next generation matrixKn := Gn(−Bn)−1, R0,n := r(Kn) is the
threshold corresponding to R0, and R0,n can be analyzed in a finite horizon. Since −Bn is a nonsingular
M-matrix, and (−Bn)−1 is positive. Hence, from the Perron-Frobenius theorem [18], we know that
r(Kn) is the positive dominant eigenvalue with algebraic multiplicity 1.
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We give two bounded linear operators P : Y → Yn and J : Yn → Y as follows(Pn~)k := 1
∆a

∫ ak+1

ak
~(a)da, k = 0, 1, · · · , n − 1, ~ ∈ Y,

(Jnψ)(a) :=
∑n−1

k=0 ψkχ(ak ,ak+1](a), ψ = (ψ1, ψ2, · · · , ψn)> ∈ Yn,
(2.7)

where k is the kth entry of a vector, > is the transpose of matrix ψ, and χ(ak ,ak+1](a) is the indicator
function which implies that

χ(ak ,ak+1](a) =

1, a ∈ (ak, ak+1],
0, a < (ak, ak+1].

From Section 4.1 in [19], we know that for all n ∈ N, ‖Pn‖ ≤ 1 and ‖Jn‖ ≤ 1. We denote ‖ · ‖Yn is the
norm in Yn, and

‖ψ‖Yn := ∆a
n−1∑
k=0

|ψk|, ψ = (ψ1, ψ2, · · · , ψn)> ∈ Yn. (2.8)

Next, we apply the spectral approximation theory to present the convergence theorem of the basic
reproduction number.

Theorem 2.1. Assuming that K is compact, if for any ~ ∈ Y, lim
n→+∞

‖JnKnPn~ − K~‖Y = 0, then
R0,n → R0 as n→ +∞, preserving algebraic multiplicity 1.

Proof. It is easy to see K is strictly positive and irreducible, then from Theorem 3 in [20] and the
Krein-Rutman theorem in [21], yield that R0 = r(K) > 0 is the maximum eigenvalue of operator K .
By a simple calculation, the inverse matrix of −Bn is shown as follows

(−Bn)−1 =



1
θM1+ 1

∆a
0 · · · 0

(−1)3((1−θ)M1−
1

∆a )
(θM1+ 1

∆a )(θM2+ 1
∆a )

1
θM2+ 1

∆a
· · · 0

...
...

. . .
...

(−1)n+1 ∏n−1
i=1 ((1−θ)Mi−

1
∆a )∏n

k=1(θMk+ 1
∆a )

∏n−1
i=2 ( 1

∆a−(1−θ)Mi)∏n
k=2(θMk+ 1

∆a )
· · · 1

θMn+ 1
∆a


, (2.9)

then we have

‖Knψ‖Yn = ‖Gn(−Bn)−1ψ‖Yn ≤ ∆a
n−1∑
k=0

Ē0β̄∆a
θ(µ + ν + δ)

n−1∑
k=0

|ψk| =
AĒ0β̄

θ(µ + ν + δ)
‖ψ‖Yn , θ ∈ [

1
2
, 1],

where Ē0 and β̄ denote the upper bounds of E0 and β, respectively. µ, ν and δ denote the lower bounds
of µ, ν and δ, respectively. They are both finite positive.

In addition, we give the following assumption to make that K is compact.

Assumption 2.1. For any h > 0,

lim
h→0

∫ A

0
|E0(a + h)β(a + h, %) − E0(a)β(a, %)|da = 0 uniformly for % ∈ R, (2.10)

where E0β is extended by E0(a)β(a, %) = 0 for any a, % ∈ (−∞, 0) ∪ (A,∞).
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The above assumption implies that the operator K keep the compactness [11, Assumption 4.4]. In
order to prove JnKnPn converges to K point by point, we provide the following lemma.

Lemma 2.1. For all ~ ∈ Y, lim
n→+∞

‖JnKnPn~ − K~‖Y = 0.

Proof. For any ~ ∈ Y , we obtain

‖JnKnPn~ − K~‖Y = ‖JnGn(−Bn)−1Pn~ −G(−B)−1~‖Y

≤ ‖JnGn(−Bn)−1Pn~ − JnGnPn(−B)−1~‖Y + ‖JnGnPn(−B)−1~ −G(−B)−1~‖Y

≤ ‖Jn‖ ‖Gn‖ ‖(−Bn)−1Pn~ − Pn(−B)−1~‖Yn + ‖JnGnPn(−B)−1~ −G(−B)−1~‖Y

≤ L‖(−Bn)−1Pn~ − Pn(−B)−1~‖Yn + ‖JnGnPn(−B)−1~ −G(−B)−1~‖Y .

(2.11)

Since ‖Jn‖ ≤ 1, and for any n ∈ N, ‖Gn‖ ≤ AĒ0β̄, we have L = ‖Jn‖ ‖Gn‖ = AĒ0β̄. Next we estimate
the first term in the right-hand of (2.11), then

‖(−Bn)−1Pn~ − (−B)−1Pn~‖Xn =‖(−Bn)−1Pn(−B)(−B)−1~ − (−Bn)−1(−Bn)Pn(−B)−1~‖Yn

≤ ‖(−Bn)−1‖ ‖Pn(−B)(−B)−1~ − (−Bn)Pn(−B)−1~‖Yn

≤ A‖Pn(−B)φ − (−Bn)Pnφ‖Yn ,

where φ := (−B)−1~ ∈ D(B), and for any ψ = (ψ1, ψ2, · · · , ψn)> ∈ Yn,

‖(−Bn)−1ψ‖Yn ≤ ∆a
n∑

k=1

1
θ(µ + ν + δ) + 1

∆a

n−1∑
k=0

|ψk| ≤ A‖ψ‖Yn ,

namely, ‖(−Bn)−1‖ ≤ A. From (2.7), we obtain

‖(−Bn)−1Pn~ − (−B)−1Pn~‖Yn

≤A‖Pn(−B)φ − (−Bn)Pnφ‖Yn

≤A∆a
n−1∑
k=0

∣∣∣∣Pn(−B)φ − (−Bn)Pnφ
∣∣∣∣

≤A∆a
n−1∑
k=0

∣∣∣∣ 1
∆a

∫ ak+1

ak

( d
da
φ(a) + (µ(a) + ν(a) + δ(a))φ(a)

)
da −

(1 − θ)(µ(k) + ν(k) + δ(k))
∆a

∫ ak

ak−1

φ(a)da

−

1
∆a

∫ ak+1

ak
φ(a)da − 1

∆a

∫ ak

ak−1
φ(a)da

∆a
−
θ(µ(k + 1) + ν(k + 1) + δ(k + 1))

∆a

∫ ak+1

ak

φ(a)da
∣∣∣∣,
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where a0 = a−1 = 0. By the mean value theorem, we have

‖(−Bn)−1Pn~ − (−B)−1Pn~‖Yn

≤A∆a
n−1∑
k=0

∣∣∣∣ d
da
φ(ηk+1) + (µ(ηk+1) + ν(ηk+1) + δ(ηk+1))φ(ηk+1) − (1 − θ)(µ(k) + ν(k) + δ(k))φ(ρk)

−
1

∆a
(φ(ξk+1) − φ(ξk)) − θ(µ(k + 1) + ν(k + 1) + δ(k + 1))φ(ζk+1)

∣∣∣∣
≤A∆a

n−1∑
k=0

(∣∣∣∣ d
da
φ(ηk+1) −

d
da
φ(εk+1)

∣∣∣∣ +
∣∣∣∣(µ(ηk+1) + ν(ηk+1) + δ(ηk+1))φ(ηk+1) − (µ(k) + ν(k) + δ(k))φ(%k)

∣∣∣∣)
+

∣∣∣∣θ(µ(k) + ν(k) + δ(k))φ(ρk) − θ(µ(k + 1) + ν(k + 1) + δ(k + 1))φ(ζk+1)
∣∣∣∣

≤A∆a
n−1∑
k=0

[
ω(φ′, 2∆a) + ω(µ + ν + δ,∆a)ω(φ,∆a) + ω(θ(µ + ν + δ), 2∆a)ω(φ, 2∆a)

]
,

where ω( f , r) denotes the modulus of continuity. We know that ω( f , r) is defined by sup|x−y|≤r | f (x) −
f (y)| with the following property

ω( f , r)→ 0, as r → 0.

Hence, ‖(−Bn)−1Pn~−(−B)−1Pn~‖Yn → 0 holds. Then we consider the second term of (2.11) as follows

‖JnGnPn(−B)−1~ −G(−B)−1~‖Y = ‖JnGnPnφ −Gφ‖Y

=

n−1∑
k=0

∫ ak+1

ak

∣∣∣∣ n∑
j=1

((1 − θ)E0
k + θE0

k+1)((1 − θ)βk j + θβk+1, j)
∫ j

j−1
φ(%)d% −

∫ A

0
E0(a)β(a, %)φ(%)d%

∣∣∣∣da

=

n−1∑
k=0

∫ ak+1

ak

∣∣∣∣ n∑
j=1

((1 − θ)E0
k + θE0

k+1)((1 − θ)βk j + θβk+1, j)
∫ j

j−1
φ(%)d%

−

n∑
j=1

∫ j

j−1
[(1 − θ)E0 + θE0][(1 − θ)β + θβ]φ(%)d%

∣∣∣∣da

≤

n−1∑
k=0

∫ ak+1

ak

n∑
j=1

∫ j

j−1

∣∣∣∣(1 − θ)2E0
kβk j + (1 − θ)θE0

kβk+1, j + θ(1 − θ)E0
k+1βk j + θ2E0

k+1βk+1, j

− (1 − θ)2E0β + (1 − θ)θE0β + θ(1 − θ)E0β + θ2E0β
∣∣∣∣ ∣∣∣∣φ(%)

∣∣∣∣d%da

≤

n−1∑
k=0

∫ ak+1

ak

n∑
j=1

∫ j

j−1

∣∣∣∣(1 − θ)2ω(E0,∆a)ω(β,∆a) + (1 − θ)θω(E0,∆a)ω(β,∆a)

+ θ(1 − θ)ω(E0,∆a)ω(β,∆a) + θ2ω(E0,∆a)ω(β,∆a)
∣∣∣∣ ∣∣∣∣φ(%)

∣∣∣∣d%da

≤Aω(E0,∆a)ω(β,∆a)‖φ‖Y → 0 as n→ +∞,

(2.12)

where ω(E0,∆a)→ 0(∆a→ 0) and ω(β,∆a)→ 0(∆a→ 0), respectively. Hence,

‖JnGnPn(−B)−1~ −G(−B)−1~‖Y → 0.
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Combine the above discussion, we have lim
n→+∞

‖JnKnPn~ − K~‖Y = 0.

By virtue of Assumption 2.1 and Lemma 2.1, we know that Theorem 2.1 holds. Namely, R0,n → R0

as n→ +∞, preserving algebraic multiplicity 1.

2.2. Theta scheme approximation for the stochastic age-structured SIRS system

In this section, we seem the natural mortality µ(a) as a random variable µ(a) − σdBt
dt , where Bt is a

standard Brownian motion, σ is the intensity of noise perturbation. Then, replace µ(a) with µ(a)−σdBt
dt

in system (2.1), we can obtain a stochastic age-structured SIRS model

( ∂
∂t + ∂

∂a )S (t, a) = −µ(a)S (t, a) − λ(a, t)S (t, a) + γ(a)R(t, a) + σS (t, a)dBt
dt ,

( ∂
∂t + ∂

∂a )I(t, a) = λ(a, t)S (t, a) − (µ(a) + ν(a) + δ(a))I(t, a) + σI(t, a) dBt
dt ,

( ∂
∂t + ∂

∂a )R(t, a) = ν(a)I(t, a) − (µ(a) + γ(a))R(t, a),
S (t, 0) = Λ, t ∈ [0,+∞), S (0, a) = S 0(a), a ∈ (0, A)
I(t, 0) = 0, t ∈ [0,+∞), I(0, a) = I0(a), a ∈ (0, A)
R(t, 0) = 0, t ∈ [0,+∞), R(0, a) = R0(a), a ∈ (0, A).

(2.13)

Next, we analysis the stochastic basic reproduction number. In the same way, we take the infective
population of system (2.13) into account, and substitute S (t, a) = E0(a) into it, we derive( ∂

∂t + ∂
∂a )I(t, a) = E0(a)

∫ A

0
β(a, %)I(t, a)d% − (µ(a) + ν(a) + δ(a))I(t, a) + σ(a)I(t, a) dBt

dt ,

I(t, 0) = 0, t ∈ [0,+∞), I(0, a) = I0(a), a ∈ (0, A).
(2.14)

According to the general definition of the stochastic basic reproduction number, the following two
operators are defined on Y := L1(0, A)A~(a) = −

d
da
~(a) − (µ(a) + ν(a) + δ(a))~(a),

F ~(a) = E0(a)(1 − σ2

2 )
∫ A

0
β(a, %)~(%)d%, 1 − σ2

2 > 0,
(2.15)

and

D(A) :=
{
~ ∈ Y : ~ is absolutely continuous on [0, A],

d
da
~ ∈ Y and ~(0) = 0

}
.

UsingA and F to rewrite (2.14) as

d
dt

I(t) = AI(t) + F I(t), I(0) = I0. (2.16)

Then we have
(−A)−1~(a) :=

∫ a

0
e−

∫ a
%

(µ(η)+ν(η)+δ(η))dη~(%)d%, ~ ∈ Y.

The next generation operator T is shown by

T ~(a) := F (−A)−1~(a) = E0(a)(1 −
σ2

2
)
∫ A

0
β(a, %)

∫ %

0
e−

∫ %
ρ

(µ(η)+ν(η)+δ(η))dη~(ρ)dρd%, ~ ∈ Y.
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Samely, we define r(T ) as the basic reproduction number Rs
0 of the stochastic system (2.13), and

Rs
0,n := r(T ) is the threshold corresponding to Rs

0.
Next, we discretize (2.16) in Yn := Rn, n ∈ N. Then the system (2.16) is discretized into the

following equation
d
dt

I(t) = AnI(t) + FnI(t), I(0) = I0 ∈ Yn, (2.17)

whereAn is defined as the same as Bn(An := Bn), and

Fn :=


Q0[(1 − θ)β01 + θβ11]∆a · · · Q0[(1 − θ)β0n + θβ1n]∆a

...
. . .

...

Qn−1[(1 − θ)βn−1,1 + θβn1]∆a · · · Qn−1[(1 − θ)βn−1,n + θβnn]∆a


where θ ∈ [

1
2
, 1], Qi = (1 −

σ2

2
)
[
(1 − θ)E0

i + θE0
i+1

]
(i = 0, 1, · · · , n − 1).

Theorem 2.2. From Theorem 2.1, we know that T is irreducible, compact and strictly positive. If

lim
∆→0
E‖JnTnPn~ − T ~‖Y = 0

for any ~ ∈ Y, then

Rs
0,n → R

s
0 as ∆→ 0, preserving algebraic multiplicity 1,

where Jn and Pn are defined as (2.7).

Proof. Obviously, Rs
0 = r(T ) > 0, and r(T ) is the spectral radius of operator T . We know that

(−An)−1 = (−Bn)−1, and (−Bn)−1 is given by (2.9). Then we have

‖Tnψ‖Yn =‖Fn(−An)−1ψ‖Yn ≤ ∆a
n−1∑
k=0

Ē0(1 −
σ2

2
)β̄∆a

θ(µ + ν + δ)

n−1∑
k=0

|ψk|

=

AĒ0(1 −
σ2

2
)β̄

θ(µ + ν + δ)
‖ψ‖Yn , θ ∈ [

1
2
, 1], 1 −

σ2

2
> 0,

where E0 is the lower bound of E0.
Next, we verify that lim

∆→0
‖JnTnPn~ − T ~‖Y = 0. For any ~ ∈ Y , we have

‖JnTnPn~ − T ~‖Y

= ‖JnFn(−An)−1Pn~ − F (−A)−1~‖Y

≤ ‖JnFn(−An)−1Pn~ − JnFnPn(−A)−1~‖Y + ‖JnFnPn(−A)−1~ − F (−A)−1~‖Y

≤ ‖Jn‖ ‖Fn‖ ‖(−An)−1Pn~ − Pn(−A)−1~‖Yn + ‖JnFnPn(−A)−1~ − F (−A)−1~‖Y

≤ AĒ0β̄‖(−An)−1Pn~ − Pn(−A)−1~‖Yn + ‖JnFnPn(−A)−1~ − F (−A)−1~‖Y ,

(2.18)

where the first term of (2.18)

‖(−An)−1Pn~ − Pn(−A)−1~‖Yn = ‖(−Bn)−1Pn~ − Pn(−B)−1~‖Yn
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is similar to the first term in the right-hand of (2.11), so it is easy to see that

‖(−An)−1Pn~ − Pn(−A)−1~‖Yn → 0.

Next we estimated the second term of (2.18). Let $ := (−A)−1~ ∈ D(A), we obtain

‖JnFnPn(−A)−1~ − F (−A)−1~‖Y = ‖JnFnPn$ − F$‖Y

=

n−1∑
k=0

∫ ak+1

ak

∣∣∣∣ n∑
j=1

[
(1 − θ)E0

i + θE0
i+1

]
(1 −

σ2

2
)
∫ j

j−1
$(%)d% −

∫ A

0
E0(a)(1 −

σ2

2
)β(a, %)$(%)d%

∣∣∣∣da

=

n−1∑
k=0

∫ ak+1

ak

∣∣∣∣ n∑
j=1

((1 − θ)E0
k + θE0

k+1)(1 −
σ2

2
)((1 − θ)βk j + θβk+1, j)

∫ j

j−1
$(%)d%

−

n∑
j=1

∫ j

j−1
((1 − θ)E0 + θE0)(1 −

σ2

2
)((1 − θ)β + θβ)$(%)d%

∣∣∣∣da

≤(1 −
σ2

2
)

n−1∑
k=0

∫ ak+1

ak

n∑
j=1

∫ j

j−1

∣∣∣∣(1 − θ)2E0
kβk j + (1 − θ)θE0

kβk+1, j + θ(1 − θ)E0
k+1βk j + θ2E0

k+1βk+1, j

− (1 − θ)2E0β + (1 − θ)θE0β + θ(1 − θ)E0β + θ2E0β
∣∣∣∣ ∣∣∣∣φ(%)

∣∣∣∣d%da

≤(1 −
σ2

2
)

n−1∑
k=0

∫ ak+1

ak

n∑
j=1

∫ j

j−1

∣∣∣∣(1 − θ)2ω(E0,∆a)ω(β,∆a) + (1 − θ)θω(E0,∆a)ω(β,∆a)

+ θ(1 − θ)ω(E0,∆a)ω(β,∆a) + θ2ω(E0,∆a)ω(β,∆a)
∣∣∣∣ ∣∣∣∣φ(%)

∣∣∣∣d%da

≤A(1 −
σ2

2
)ω(E0,∆a)ω(β,∆a)‖φ‖Y → 0 as n→ +∞.

(2.19)

Thus, ‖JnFnPn(−A)−1~ − F (−A)−1~‖Y → 0 holds. Hence, we obtain the desired assertion.

In conclusion, Theorem 2.2 holds, which implies that Rs
0,n → R

s
0 as ∆ → 0, preserving algebraic

multiplicity 1.

Remark 2.1. Compared with [10], our paper has two advantages:

• [10] employed a backward Euler method to approximate R0, and obtain the numerical threshold
Rn

0 → R0 as n → ∞. In present paper, we propose a θ method is know as the backward EM
when θ = 1, and the explicit Euler-Maruyama(EM) scheme when θ = 0. The θ scheme has the
parameter θ, and different θ values give different convergence rates. Therefore, we can use the θ
method to find the optimal convergence rate. And the backward Euler method is a special case
when θ = 1 of our method. Our work provides an extension of [10].
• A deterministic age-structured epidemic model is discussed in [10], but in present paper, we

studied not only the deterministic system but also the stochastic age-structured epidemic model,
and the stochastic system is more practical.
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3. Numerical simulations

In this section, numerical examples are shown to verify our Theorems. In what follows, let A = 100,
µ(a) = 0.2(1 + a3

103 ) ( [13], see Fig. 1 (a)), γ(a) = γ = 0.25, ν(a) = ν = 0.1 and δ(a) = δ = 0.05 (see

[22]). Thus, E0(a) = γ(a)Er(a)
∫ a

0
e−

∫ a
%
µ(η)dηd% = 0.25e(−0.45a− a4

2×104 )
∫ a

0
e%( %3

2×104 +0.2)−a( a3

2×104 +0.2)d%. Based
on numerical integration for E0(a), we obtain Fig. 1 (b).
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(a) The natural mortality µ(a)
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(b) The density of the susceptible population of age a in a
disease-free state

Figure 1. Parameters used in the numerical example.

In this example, we do not specify what kinds of influenza-like disease it is, and the value of R0

is in the range of 2-3 [23]. We assumption that the disease is more likely to transmission between
individuals with similar ages [10], then we let β(a, %) = kJ(a− %), where k = 200 and J(x) = 0.6(−x2 +

1002)× 10−6 + 0.001 is a normalized distance function. Thus, we can easily verify that Assumption 2.1
is true. Hence, Theorem 2.1 and 2.2 hold, which implies that R0,n → R0(Rs

0,n → R
s
0) as n→ +∞.

3.1. Numerical approximation of R0,n for the deterministic system

Let θ = 0.5, and choose R0,1000 ≈ 2.57673470573749 =: R∗ as a reference value for R0. From Fig.
2 (a), we see that the threshold R0,n for the discretized system (2.6) respect to the reference value R∗ as
n increases. Further more, the error R∗ − R0,n converges to zero as n increases (see Fig. 2 (b)). In Fig.
3, we show the numerical simulations of R0,n at θ = 0.5, θ = 0.7 and θ = 0.9, respectively. It is obvious
to see that the value of θ has a certain impact on the convergence rate of R0,n. The bigger value of θ, the
faster rate of convergence. This implies that the backward EM method would make the convergence
faster. Our paper verified the work of [10].
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Figure 2. Logarithmic plots of the threshold R0,n (a) and the error R∗ − R0,n with respect to
the reference value R∗ = 2.57673470573749 (b).
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Figure 3. Computer simulations of the threshold R0,n with different values of θ.

3.2. Numerical approximation of Rs
0,n for the stochastic system

In this example, let σ = 0.1, and we also choose Rs
0,1000 ≈ 2.56385103220880 =: R∗s as a reference

for Rs
0. Similarly, the threshold value Rs

0,n for the discretized system (2.17) respect to the reference
value R∗s (see Fig. 4 (a)) and the error R∗s − R

s
0,n converges to zero as n increases (see Fig. 4 (b)). Fig.

5 (a) give a comparation for Rs
0,n at σ = 0.1, σ = 0.5 and σ = 0.8, respectively. We can see that the

intensity of environmental disturbance has a great influence on the threshold Rs
0,n. The higher value of

σ, the smaller value of Rs
0,n. This means that the intensity of environmental fluctuation can reduce the

threshold of disease outbreak, which may be a better measure to control disease outbreak. We show a
3D simulation of Rs

0,n corresponding to θ ∈ [0.5, 1] and σ ∈ [0, 1] in Fig. 5 (b), the effect of σ on the
threshold Rs

0,n with the change of θ is further explained.
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Figure 4. Logarithmic plots of the threshold Rs
0,n (a) and the error R∗s − R

s
0,n with respect to

the reference value R∗s = 2.56385103220880 (b).
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Figure 5. Computer simulations of the threshold Rs
0,n with different values of σ (a) and the

3D simulation of Rs
0,n corresponding to θ ∈ [0.5, 1] and σ ∈ [0, 1] (b).

4. Concluding remarks

For the age-structure epidemic model, the basic reproduction number is defined as an integral and
difficult to be estimated. Hence, it is necessary to approximate it using numerical methods. This pa-
per investigates the numerical approximation of two basic reproduction numbers for deterministic and
stochastic age-structured epidemic systems, respectively. We use the theta scheme to discrete the infec-
tive population in a finite space, so that the two abstract basic reproduction numbers can be calculated
explicitly. Afterward, using the spectral approximation theory, we obtain the numerical threshold that
converges to the exact value as n increases. We also estimate the approximation error between the ex-
act basic reproduction number and its numerical approximation. Finally, several numerical simulations
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are shown to illustrate our theoretical results. The numerical results show that, for the deterministic
system, the convergence rate of R0,n is faster when θ is bigger under the condition of θ ∈ [1

2 , 1]. For
θ ∈ [0, 1

2 ], the proof of the pointwise convergence in Lemma 2.1 remains challenging, and is warranted
to be investigated in a future study. For the stochastic system, the appropriate noise intensity can reduce
the threshold of disease outbreak.
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