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Abstract: We study the existence and asymptotic profile of endemic equilibrium (EE) of a diffusive
SIS epidemic model with saturated incidence rate. By introducing the basic reproduction number
R0, the existence of EE is established when R0 > 1. The effects of diffusion rates and the saturated
coefficient on asymptotic profile of EE are investigated. Our results indicate that when the diffusion rate
of susceptible individuals is small and the total population N is below a certain level, or the saturated
coefficient is large, the infected population dies out, while the two populations persist if at least one
of the diffusion rates of the susceptible and infected individuals is large. Finally, we illustrate the
influences of the population diffusion and the saturation coefficient on this model numerically.
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1. Introduction

To understand the dynamics of disease transmission in a spatially heterogeneous environment, an
SIS epidemic reaction-diffusion model was proposed in [1], satisfying the parabolic system

S̄ t = dS ∆S̄ − β(x)S̄ Ī
S̄ +Ī + γ(x)Ī, x ∈ Ω, t > 0,

Īt = dI∆Ī +
β(x)S̄ Ī

S̄ +Ī − γ(x)Ī, x ∈ Ω, t > 0,
∂S̄
∂ν

= ∂Ī
∂ν

= 0, x ∈ ∂Ω, t > 0,

(1.1)
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where S̄ (x, t) and Ī(x, t) denote the densities of susceptible and infected individuals at position x and
time t, respectively; the positive constants dS and dI are the diffusion rates of the susceptible and
infected individuals; the habitat Ω is assumed to be a bounded domain in Rn(n ≥ 1) with smooth
boundary ∂Ω; the positive Hölder-continuous functions β(x) and γ(x) on Ω̄ represent the rates of disease
transmission and disease recovery at x, respectively; the homogeneous Neumann boundary condition
means that there is no flux across the boundary ∂Ω, and ∂/∂ν is the outward normal derivative to ∂Ω.

In [1], under the assumption that the total population keep constant, the existence and uniqueness
of the endemic equilibrium (EE) were achieved in terms of the basic reproduction number R0.
Furthermore, the asymptotic profile of EE was obtained for small diffusion rate of susceptible
individuals. To further understand the impact of large and small diffusion rates on the persistence and
extinction of the disease, the global stability and asymptotic behavior of EE for system (1.1) were
investigated in [20–22]. In [23], Peng and Zhao considered the diffusive SIS model with spatially
heterogeneous and temporally periodic disease transmission and recovery rates. The authors
in [4, 5, 11] studied the effects of diffusion and advection for a spatial SIS model in heterogeneous
environments. Their results suggest that advection can help speed up the elimination of disease. Other
related works on (1.1) can be found in [8, 9, 13–15].

The aforementioned studies adopt the standard incidence rate βS̄ Ī/(S̄ + Ī). Another most frequently
used incidence rate is the bilinear incidence rate βS̄ Ī (see [2,10]), which gives rise to the dependence of
the basic reproduction number on the total population. For the diffusive SIS epidemic model with the
bilinear incidence rate, Deng and Wu discussed the existence and the global attractivity of the EE in [7].
In the continued work [25], Wu and Zou explored the asymptotic profile of EE for large and small
diffusion rates of the susceptible and infected individuals. They observed some new interesting profiles
for such model. In contrast, Capasso and Serio in [6] pointed out that the number of effective contacts
between infective individuals and susceptible individuals cannot always increase linearly with I; the
bilinear incidence rate might be true for a small number of infectives, but unrealistic for large I. They
introduced a saturated incidence rate g(Ī)S̄ into epidemic models based on the study of the cholera
epidemic spread in Bari of Italy, where

g(Ī) =
βĪ

1 + mĪ
.

Such an incident rate seems more realistic in certain situations because the number of effective contacts
between infective individuals and susceptible individuals may saturate at high infective levels due to
crowding of the infective individuals or due to the protection measures by the susceptible individuals.
Here βĪ measures the infection force of the disease, 1/(1 + mĪ) measures the inhibition effect from the
behavioral change of the susceptible individuals when their number increases or from the crowding
effect of the infective individuals, m > 0 is the saturation coefficient. This type of incidence rate has
been adopted by many authors [12, 19, 26, 27].

However, to our best knowledge, little work has been devoted to the study of the diffusive epidemic
model with saturated incidence rate. Inspired by the above research, we here consider an SIS epidemic
reaction-diffusion model with saturated incidence rate. We are interested in the existence of the EE
and particularly the effects of the diffusion rates and the saturated coefficient on asymptotic profile
of EE. In contrast to [1] and [25], for some special case, such as the rate of disease transmission β

being a constant and Ω being a high-risk domain, our results indicate that it is not enough to just
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restrict the movement of the susceptible individuals to completely eradicate the disease in the whole
habitat; however, if the inhibition effect is large, the infectious disease will extinct eventually (see
Theorem 1.3 and Corollary 1.5). In general, we conclude that the infective individuals cannot persist
if the saturated coefficient is large with fixed diffusion rates of the susceptible and infected individuals
(see Theorem 1.9).

1.1. The model

In this paper, we are concerned with the following SIS epidemic reaction-diffusion model with
saturated incidence rate: 

S̄ t = dS ∆S̄ − β(x)S̄ Ī
1+mĪ + γ(x)Ī, x ∈ Ω, t > 0,

Īt = dI∆Ī +
β(x)S̄ Ī
1+mĪ − γ(x)Ī, x ∈ Ω, t > 0,

∂S̄
∂ν

= ∂Ī
∂ν

= 0, x ∈ ∂Ω, t > 0,

(1.2)

where the parameters are described as before. We assume that the initial data satisfies the following
hypothesis.

(H) S̄ (x, 0), Ī(x, 0) ≥ 0 are nonnegative continuous functions in Ω̄, and the number of initial
infectious individuals in the region is positive, i.e,

∫
Ω

Ī(x, 0)dx > 0.

By a similar argument as in [1], it is easy to show that system (1.2) admits a unique global classical
solution (S̄ (x, t), Ī(x, t)). Let

N :=
∫

Ω

(S̄ (x, 0) + Ī(x, 0))dx > 0

be the total number of individuals in Ω at t = 0. Adding the two equations in (1.2) and integrating over
the domain Ω, we get

∂

∂t

∫
Ω

(S̄ + Ī)dx = 0, t > 0.

Hence, the total population size is a constant, i.e.,∫
Ω

(S̄ (x, t) + Ī(x, t))dx = N, t ≥ 0. (1.3)

In the current paper, we mainly focus on the nonnegative equilibrium of problem (1.2), which is the
nonnegative solution of the following semilinear elliptic system:

dS ∆S − β(x)S I
1+mI + γ(x)I = 0, x ∈ Ω,

dI∆I +
β(x)S I
1+mI − γ(x)I = 0, x ∈ Ω,

∂S
∂ν

= ∂I
∂ν

= 0, x ∈ ∂Ω.

(1.4)

Here S (x) and I(x) denote the densities of susceptible and infected individuals at x ∈ Ω̄, respectively.
In view of (1.3), we have to impose the additional hypothesis:∫

Ω

(S (x) + I(x))dx = N. (1.5)

Obviously, system (1.4)–(1.5) always has a solution E0 = (N/|Ω|, 0), which is the unique disease-
free equilibrium (DFE). On the other hand, a nonnegative solution E1 = (S , I) of (1.4)–(1.5) with
I(x) ≥ 0,. 0 is called an endemic equilibrium (EE) of (1.4)–(1.5).
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1.2. Statements of the main results

Similar to [1, 7], let us define the basic reproduction number R0 for (1.2) as follows:

R0 := sup

 N
∫

Ω
βϕ2dx

|Ω|
∫

Ω
(dI |∇ϕ|2 + γϕ2)dx

: ϕ ∈ H1(Ω) and ϕ , 0

 ,
where H1(Ω) = {u : u ∈ L2(Ω),Du ∈ L2(Ω)}. Denote the high-risk set and low-risk set respectively by

Ω+ :=
{

x ∈ Ω :
N
|Ω|

β(x) > γ(x)
}

and

Ω− :=
{

x ∈ Ω :
N
|Ω|

β(x) < γ(x)
}
.

We say the domain Ω is a high-risk domain if N
|Ω|

∫
Ω
β(x)dx ≥

∫
Ω
γ(x)dx and it is a low-risk domain if

N
|Ω|

∫
Ω
β(x)dx <

∫
Ω
γ(x)dx.

We begin with some properties of R0 which is similar to Lemmas 2.2 and 2.3 in [1].

Proposition 1.1. The basic reproduction number R0 has the following properties.

(i) R0 is positive decreasing function of dI > 0;

(ii) R0 →
N
|Ω|

max
x∈Ω̄

β(x)
γ(x) as dI → 0+, and R0 →

N
|Ω|

∫
Ω
β(x)dx∫

Ω
γ(x)dx

as dI → ∞;

(iii) if Ω is a high-risk domain, then R0 > 1 for dI > 0;

(iv) if Ω is a low-risk domain with nonempty Ω+, then there exists d∗I > 0 such that R0 = 1 when dI = d∗I ,
R0 > 1 when dI < d∗I , and R0 < 1 when dI > d∗I ;

(v) R0 > 1 implies N
|Ω|
> min

x∈Ω̄

γ(x)
β(x) .

The first goal of this paper is to establish the existence of EE.

Theorem 1.2. The following statements hold.

(i) If dS ≥ dI , there exists a unique EE when R0 > 1 and EE does not exist when R0 ≤ 1;

(ii) if dS < dI , there exists an EE when R0 > 1 and EE does not exist when R0 ≤ dS /dI .

Theorem 1.2(i) indicates that R0 = 1 is the critical value for the existence of EE when dS ≥ dI .
However, if dS < dI , we do not know whether an EE exists or not in the case of R0 ∈ (dS /dI , 1).

A combination of Proposition 1.1 and Theorem 1.2 implies that the EE always exists when Ω is a
high-risk domain (see Figure 1(a)) or Ω is a low-risk domain with nonempty Ω+ and 0 < dI < d∗I (see
Figure 1(b)), where d∗I > 0 is uniquely determined in Proposition 1.1(iv).

The second goal of this paper is to investigate the effects of diffusion rates and saturation coefficient
on asymptotic profiles of the EE when it exists. Here we consider the following three cases: (i) small
diffusion, (ii) large diffusion, (iii) large saturation.

The following theorem presents the asymptotic profile of EE when dS is sufficiently small or large.

Theorem 1.3. Let dI and m be fixed. Assume R0 > 1 and (S (x), I(x)) is an EE of (1.2). Then the
following statements hold.
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(a) (b)

Figure 1. The existence of the EE in dI−dS plane. (a) High-risk domain; (b) low-risk domain
with nonempty Ω+.

(i) (S , I)→ (S ∗, I∗) in C2(Ω̄) when dS → ∞, where I∗ is the unique positive solution of the following
problem  −dI∆I = I

[
β

1+mI

(
N
|Ω|
− 1
|Ω|

∫
Ω

Idx
)
− γ

]
, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω
(1.6)

and

S ∗ =
N
|Ω|
−

1
|Ω|

∫
Ω

I∗dx.

(ii) (S , I)→ (S ∗, I∗) in C(Ω̄) when dS → 0+, where S ∗ and I∗ satisfy

(S ∗, I∗) =

γβ |Ω| + mN

|Ω| + m
∫

Ω
γ/βdx

,
N −

∫
Ω
γ/βdx

|Ω| + m
∫

Ω
γ/βdx

 , (1.7)

or I∗ = 0 and

S ∗ =
N
|Ω|

+ dI

(
1
|Ω|

∫
Ω

Ǐdx − Ǐ
)
, (1.8)

where Ǐ > 0 satisfies the following problemdI∆I + I
[
β
(

N
|Ω|

+ dI
|Ω|

∫
Ω

Idx − dI I
)
− γ

]
= 0, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω.
(1.9)

Corollary 1.4. Suppose that R0 > 1 and N <
∫

Ω
γ/βdx. Then, for any fixed dI > 0 and m > 0, the EE

(S , I)→ (S ∗, 0) in C(Ω̄) as dS → 0+, where S ∗ satisfies (1.8).

Corollary 1.5. Fixed dI > 0 and m > 0. Suppose R0 > 1 and N >
∫

Ω
γ/βdx. Then the EE (S , I) →

(S ∗, I∗) in C(Ω̄) as dS → 0+, where (S ∗, I∗) satisfies (1.7) if one of the following conditions holds:

(i) β is a positive constant;

(ii) N
|Ω|
> max

x∈Ω̄

γ(x)
β(x) ;

(iii) γ(x)
β(x) = r for any x ∈ Ω̄, where r is some positive constant.
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Corollary 1.5 implies that the infectious disease may persist even if the movement of the susceptible
population is controlled to be very small, which is in sharp contrast to the epidemic model in [1].

Next, we are going to explore the asymptotic profile of EE as dI → 0+ and dI/dS → d > 0.

Theorem 1.6. Let m be fixed. Assume that Ω+ is nonempty. Then the following statements hold:

(i) If dI → 0+ and dI/dS → d ∈ (0,∞), then (S , I) → (S ∗, I∗) in C(Ω̄), where I∗ is the unique positive
solution of

(dβ(x) + mγ(x))I∗ =

[
β(x)

(
N
|Ω|
−

1 − d
|Ω|

∫
Ω

I∗dx
)
− γ(x)

]+

(1.10)

and S ∗ is given by

S ∗ =
N
|Ω|
−

1 − d
|Ω|

∫
Ω

I∗dx − dI∗.

(ii) If d ∈ (0, 1), then {x ∈ Ω : I∗ > 0} $ Ω+; if d ∈ (1,∞), then {x ∈ Ω : I∗ > 0} k Ω+ and this inclusion
is strict if Ω− is nonempty.

Remark 1.7. If d = 1 in Theorem 1.6, then

S ∗ =
N
|Ω|
− I∗, I∗ =

1
β + mγ

(
β

N
|Ω|
− γ

)+

,

which implies that {x ∈ Ω : I∗ > 0} = Ω+. It follows from Theorem 1.6(ii) that, in this situation,
the ratio dI/dS plays a critical role in determining the existing region of the infected population. If
d = 1, the infected individuals survive exactly in the high-risk set; if d ∈ (0, 1), the habitat of infected
individual is confined within some subset of the high-risk set; if d > 1, the infected individuals only die
out at part of the low-risk sites.

We now establish the asymptotic profile when the diffusion rate dI is large.

Theorem 1.8. Let m be fixed. Suppose that Ω is a high-risk domain. Then the following statements
hold.

(i) If dI → ∞ and dS → ∞, then (S , I) → (S ∗, I∗) in C2(Ω̄), where S ∗ and I∗ are positive constants
satisfying

S ∗ =

∫
Ω
γdx∫

Ω
βdx

1 + m
N

∫
Ω
βdx − |Ω|

∫
Ω
γdx

|Ω|
(∫

Ω
βdx + m

∫
Ω
γdx

) , I∗ =
N

∫
Ω
βdx − |Ω|

∫
Ω
γdx

|Ω|
(∫

Ω
βdx + m

∫
Ω
γdx

) .
(ii) If dS is fixed, then there exists a sequence {dIn} with dIn → ∞ as n→ ∞ such that the corresponding
EE (S n, In) → (S ∗, I∗) in C2(Ω̄), where I∗ is a positive constant and S ∗ is the positive solution of the
following problem 

−dS ∆S = −
βI∗

1+mI∗S + γI∗, x ∈ Ω,
∂S
∂ν

= 0, x ∈ ∂Ω,∫
Ω

S dx = N − |Ω|I∗.

(1.11)
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Furthermore, if dS → 0+ in (1.11), then (S ∗, I∗) → (Ŝ ∗, Î∗) in C1(Ω̄), where Ŝ ∗ and Î∗ satisfy (1.7) or
Î∗ = 0 and Ŝ ∗ satisfies 

−∆S = 1
K1

(−βS + γ), x ∈ Ω,
∂S
∂ν

= 0, x ∈ ∂Ω,∫
Ω

S dx = N

(1.12)

with K1 being a positive constant.

Finally, we describe the asymptotic profile when the saturated coefficient m is large.

Theorem 1.9. Suppose that R0 > 1. Then for any fixed dI > 0 and dS > 0, the corresponding EE (S , I)
of (1.2) satisfies (S , I)→ (N/|Ω|, 0) in C(Ω̄) as m→ ∞. Furthermore, either ‖mI‖∞ → ∞ or mI → w∗
as m→ ∞, where w∗ is the unique positive solution of the following problem−dI∆w = w( βN

|Ω|(1+w) − γ), x ∈ Ω,
∂w
∂ν

= 0, x ∈ ∂Ω.
(1.13)

Theorem 1.9 implies that large saturated coefficient can help to eliminate the disease. That is, if the
susceptible individuals change the behavior when their number increases or the infective individuals
produce crowding effect, the infectious disease may extinct eventually.

The rest of this paper is arranged as follows. In Section 2, we focus on the existence, uniqueness
and nonexistence of the EE, and give the proof of Theorem 1.2. In Section 3, the impacts of diffusion
rates and saturated coefficient on the persistence and extinction of the infectious disease are studied.
Then, we illustrate the influences of the population diffusion and the saturation coefficient on
system (1.2) numerically in Section 4. In Section 5, we conclude the paper with some discussion of
the epidemiological implication of our theoretical results. Finally, some well-known facts, which are
frequently used in the proofs of our main results, are collected in the appendix.

2. The existence and nonexistence of the EE

Since the existence of the EE is related to the stability of the DFE, we first investigate the stability
of the DFE. To this end, we linearize (1.2) around the DFE to obtainηt = dS ∆η −

(
N
|Ω|
β − γ

)
ξ, x ∈ Ω, t > 0,

ξt = dI∆ξ +
(

N
|Ω|
β − γ

)
ξ, x ∈ Ω, t > 0.

Here η(x, t) = S (x, t) − N/|Ω| and ξ(x, t) = I(x, t). Let (η(x, t), ξ(x, t)) = (e−λtφ(x), e−λtψ(x)) be the
solution of the linear system. Then, we derive an eigenvalue problemdS ∆φ −

(
N
|Ω|
β − γ

)
ψ + λφ = 0, x ∈ Ω,

dI∆ψ +
(

N
|Ω|
β − γ

)
ψ + λψ = 0, x ∈ Ω

(2.1)

with boundary conditions
∂φ

∂ν
=
∂ψ

∂ν
= 0, x ∈ ∂Ω. (2.2)
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In view of (1.3), we impose an additional condition∫
Ω

(φ + ψ)dx = 0. (2.3)

Indeed, it suffices to consider the eigenvalue problemdI∆ψ +
(

N
|Ω|
β − γ

)
ψ + λψ = 0, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω.

(2.4)

It is well known that all eigenvalues of (2.4) are real, and the principal eigenvalue, denoted by λ∗,
is simple, and its corresponding eigenfunction ψ∗ can be chosen positive on Ω. Furthermore, the
eigenvalue λ∗ is given by the variational characterization

λ∗ = inf
{∫

Ω

[
dI |∇ϕ|

2 +

(
γ −

N
|Ω|

β

)
ϕ2

]
dx : ϕ ∈ H1(Ω) and

∫
Ω

ϕ2dx = 1
}
.

It has been shown in [7] that the basic reproduction number R0 and the principal eigenvalue λ∗ has
the following relationship.

Lemma 2.1. 1 − R0 and λ∗ have the same sign.

As discussed in Lemma 2.4 of [1], the stability of the DFE depends on the value of R0.

Lemma 2.2. The DFE is linearly stable if R0 < 1 and unstable if R0 > 1.

To study the existence of the EE, we first convert problem (1.4)-(1.5) to an equivalent but more
accessible problem.

Lemma 2.3. The pair (S , I) is a nonnegative solution of problem (1.4)-(1.5) if and only if I is a
nonnegative solution of the following problemdI∆I + I

[
β

1+mI

(
N
|Ω|
−

(
1 − dI

dS

)
1
|Ω|

∫
Ω

Idx − dI
dS

I
)
− γ

]
= 0, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω
(2.5)

and

S =
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx −
dI

dS
I, x ∈ Ω. (2.6)

Proof. By standard calculations, one can easily check that (S , I) is a nonnegative solution of problem
(1.4)-(1.5) if and only if it solves the following problem:

dS S + dI I = κ, x ∈ Ω, (2.7)

dI∆I +
β(x)S I
1 + mI

− γ(x)I = 0, x ∈ Ω, (2.8)

∂S
∂ν

=
∂I
∂ν

= 0, x ∈ ∂Ω, (2.9)∫
Ω

(S + I)dx = N, (2.10)
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where κ is some positive constant independent of x ∈ Ω.
Now we show the equivalence between problems (2.7)-(2.10) and (2.5)-(2.6).
Suppose that (S , I) is a nonnegative solution of (2.7)-(2.10). By (2.7), we have dS (S + I) = κ+ (dS −

dI)I. Integrating it over Ω and using (2.10), we get dS N = κ|Ω| + (dS − dI)
∫

Ω
Idx. Substituting (2.7)

into the equation gives

S =
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx −
dI

dS
I, x ∈ Ω.

That is, (2.6) holds. Substituting such S into (2.8), we get (2.5).
Suppose that (S , I) is a nonnegative solution of problem (2.5)-(2.6). Substituting (2.6) into (2.5)

yields (2.8). Clearly, ∂S/∂ν = 0, i.e., (2.9) holds. Integrating both sides of (2.6) over Ω, we get
(2.10). Applying the Laplace operator to both sides of (2.6), we find that dS ∆S = −dI∆I which means
∆(dS S + dI I) = 0. Since ∂

∂ν
(dS S + dI I) = 0, the maximum principle implies that dS S + dI I is a constant.

In view of (2.10), this constant must be positive, which yields (2.7). �

The nonlocal elliptic problem (2.5) has the following estimate.

Lemma 2.4. If I ∈ C2(Ω)∩C1(Ω̄) is a nonnegative solution of the nonlocal elliptic problem (2.5), then
we have (

1 −
dI

dS

)
1
|Ω|

∫
Ω

Idx +
dI

dS
I ≤

N
|Ω|

for all x ∈ Ω̄. (2.11)

Proof. It is easy to see that (2.11) holds if I ≡ 0 on Ω̄. Suppose I ≥ 0,. 0. Then there exists some
x0 ∈ Ω̄ such that I(x0) = max

x∈Ω̄
I(x) > 0. By Lemma A.3, we have

β(x0)
1 + mI(x0)

[
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx −
dI

dS
I(x0)

]
− γ(x0) ≥ 0,

which implies that
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx ≥
dI

dS
I(x0) +

γ(x0)
β(x0)

≥
dI

dS
I. (2.12)

The conclusion holds. �

Set

S :=
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx −
dI

dS
I, x ∈ Ω̄.

If follows from Lemma 2.4 that S is nonnegative. Hence the pair (S , I) solves problem (2.5)–(2.6) as
well as (1.4)–(1.5). Next, we focus on the existence of positive solution to the nonlocal elliptic problem
(2.5) that only involves I.

Let Γ = {τ ∈ [0,∞) : N − (1 − dI/dS )τ ≥ 0} and Y = {z ∈ C2+α(Ω̄) : ∂z/∂ν = 0 on ∂Ω}. Define a
mapping F : Γ × Y → Cα(Ω̄) by

F(τ, I) = dI∆I + I f (τ, I)

with

f (τ, I) =
β

|Ω|(1 + mI)

[
N −

(
1 −

dI

dS

)
τ −

dI |Ω|

dS
I
]
− γ.

Then I is a nonnegative solution of (2.5) if and only if F(τ, I) = 0 and τ =
∫

Ω
Idx.
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Now we consider the following problem:dI∆I + I f (τ, I) = 0, x ∈ Ω,
∂I
∂ν

= 0, x ∈ ∂Ω.
(2.13)

It is easy to check that (2.13) meets all the requirements of Lemma A.2. Thus the existence of positive
solution of (2.13) is tightly related to an eigenvalue λ1(dI , f (τ, 0)), which is defined by (A.1). For
simplicity, we denote λτ = λ1(dI , f (τ, 0)), and hence λ0 = λ∗, where λ∗ is the principal eigenvalue of
(2.4).

Lemma 2.5. Suppose that τ ≥ 0.

(i) If λτ ≥ 0, the only nonnegative solution of (2.13) is I = 0;

(ii) if λτ < 0, there is a unique positive solution I ∈ Y of (2.13).

We are now ready to prove Theorem 1.2. To this end, we need to prove several lemmas as follows.

Lemma 2.6. Suppose λ∗ < 0.

(i) If dS > dI , then there exists a smooth curve (τ, Iτ(x)) in Γ × Y such that F(τ, Iτ) = 0. Moreover, there
is a Λ > 0 such that IΛ = 0 and Iτ(x) > 0 for all x ∈ Ω̄, τ ∈ [0,Λ). Furthermore, Iτ is decreasing and
continuously differentiable with respect to τ in (0,Λ);

(ii) if dS < dI , then there exists a smooth curve (τ, Iτ(x)) in [0,∞) × Y such that F(τ, Iτ) = 0 with Iτ > 0
for x ∈ Ω̄ and τ ∈ [0,∞). Moreover, Iτ(x) is increasing and continuously differentiable in τ on (0,∞),
and it satisfies the following estimate:∫

Ω

Iτ(x)dx ≤
dS

dI
N + (1 −

dS

dI
)τ. (2.14)

Proof. (i) Suppose that (τ0, Iτ0(x)) ∈ Γ × Y satisfies F(τ0, Iτ0) = 0 and Iτ0(x) > 0 on Ω̄. The Fréchet
derivative of F is given by

FI(τ0, Iτ0)w = dI∆w +
[
f (τ0, Iτ0) + fI(τ0, Iτ0)Iτ0

]
w

for all w ∈ Y , where

fI(τ0, Iτ0) = −
β

|Ω|(1 + mIτ0)2

{
dI |Ω|

dS
+ m

[
N −

(
1 −

dI

dS

)
τ0

]}
< 0.

We claim that FI(τ0, Iτ0) is invertible. To this end, we need to show the unique solvability of the
following problem for any h ∈ Cα(Ω̄),dI∆w +

[
f (τ0, Iτ0) + fI(τ0, Iτ0)Iτ0

]
w = h, x ∈ Ω,

∂w
∂ν

= 0, x ∈ ∂Ω.
(2.15)

Since F(τ0, Iτ0) = 0, i.e. dI∆Iτ0 + Iτ0 f (τ0, Iτ0) = 0, we see that λ1(dI , f (τ0, Iτ0)) = 0 and Iτ0 is a
corresponding eigenvector by (A.1). It follows from Lemma A.1 and fI(τ0, Iτ0) < 0 that
λ1

(
dI , f (τ0, Iτ0) + fI(τ0, Iτ0)Iτ0

)
> λ1(dI , f (τ0, Iτ0)) = 0. So all eigenvalues of the problemdI∆ϕ +
[
f (τ0, Iτ0) + fI(τ0, Iτ0)Iτ0

]
ϕ + λϕ = 0, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω

(2.16)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3885–3913.



3895

are positive. By the Fredholm alternative, (2.15) has a unique solution for every h ∈ Cα(Ω̄). The
continuity of the unique solution follows from the classical Schauder estimate. Since λ0 = λ∗ < 0,
there exists a unique positive I0 ∈ Y such that F(0, I0) = 0 by Lemma 2.5. Hence, by the implicit
function theorem, there is a unique Iτ ∈ Y such that F(τ, Iτ) = 0 for τ ∈ [0, τ̂) with τ̂ > 0, and Iτ is
continuously differentiable with respect to τ.

Now we show that Iτ is decreasing with respect to τ. Suppose that 0 < τ1 < τ2 < τ̂. Since
dS > dI , we have that F(τ1, Iτ2) > F(τ2, Iτ2) = 0. Hence, Iτ2 is a lower solution of the equation
F(τ1, I) = 0. On the other hand, we choose a sufficiently large number as an upper solution of the
equation F(τ1, I) = 0. Then, by the method of upper/lower solutions and the uniqueness of the positive
solution of F(τ1, I) = 0, we obtain that Iτ1 > Iτ2 .

The curve (τ, Iτ) satisfying F(τ, Iτ) = 0 will continue as long as Iτ > 0, i.e., λτ < 0, due to
Lemma 2.5. By the variational formula, λτ is increasing with respect to τ and λτ > 0 for large τ. It
follows from Lemma 2.5 again that, there is no positive solution of F(τ, I) = 0 if τ is large, i.e., Iτ = 0
for large τ. Let [0,Λ) be the maximal interval of existence of τ such that Iτ > 0. Then IΛ = 0.

(ii) The existence and continuous differentiability of the curve (τ, Iτ) can be obtained by a similar
argument as in the proof of (i). And one can check that Iτ is increasing with respect to τ since dS < dI .
Thus the curve is continuous with respect to τ on [0,∞).

To show (2.14), let Iτ(y0) = max
Ω̄

Iτ(x). Applying Lemma A.3 to the first equation of (2.13), we

obtain that

f (τ, Iτ(y0)) =
β(y0)

(1 + mIτ(y0))

[
N
|Ω|
−

(
1 −

dI

dS

)
τ

|Ω|
−

dI

dS
Iτ(y0)

]
− γ(y0) ≥ 0,

which implies
β(y0)

(1 + mIτ(y0))

[
N
|Ω|
−

(
1 −

dI

dS

)
τ

|Ω|
−

dI

dS
Iτ(y0)

]
≥ 0,

and hence

Iτ(x) ≤ Iτ(y0) ≤
dS N
dI |Ω|

+

(
1 −

dS

dI

)
τ

|Ω|

for any x ∈ Ω̄. It follows that (2.14) holds by integrating the above inequality over Ω. �

Lemma 2.7. Suppose R0 > 1. Then there exists a unique EE if dS ≥ dI , and there exists at least one
EE if dS < dI .

Proof. If dS = dI , then λτ = λ∗ < 0 based on R0 > 1. The result follows directly from Lemma 2.5.
For dS > dI , by Lemma 2.6 (i), there is a smooth curve (τ, Iτ) satisfying F(τ, Iτ) = 0. By the

definition of F, Iτ is a solution of problem (2.5) if τ =
∫

Ω
Iτdx. Let H(τ) =

∫
Ω

Iτdx − τ. Then H(τ) is
continuous and strictly decreasing with respect to τ in [0,Λ) because of the continuity and monotonicity
of Iτ. Since

∫
Ω

I0dx > 0 and 0 =
∫

Ω
IΛdx < Λ, we have H(0) > 0, H(Λ) < 0. Then, there exists a

unique τ0 ∈ (0,Λ) such that H(τ0) = 0, i.e. τ0 =
∫

Ω
Iτ0dx. Hence problem (2.5) has a unique positive

solution.
For dS < dI , by Lemma 2.6 (ii), there exists a smooth curve (τ, Iτ) satisfying F(τ, Iτ) = 0. We also

take H(τ) =
∫

Ω
Iτdx − τ. Then it is continuous with respect to τ. The estimate (2.14) implies that

H(τ) ≤ dS
dI

(N − τ). Since H(0) > 0 and H(τ) < 0 with τ > N, there exists a τ0 > 0 such that H(τ0) = 0,
i.e. τ0 =

∫
Ω

Iτ0dx. Hence, problem (2.5) has at least one positive solution. �
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Lemma 2.8. The EE does not exist if one of the following conditions holds:

(i) dS ≥ dI and R0 ≤ 1;

(ii) dS < dI and R0 ≤ dS /dI .

Proof. (i) The case dS = dI follows directly from Lemma 2.5. We analyze the case dS > dI indirectly.
Assume that an EE (S ∗, I∗) exists if R0 ≤ 1. Then there is a τ∗ > 0 such that τ∗ =

∫
Ω

I∗dx and
F(τ∗, I∗) = 0. By Lemma 2.5, we know λτ∗ < 0, which leads to λ∗ = λ0 ≤ λτ∗ < 0 since f (τ, 0) is
decreasing in τ when dS > dI . Then R0 > 1 by Lemma 2.1, which is a contradiction.

(ii) The case dS < dI . Assume to the contrary that an EE (S ∗, I∗) exists when R0 ≤ ds/dI . Let
τ∗ =

∫
Ω

I∗dx. Then I∗ is also the positive solution of F(τ∗, I∗) = 0, and it satisfies (2.11) for all x ∈ Ω̄,
i.e. (

1 −
dI

dS

)
1
|Ω|

∫
Ω

I∗dx +
dI

dS
I∗ ≤

N
|Ω|

.

Integrating this inequality over Ω, we get τ∗ =
∫

Ω
I∗dx ≤ N. Noting that λτ∗ < 0 by Lemma 2.5 and

f (τ, 0) is increasing in τ provided dS < dI , Lemma A.1 implies that λN ≤ λτ∗ < 0, where λN is the
principal eigenvalue of the following problemdI∆ϕ +

(
dI N

dS |Ω|
β − γ

)
ϕ = λϕ, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω.

Define

R′0 := sup

 dIN
∫

Ω
βϕ2dx

dS |Ω|
∫

Ω
(dI |∇ϕ|2 + γϕ2)dx

: ϕ ∈ H1(Ω) and ϕ , 0

 .
Then R′0 > 1 if and only if λN < 0, which can be obtained as the properties of R0. Since R′0 = dIR0/dS

and λN < 0, we have R0 > dS /dI , which is a contradiction. �

Proof of Theorem 1.2. Theorem 1.2 follows from Lemmas 2.6, 2.7 and 2.8. �

3. Asymptotic profiles of the EE

The goal of this section is to investigate the asymptotic profile of EE. To this end, we always assume
R0 > 1, so that (1.2) has an EE. As a first step, we establish the priori estimates of any EE.

Lemma 3.1. Assume that (S , I) is a nonnegative solution of (1.4)-(1.5). Then

I ≤
(
1 +

dS

dI

)
N
|Ω|

, (3.1)

min
x∈Ω̄

{
γ

β
(1 + mI)

}
≤ S ≤ max

x∈Ω̄

{
γ

β
(1 + mI)

}
. (3.2)

Proof. By (1.5), we have
∫

Ω
Idx ≤ N. Applying the inequality (2.11), we get

I ≤
dS

dI

(
N
|Ω|

+
dI

dS

1
|Ω|

∫
Ω

Idx
)
≤

(
1 +

dS

dI

)
N
|Ω|

.
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Let S (x0) = max
x∈Ω̄

S (x), S (y0) = min
x∈Ω̄

S (x). We apply Lemma A.3 to the first equation of (1.4) to

obtain that
−
β(x0)S (x0)
1 + mI(x0)

+ γ(x0) ≥ 0, −
β(y0)S (y0)
1 + mI(y0)

+ γ(y0) ≤ 0,

which imply S (x0) ≤ γ(x0)
β(x0) (1 + mI(x0)) and S (y0) ≥ γ(y0)

β(y0) (1 + mI(y0)). Hence (3.2) holds. �

Lemma 3.2. Assume that (S , I) is an EE of (1.4)-(1.5). Then I and S are uniformly bounded in L∞(Ω̄)
if dS /dI → ∞.

Proof. Note that (S , I) satisfies (1.4)-(1.5) (or (2.5)-(2.6)). By (2.6), we have S ≤ N/|Ω| provided
dS /dI → ∞. Then, we are going to derive a priori estimate of I when dS /dI → ∞ by the Harnack
inequality. Applying Lemma A.4 to the second equation of (1.4), we obtain that there is a positive
constant C0 such that max

Ω

I ≤ C0 min
Ω

I. In view of N ≥
∫

Ω
Idx ≥ |Ω|min

Ω

I ≥ |Ω|max
Ω

I/C0, we

conclude that ‖I‖∞ ≤ C0N/|Ω|. �

Now, we are ready to investigate the asymptotic profiles of the EE when dS is sufficiently small or
large. To this end, we show the existence and uniqueness of the solution (1.6).

Lemma 3.3. Suppose R0 > 1. Then (1.6) has a unique positive solution.

Proof. Since R0 > 1 is equivalent to λ1(dI ,Nβ/|Ω| − γ) = λ∗ < 0 by Lemma 2.1. Taking

f (τ, I) =
β

|Ω|(1 + mI)
(N − τ) − γ

and by similar arguments as in Lemma 2.7, we get that (1.6) has a unique positive solution. �

Proof of Theorem 1.3. It follows from Theorem 1.2 that an EE (S , I) exists provided R0 > 1 for any
dS > 0.

(i) We consider the asymptotic profile when dS → ∞. By Lemma 3.2, I and S are uniformly
bounded in C(Ω̄) for fixed dI > 0 and dS → ∞. Then using the elliptic estimate and the Sobolev
embedding theorem for (1.4), there exists a sequence {dS n} with dS n → ∞ as n → ∞ such that the
corresponding EE (S n, In) → (S ∗, I∗) in C2(Ω̄). Letting n → ∞ in (2.5), we get that I∗ satisfies (1.6)
which has a unique positive solution by Lemma 3.3. Thus, the strong maximum principle implies that
there are two possibilities: I∗ > 0 or I∗≡0. By (2.5) and the positivity of In, we have

λ1

(
dI ,

β

1 + mIn

(
N
|Ω|
−

(
1 −

dI

dS n

)
1
|Ω|

∫
Ω

Indx −
dI

dS n

In

)
− γ

)
= 0. (3.3)

If I∗≡0, letting n → ∞ in (3.3), we have λ1(dI ,Nβ/|Ω| − γ) = 0, i.e. λ∗ = 0, which contradicts R0 > 1
by Lemma 2.1. Hence I∗ is the positive solution of (1.6). By (1.4), S ∗ satisfies∆S ∗ = 0, x ∈ Ω,

∂S ∗
∂ν

= 0, x ∈ ∂Ω.
(3.4)

The strong maximum principle implies that S ∗ is a constant. Furthermore, it follows from (1.5) that

S ∗ =
N
|Ω|
−

1
|Ω|

∫
Ω

I∗dx.
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(ii) We analyze the asymptotic profile when dS → 0+. It follows from (3.1) that I is uniformly
bounded for fixed dI and small dS . Hence there exists a sequence {dS n} with dS n → 0+ as n → ∞ such
that the corresponding EE (S n, In) satisfies∫

Ω

Indx→ K for some K ≥ 0.

It then follows that

Fn := β

(
N
|Ω|

dS n − (dS n − dI)
1
|Ω|

∫
Ω

Indx
)
→

dIβK
|Ω|

as n→ ∞.

Hence, for any ε > 0, there exists n1 > 0 such that for n ≥ n1,

dIβ

|Ω|
(K − ε) ≤ Fn ≤

dIβ

|Ω|
(K + ε) and 0 < dS n ≤ min

{
minx∈Ω β(x)
maxx∈Ω γ(x)

ε, dI

}
. (3.5)

We claim that
In →

K
|Ω|

uniformly on Ω̄ as n→ ∞. (3.6)

Noting that In satisfies (2.5), we rewrite it asdS ndI∆In + In

(
Fn−dIβIn

1+mIn
− dS nγ(x)

)
= 0, x ∈ Ω,

∂In
∂ν

= 0, x ∈ ∂Ω.
(3.7)

It follows from (3.5) that In is a lower solution of the problemdS ndI∆I + I
[

dIβ

|Ω|
(K + ε) − dIβI

]
= 0, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω.
(3.8)

On the other hand, (3.1) and (3.5) imply that

In ≤

(
1 +

dS n

dI

)
N
|Ω|
≤ 2

N
|Ω|

(3.9)

for n ≥ n1. Meanwhile, In is an upper solution of the problemdS ndI∆I + I
(

dIβ(K−ε)/|Ω|−dIβI
1+2mN/|Ω| − βε

)
= 0, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω.
(3.10)

Observing that I = K+ε
|Ω|

is the unique positive solution of (3.8) and I = K−ε
|Ω|
− ε

dI

(
1 + 2mN

|Ω|

)
is the unique

positive solution of (3.10), we have

K − ε
|Ω|

−
ε

dI
(1 + 2mN/|Ω|) ≤ In ≤

K + ε

|Ω|
for all n ≥ n1. (3.11)

Since ε > 0 is arbitrary, (3.11) indeed implies that In →
K
|Ω|

uniformly on Ω̄ as n→ ∞.
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Now, we have two possibilities K > 0 or K = 0. First, we consider the case K > 0. Obviously, S n

satisfies dS n∆S n +
(
−

βS n
1+mIn

+ γ
)

In = 0, x ∈ Ω,
∂S n
∂ν

= 0, x ∈ ∂Ω.
(3.12)

By the fact that In →
K
|Ω|

and Lemma A.2, we can prove that

S n →
γ

β
(1 + mK/|Ω|) (3.13)

uniformly on Ω̄ as n→ ∞. Since (S n, In) satisfies (1.5), letting n→ ∞, we have(
1 +

mK
|Ω|

) ∫
Ω

γ

β
dx + K = N,

which implies that K =
|Ω|(N−

∫
Ω
γ/βdx)

|Ω|+m
∫
Ω
γ/βdx

when N >
∫

Ω
γ/βdx. By (3.6) and (3.13), we know that (1.7)

holds provided N >
∫

Ω
γ/βdx.

For the case K = 0, we have In → 0 uniformly on Ω̄ as n → ∞. Passing to a subsequence if
necessary, we then have either case (1) ‖In‖∞/dS n ≤ C with C ≥ 0, or case (2) ‖In‖∞/dS n → ∞ as
n→ ∞.

If the case (1) occurs, then
∫

Ω
Indx/dS n ≤ ‖In‖∞/dS n ≤ C. Let Ǐn := In/dS n . Then ‖Ǐn‖∞ ≤ C and Ǐn

satisfies −dI∆Ǐn = Ǐn

[
β

1+mIn

(
N
|Ω|
− (dS n − dI) 1

|Ω|

∫
Ω

Ǐndx − dI Ǐn

)
− γ

]
, x ∈ Ω,

∂Ǐn
∂ν

= 0, x ∈ ∂Ω.

Since the right hand of this equation is uniformly bounded in L∞(Ω), by standard elliptic regularity
we know that {Ǐn} is precompact in C1(Ω̄). Hence by passing to a subsequence we may assume that
Ǐn → Ǐ ≥ 0 in C(Ω̄). Moreover, Ǐ satisfies (1.9), i.e.−dI∆Ǐ = Ǐ

[
β
(

N
|Ω|

+ dI
|Ω|

∫
Ω

Ǐdx − dI Ǐ
)
− γ

]
, x ∈ Ω,

∂Ǐ
∂ν

= 0, x ∈ ∂Ω.
(3.14)

We claim that Ǐ > 0. To this end, we assume Ǐ ≡ 0 on Ω̄, i.e, Ǐn → 0 in C(Ω̄). Let Ĩn = Ǐn/‖Ǐn‖∞.

Then ‖Ĩn‖∞ = 1 and Ĩn satisfies−dI∆Ĩn = Ĩn

[
β

1+mIn

(
N
|Ω|
− (dS n − dI) 1

|Ω|

∫
Ω

Ǐndx − dI Ǐn

)
− γ

]
, x ∈ Ω,

∂Ĩn
∂ν

= 0, x ∈ ∂Ω.

Similarly, by passing to a subsequence we may assume that Ĩn → Ĩ in C(Ω̄). Furthermore, ‖Ĩn‖∞ = 1
and Ĩ satisfies −dI∆Ĩ = Ĩ(β N

|Ω|
− γ), x ∈ Ω,

∂Ĩ
∂ν

= 0, x ∈ ∂Ω.
(3.15)

It follows from the strong maximum principle that Ĩ > 0 on Ω̄. Hence, the definition of R0 and (3.15)
implies that R0 = 1, which is a contradiction. Therefore, Ǐ ≥ 0,. 0. By the strong maximum principle
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again, we get Ǐ > 0 on Ω̄. Hence,
∫

Ω
In/dS ndx →

∫
Ω

Ǐdx > 0 in C(Ω̄) as n → ∞. However, if
‖In‖∞/dS n → 0, then

∫
Ω

In/dS ndx → 0. It’s a contradiction. Therefore, it remains ‖In‖∞/dS n → C1 with
some C1 > 0. In this case, In → 0 in C(Ω̄) and by passing to a subsequence

S n =
N
|Ω|
− (dS − dI)

1
|Ω|

∫
Ω

Ǐndx − dI Ǐn →
N
|Ω|

+
dI

|Ω|

∫
Ω

Ǐdx − dI Ǐ in C1

as n→ ∞, i.e. (1.8) holds.
If case (2) occurs, i.e., ‖In‖∞/dS n → ∞. Recalling In → 0 uniformly on Ω̄ as n → ∞, we have

‖In‖∞ → 0. By Lemma 3.1, we know that S n is uniformly bounded. Let Ĩn = In/‖In‖∞. Then ‖Ĩn‖∞ = 1
and Ĩn satisfies −dI∆Ĩn = Ĩn

(
βS n

1+mIn
− γ

)
, x ∈ Ω,

∂Ĩn
∂ν

= 0, x ∈ ∂Ω.
(3.16)

By the standard elliptic estimates, Ĩn is uniformly bounded in C1(Ω̄) for fixed dI > 0. So passing to a
subsequence if necessary, we have Ĩn → Ĩ in C(Ω̄) with ‖Ĩ‖∞ = 1. By the Harnack inequality, there is
a positive constant K∗ independent of n such that

1 = max
x∈Ω̄

Ĩn(x) ≤ K∗min
x∈Ω̄

Ĩn(x).

Hence minx∈Ω̄ Ĩ ≥ 1/K∗ > 0, i.e. Ĩ is strictly positive. We now turn to consider the equation (3.12) for
S n. Dividing (3.12) by ‖In‖∞, we have− dS n

‖In‖∞
∆S n =

(
−

βS n
1+mIn

+ γ
)

In
‖In‖∞

, x ∈ Ω,
∂S n
∂ν

= 0, x ∈ ∂Ω.

Since dS n/‖In‖∞ → 0+, In/‖In‖∞ → Ĩ and In → 0, it follows from Lemma A.2 that

S n →
γ

β
uniformly on Ω̄ as n→ ∞.

Moreover by (1.5) and In → 0, we get ∫
Ω

γ

β
dx = N,

which is a contradiction if
∫

Ω
γ/βdx , N. But if

∫
Ω
γ/βdx = N, (1.7) holds. �

Proof of Corollary 1.4. From the proof of Theorem 1.3, we know that if R0 > 1 and N <
∫

Ω
γ/βdx,

then In → 0 uniformly on Ω̄ as n → ∞ and ‖In‖∞/dS n ≤ C with C ≥ 0. In this case, S ∗ satisfies
(1.8). �

Proof of Corollary 1.5. From the proof of Theorem 1.3, we only need to rule out I∗ = 0.
(i) Suppose that β is a positive constant. Then N >

∫
Ω
γ/βdx implies that N

|Ω|

∫
Ω
βdx >

∫
Ω
γdx, i.e., Ω

is a high-risk domain. By Proposition 1.1(iii) and Theorem 1.2, we know that the EE (S , I) exists for
all dI > 0 and m > 0. Multiplying both sides of the first equation of (2.5) by (1 + mI)/I and integrating
it over Ω, we get

dI

∫
Ω

|∇I|2

I2 dx +

∫
Ω

{
β

[
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx −
dI

dS
I
]
− γ(1 + mI)

}
dx = 0,
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which implies that ∫
Ω

{
β

[
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx −
dI

dS
I
]
− γ(1 + mI)

}
dx ≤ 0.

Since β is a constant, it follows from the above inequality that

N −
∫

Ω

Idx −
∫

Ω

γ

β
(1 + mI)dx ≤ 0. (3.17)

On the other hand, by Theorem 1.3, we know that (S , I) → (S ∗, I∗) in C(Ω̄) as dS → 0, where I∗ is
a nonnegative constant. Letting dS → 0+, the inequality (3.17) implies that(

|Ω| + m
∫

Ω

γ

β
dx

)
I∗ ≥ N −

∫
Ω

γ

β
dx > 0.

Hence I∗ > 0, which indicates that (S ∗, I∗) satisfies (1.7).
(ii)-(iii). From (3.6), we know I∗ = K/|Ω|. We need to prove K > 0.
If K = 0, there are three cases to consider: (1) ‖In‖∞/dS n → C1 > 0, (2) ‖In‖∞/dS n → 0, and (3)

‖In‖∞/dS n → ∞. If N >
∫

Ω
γ/βdx, from the proof of Theorem 1.3, the case (2) and (3) are excluded

directly. It remains to consider case (1). In this case, In/dS n → Ǐ > 0, where Ǐ satisfies (1.9). Next,
we show that (1.9) has no positive solution under the conditions (ii) or (iii), which will deduce a
contradiction. Take

f1(τ, I) =
β

|Ω|
(N + dIτ − dI |Ω|I) − γ, F1(τ, I) = dI∆I + I f1(τ, I),

and consider the problem dI∆I + I f1(τ, I) = 0, x ∈ Ω,
∂I
∂ν

= 0, x ∈ ∂Ω.
(3.18)

Repeating the arguments as in the proof of Theorem 1.2, we can prove that there exists a smooth curve
(τ, Ĩτ(x)) in [0,∞) × Y such that F1(τ, Ĩτ) = 0 with Ĩτ > 0 for all x ∈ Ω̄ and τ ∈ [0,∞) if R0 > 1.
Moreover, Ĩτ(x) is strictly increasing and continuously differentiable with respect to τ in (0,∞). It is
easy to see that Ĩτ is a positive solution of (1.9) if and only if τ =

∫
Ω

Ĩτdx.
Let xτ, yτ ∈ Ω̄ satisfy Ĩτ(xτ) = min

x∈Ω̄
Ĩτ(x) and Ĩτ(yτ) = max

x∈Ω̄
Ĩτ(x). Using Lemma A.3 to (3.18), it is

easy to check that, for every τ ∈ [0,∞)

1
dI

[
N
|Ω|
−
γ(xτ)
β(xτ)

]
+

τ

|Ω|
≤ Ĩτ ≤

1
dI

[
N
|Ω|
−
γ(yτ)
β(yτ)

]
+

τ

|Ω|
.

Then for every τ ∈ [0,∞), we have

N
|Ω|
−
γ(xτ)
β(xτ)

≤
dI

|Ω|
(
∫

Ω

Ĩτdx − τ) ≤
N
|Ω|
−
γ(yτ)
β(yτ)

, (3.19)

which implies that
N
|Ω|
−max

x∈Ω̄

γ(x)
β(x)

≤
dI

|Ω|
(
∫

Ω

Ĩτdx − τ) ≤
N
|Ω|
−min

x∈Ω̄

γ(x)
β(x)

. (3.20)
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Note that R0 > 1 implies N/|Ω| > min
Ω̄
γ(x)/β(x) by Proposition 1.1(v). It follows from (3.20) that

τ ,
∫

Ω
Iτdx for every τ ∈ [0,∞) provided N/|Ω| > max

Ω̄
γ(x)/β(x) or γ(x)/β(x) = r. Hence (1.9) has no

positive solution under the conditions (ii) or (iii). K = 0 is impossible and we complete the proof of
Corollary 1.5. �

Next, we will prove Theorem 1.6. To this end, we first give the following result.

Lemma 3.4. Assume that Ω+ is nonempty and d is a positive constant. Then the following equation

(dβ(x) + mγ(x))I =

[
β(x)

(
N
|Ω|
−

1 − d
|Ω|

∫
Ω

Idx
)
− γ(x)

]+

(3.21)

has a unique nonnegative solution.

Proof. It is easy to see that (3.21) has a unique nonnegative solution I =
[β(x)N/|Ω|−γ(x)]+

β+mγ if d = 1. Hence,
we only consider d ∈ (0, 1) ∪ (1,+∞) below. Let

Gτ :=
[
β(x)

(
N
|Ω|
−

1 − d
|Ω|

τ

)
− γ(x)

]+

/(dβ(x) + mγ(x)) .

If d ∈ (0, 1), then
∫

Ω
Gτdx is non-increasing in τ for τ ≥ 0 and

∫
Ω

Gτdx = 0 for sufficiently large τ.
Define

τ0 := min{τ ≥ 0 :
∫

Ω

Gτdx = 0}.

Since Ω+ is nonempty, we conclude that
∫

Ω
G0dx =

∫
Ω

[β(x)N/|Ω|−γ(x)]+

dβ(x)+mγ(x) dx > 0 and
∫

Ω
Gτdx is decreasing

with respect to τ ∈ [0, τ0]. Hence, there exists a unique τ∗ ∈ (0, τ0), such that
∫

Ω
Gτ∗dx = τ∗, i.e., Gτ∗ is

the unique nonnegative solution of (3.21).
If d > 1, then

∫
Ω

Gτdx is non-decreasing in τ for τ ≥ 0 and
∫

Ω
Gτdx→ ∞ as τ→ ∞. We notice that∫

Ω

Gτdx ≤
1
d

∫
Ω

(
N
|Ω|
−
γ

β

)+

dx +

(
1 −

1
d

)
τ.

Since the right hand side of the above inequality is linear in τ with slope less than 1, there exists τ∗ > 0
such that

∫
Ω

Gτ∗dx = τ∗, which implies that Gτ∗ is a solution of (3.21). On the other hand, since
∫

Ω
Gτdx

is concave up in τ, τ∗ is the unique solution of
∫

Ω
Gτdx = τ. Hence, (3.21) has a unique nonnegative

solution. The proof is complete. �

Proof of Theorem 1.6. Since Ω+ is nonempty, the EE (S , I) exists if dI is small by Proposition 1.1 and
Theorem 1.2.

First, we prove the conclusion for the case d < 1. We claim that
∫

Ω
Idx →

∫
Ω

I∗dx as dI → 0+ and
dI/dS → d, where I∗ is the unique solution of (3.21). Since

∫
Ω

Idx ≤ N, there exist two sequences {dIn}

and {dIn/dS n} with dIn → 0+ and dIn/dS n → d as n→ ∞ such that the corresponding EE (S n, In) satisfies∫
Ω

Indx → K0 ∈ [0,N]. Then, for any ε > 0, there exists n∗ > 0 such that K0 − ε <
∫

Ω
Indx < K0 + ε

and d − ε < dIn/dS n < d + ε when n > n∗. Therefore, In is a lower solution of the problemdIn∆I + I
{

β

1+mI

[
N
|Ω|
− 1
|Ω|

(1 − d − ε)(K0 − ε) − (d − ε)I
]
− γ

}
= 0, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω,
(3.22)
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and is an upper solution of the problemdIn∆I + I
{

β

1+mI

[
N
|Ω|
− 1
|Ω|

(1 − d + ε)(K0 + ε) − (d + ε)I
]
− γ

}
= 0, x ∈ Ω,

∂I
∂ν

= 0, x ∈ ∂Ω
(3.23)

for n > n∗. Denote the unique positive solutions of (3.22) and (3.23) by In,−ε and In,+ε respectively if
they exist; otherwise, let In,−ε = 0 (In,+ε = 0). Then, it follows from an upper-lower solution argument
that In,+ε ≤ In ≤ In,−ε for n > n∗. Furthermore, by Lemma A.2, we have

lim
n→∞

In,±ε = I±ε

in C(Ω̄), where

I±ε =

[
1

β(d ± ε) + mγ

(
βN
|Ω|
− β(1 − d ± ε)

K0 ± ε

|Ω|
− γ

)]+

. (3.24)

Since ε > 0 is arbitrary, by Lemma 3.4 we obtain

K0 = lim
n→∞

∫
Ω

Indx =

∫
Ω

[
1

βd + mγ

(
βN
|Ω|
− β(1 − d)

K0

|Ω|
− γ

)]+

dx =

∫
Ω

I∗dx.

Now, we show I → I∗ as dI → 0+ and dI/dS → d. Substituting K0 =
∫

Ω
I∗dx into (3.24), we get that

I →
[

1
βd + mγ

(
βN
|Ω|
−
β(1 − d)
|Ω|

∫
Ω

I∗dx − γ
)]+

= I∗,

and hence

S =
N
|Ω|
−

(
1 −

dI

dS

)
1
|Ω|

∫
Ω

Idx −
dI

dS
I →

N
|Ω|
−

1 − d
|Ω|

∫
Ω

I∗dx − dI∗ = S ∗

as dI → 0+ and dI/dS → d.
The proof of the case d ≥ 1 is similar, so we omit it here. The conclusion in (ii) is easily obtained

from equation (3.21). �

Proof of Theorem 1.8. Since Ω is a high-risk domain, the EE (S , I) always exists for any dS > 0 and
dI > 0. By Lemmas 3.1 and 3.2, we know that I and S are uniformly bounded in L∞(Ω) for any positive
dI and dS .

(i) We consider the asymptotic profile of the EE when dI → ∞ and dS → ∞. Note that βS I/(1 +

mI)− γI is uniformly bounded in L∞(Ω). Applying the standard elliptic estimate arguments, we obtain
that S and I are uniformly bounded in C2+α(Ω̄) for all α ∈ (0, 1), dS , dI ≥ 1. It then follows from the
compactness of the embedding C2+α(Ω̄) ↪→ C2(Ω̄) that there exist sequences {dS n}, {dIn} with dS n →

∞, dIn → ∞ as n → ∞ such that the corresponding EE (S n, In) → (S ∗, I∗) in C2(Ω̄), where (S ∗, I∗)
satisfies ∆S ∗ = ∆I∗ = 0, x ∈ Ω,

∂S ∗
∂ν

= ∂I∗
∂ν

= 0, x ∈ ∂Ω.
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By the strong maximum principle, S ∗ and I∗ are constants. Let Ĩn = In/‖In‖∞. By (1.4), we have−dIn∆Ĩn =
(
βS n

1+mIn
− γ

)
Ĩn, x ∈ Ω,

∂Ĩn
∂ν

= 0, x ∈ ∂Ω.
(3.25)

Since ‖Ĩn‖∞ = 1 and In, S n are uniformly bounded, it follows from the elliptic estimate and the Sobolev
embedding theorem that Ĩn is uniformly bounded in C2+α(Ω̄). Passing to a subsequence if necessary,
we have Ĩn → Ĩ in C2(Ω̄), where Ĩ satisfies∆Ĩ = 0, x ∈ Ω,

∂Ĩ
∂ν

= 0, x ∈ ∂Ω.

Using the strong maximum principle again, Ĩ is a constant. And then Ĩ ≡ 1 since ‖Ĩn‖∞ = 1. Integrating
both sides of the first equation in (3.25) over Ω, we find∫

Ω

(
βS n

1 + mIn
− γ

)
Ĩndx = 0.

Letting n→ ∞, we have ∫
Ω

(
βS ∗

1 + mI∗
− γ

)
dx = 0.

Noticing that
∫

Ω
(S ∗ + I∗)dx = N and S ∗, I∗,m are constants, we have

I∗ =
N

∫
Ω
βdx − |Ω|

∫
Ω
γdx

|Ω|
(∫

Ω
βdx + m

∫
Ω
γdx

) , S ∗ =

∫
Ω
γdx∫

Ω
βdx

1 + m
N

∫
Ω
βdx − |Ω|

∫
Ω
γdx

|Ω|
(∫

Ω
βdx + m

∫
Ω
γdx

) .
(ii) Now we consider the asymptotic profile of the EE when dI → ∞. The proof is similar to (i) and

Theorem 1.3, so we sketch it in the following.
Suppose dS is fixed. By the elliptic estimate, the Sobolev embedding theorem and the maximum

principle, there exists a sequence {dIn} with dIn → ∞ as n → ∞ such that the corresponding EE
(S n, In) → (S ∗, I∗) in C2(Ω̄), where I∗ ≥ 0 is a constant. If I∗ = 0, then S ∗ satisfies (3.4), which
indicates that S ∗ is also a constant. As in the proof of (i), we also introduce Ĩn = In/‖In‖∞. Then we can
prove Ĩn → 1 in C2(Ω̄) as n→ ∞, which leads to∫

Ω

(βS ∗ − γ)dx = 0,

and so S ∗ =
∫

Ω
γdx/

∫
Ω
βdx. On the other hand, one can see from (1.5) that S ∗ = N/|Ω| when I∗ = 0.

Hence, N
|Ω|

∫
Ω
βdx =

∫
Ω
γdx, which contradicts the assumption that Ω is a high-risk domain. Therefore

I∗ is a positive constant, and S ∗ > 0 satisfies (1.11).
Furthermore, let dS → 0+. There exists a sequence {dS n} with dS n → 0+ as n → ∞ such that the

corresponding solution (S ∗n, I
∗
n) of (1.11) satisfies dS n/I

∗
n → 0, or dS n/I

∗
n → ∞, or dS n/I

∗
n → K1 for some

positive constant K1. If dS n/I
∗
n → 0, we have (S ∗n, I

∗
n)→ (S̃ ∗, Ĩ∗) in C(Ω̄). Rewrite the equation of S ∗n as dS n

I∗n
∆S ∗n +

(
−

βS ∗n
1+mI∗n

+ γ
)

= 0, x ∈ Ω,
∂S ∗n
∂ν

= 0, x ∈ ∂Ω.
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Letting n→ ∞, we obtain

S̃ ∗ =
γ

β
(1 + mĨ∗), Ĩ∗ =

N
|Ω|
−

1
|Ω|

∫
Ω

S̃ ∗dx,

which implies that (S̃ ∗, Ĩ∗) satisfies (1.7).
If dS n/I

∗
n → K1, by passing to a subsequence, we have (S ∗n, I

∗
n) → (S̃ ∗, 0) in C(Ω̄) as dS n → 0+.

Rewrite the equation of S ∗n as follow−∆S ∗n =
(
−

βS ∗n
1+mI∗n

+ γ
)

I∗n
dS n
, x ∈ Ω,

∂S ∗n
∂ν

= 0, x ∈ ∂Ω.
(3.26)

Letting n→ ∞, we obtain S̃ ∗ satisfies (1.12).
If dS n/I

∗
n → ∞ as dS n → 0+, by passing to a subsequence, we have (S ∗n, I

∗
n) → (S̃ ∗, 0) in C(Ω̄) and

S ∗n satisfies (3.26). Letting n → ∞, we know that S̃ ∗ is a constant. By the last equation of (1.11), we
actually have S̃ ∗ = N

|Ω|
. Integrating both sides of the first equation in (1.11), we get∫

Ω

[
−βS ∗n/(1 + mI∗n) + γ

]
dx = 0. Letting n → ∞, we find N

|Ω|

∫
Ω
βdx =

∫
Ω
γdx, which contradicts the

assumption that Ω is a high-risk domain. Hence dS n/I
∗
n → ∞ is impossible. The proof is

complete. �

Proof of Theorem 1.9. Since R0 is independent of m, the EE (S , I) exists for any m > 0 provided
R0 > 1 by Theorem 1.2. It follows from (3.1) that I is uniformly bounded for fixed dI > 0, dS > 0.
Hence there exists a sequence {mn} with mn → ∞ as n → ∞ such that the corresponding EE (S n, In)
satisfies −dI∆In = In

{
β

1+mnIn

[
N
|Ω|
−

(
1 − dI

dS

)
1
|Ω|

∫
Ω

Indx − dI
dS

In

]
− γ

}
, x ∈ Ω,

∂In
∂ν

= 0, x ∈ ∂Ω.
(3.27)

Since the right hand of the above equation is uniformly bounded in L∞(Ω), by standard elliptic
regularity we know that {In} is precompact in C1(Ω). Hence by passing to a subsequence we may
assume that In → I∗ ≥ 0 in C(Ω̄). There are two possibilities (a) ‖mnIn‖∞ → ∞ as n → ∞ or (b)
‖mnIn‖∞ ≤ C, where C is a positive constant.

If (a) occurs, then I∗ satisfies −dI∆I + γI = 0, x ∈ Ω,
∂I
∂ν

= 0, x ∈ ∂Ω.
(3.28)

The Fredholm alternative implies that I∗ = 0.
If (b) occurs, then In → 0 uniformly on Ω̄ as n → ∞. Denote mnIn = wn. Then wn is uniformly

bounded in L∞(Ω) and wn → w∗ ≥ 0 in C(Ω̄), where w∗ satisfiesdI∆w∗ + w∗
(

βN
|Ω|(1+w∗)

− γ
)

= 0, x ∈ Ω,
∂w∗
∂ν

= 0, x ∈ ∂Ω.
(3.29)

If w∗ ≡ 0, set ŵn = wn
‖wn‖∞

. Then ŵn satisfies−dI∆ŵn = ŵn

{
β

1+wn

[
N
|Ω|
−

(
1 − dI

dS

)
1
|Ω|

∫
Ω

Indx − dI
dS

In

]
− γ

}
, x ∈ Ω,

∂ŵn
∂ν

= 0, x ∈ ∂Ω.
(3.30)
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By standard elliptic regularity we may assume that ŵn → ŵ in C(Ω̄). Then ŵ ≥ 0,. 0 satisfiesdI∆ŵ + ŵ
(
βN
|Ω|
− γ

)
= 0, x ∈ Ω,

∂ŵ
∂ν

= 0, x ∈ ∂Ω.
(3.31)

It follows from the strong maximum principle that ŵ > 0 on Ω̄. So λ1(dI , βN/|Ω| − γ) = λ∗ = 0, which
implies R0 = 1. This is a contradiction to the assumption R0 > 1. Hence w∗ ≥ 0,. 0 in Ω̄. Using the
strong maximum principle again, we know that w∗ > 0 on Ω̄. It follows from Lemma A.2 that (3.29)
has a unique positive solution w∗ as λ1(dI , βN/|Ω| − γ) = λ∗ < 0.

�

4. Numerical simulation

To illustrate the influences of the population diffusion and the saturation coefficient on system (1.2),
we suppose the spatial domain Ω = [0, 1]. Let β(x) = sin(2πx) + a, γ(x) = cos(2πx) + b, where
a > 1, b > 1. Take S (x, 0) = sin(πx) + 1, I(x, 0) = sin(πx) + 1, a = 1.5, b = 4.5. Then N =∫

Ω
(S (x, 0) + I(x, 0))dx = 3.2731 satisfies

3 =

∫
Ω
γ(x)dx∫

Ω
β(x)dx

<
N
|Ω|

<
1
|Ω|

∫
Ω

γ(x)
β(x)

dx < max
Ω

γ(x)
β(x)

= 9.1094, (4.1)

where 1
|Ω|

∫
Ω

γ(x)
β(x) dx = 4.0249. Hence Ω+, Ω− are nonempty, and Ω is a high-risk domain which implies

that R0 > 1 by Proposition 1.1 (iii).
(i) Firstly, we explore the influence of dS on system (1.2). Fix dI = 0.5 and m = 2. A numerical

positive equilibrium solution (S (x), I(x)) to (1.2) was computed in Figure 2(1) with dS = 0.1. When dS

is large, we find that S (x) tends to a constant and I(x) closely approximates the unique positive solution
of (1.6) (see Figure 2(2) with dS = 103), which is consistent with Theorem 1.3 (i). As dS decreases,
the value of I(x) decreases too. In Figure 2(3), I(x) closely approximates zero with dS = 10−6, which
coincides with the results of Theorem 1.3(ii) and Corollary 1.4.

If we take a = 1.5 and b = 1.2, then 3.2731 = N
|Ω|

> max
x∈Ω̄

γ(x)
β(x) = 2.7514, which implies that

R0 > 1 by Proposition 1.1(i) and (ii). By taking dI = 0.5 and dS = 10−6, we find that I(x) closely
approximates a positive constant (see Figure 2(4)), which coincides with the results of Theorem 1.3
(ii) and Corollary 1.5.

(ii) Secondly, we analyze the asymptotic profile of the equilibrium solution (S (x), I(x)) to system
(1.2) when dS and dI are small. Fix a = 1.5, b = 4.5 and m = 2. Then Ω+ and Ω− are nonempty
from (4.1). By taking dS = 10−4 and dI = 0.2 × 10−4, we find that (0.0470, 0.5590) ≈ {x ∈ Ω : I∗ >
0} $ Ω+ = (0.0281, 0.5663), which coincides with the result of Theorem 1.6 with d < 1 (see Figure
3(1)–(2)). By taking dS = 10−4 and dI = 2 × 10−4, we find that [0, 0.6954) = {x ∈ Ω : I∗ > 0} k Ω+ =

(0.0281, 0.5663), which coincides with the result of Theorem 1.6 with d > 1 (see Figure 3(1), (3)).
(iii) Thirdly, we explore the asymptotic profile of the equilibrium solution (S (x), I(x)) to system

(1.2) when dI is large. Fix a = 1.5, b = 4.5 and m = 2. Then Ω is a high-risk domain from (4.1). A
numerical positive equilibrium solution (S (x), I(x)) to (1.2) was computed (see Figure 4). In
Figure 4(1), by taking dS = dI = 104, we find that (S (x), I(x)) closely approximates a constant

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3885–3913.
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(1) a = 1.5, b = 4.5 and dS = 0.1

(2) a = 1.5, b = 4.5 and dS = 103

(3) a = 1.5, b = 4.5 and dS = 10−6

(4) a = 1.5, b = 1.2 and dS = 10−6

Figure 2. The influence of dS on the EE (S (x), I(x)) with dI = 0.5 and m = 2. Left column:
the profile of S (x); Right column: the profile of I(x).
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(1) (2) (3)

Figure 3. a = 1.5, b = 4.5 and m = 2. (1): Graph of N
|Ω|
β(x) − γ(x); Ω+ = (0.0281, 0.5663).

(2): The profile of I(x) with dS = 10−4 and dI = 0.2 × 10−4; {x ∈ Ω : I∗ > 0} ≈
(0.0470, 0.5590). (3): The profile of I(x) with dS = 10−4 and dI = 2 × 10−4; {x ∈ Ω :
I∗ > 0} ≈ [0, 0.6954). Here, I∗ is the solution of (1.10).

equilibrium solution, which coincides with the result of Theorem 1.8(i). In Figure 4(2), by taking
dS = 0.1 and dI = 104, we find that I(x) closely approximates a positive constant, which coincides
with the result of Theorem 1.8(ii).

(iv) Finally, we show the influence of saturation coefficient m on system (1.2). Fix a = 1.5, b = 4.5,
dS = 0.1 and dI = 0.5. Then R0 > 1 from (4.1). A numerical positive equilibrium solution (S (x), I(x))
to (1.2) was computed (see Figure 5). In Figure 5(1), by taking m = 2, there is a positive equilibrium
solution (S (x), I(x)) to (1.2). In Figure 5(2), by taking m = 103, we find that (S (x), I(x)) closely
approximates the DFE (N/|Ω|, 0), which coincides with the result of Theorem 1.9.

5. Discussion

In this paper, we investigate an SIS reaction-diffusion population model (1.2) with saturated
incidence rate βĪS̄ /(1 + mĪ). We focus on the existence of EE and particularly the effects of the
diffusion rates and the saturated coefficient on asymptotic profiles of EE. Similar questions are
addressed for the model with the standard incidence rate βS̄ Ī/(S̄ + Ī) in [1,20] or the bilinear rate βS̄ Ī
in [7, 16, 25].

Firstly, by introducing the basic reproduction number R0 as in [1,7], we obtain for (1.2) that there is
at least one EE if R0 > 1, especially, EE exists uniquely when dS ≥ dI . In contrast to [1], the definition
of R0, Ω+ and Ω− for our model (1.2) depends on the average population density, i.e. N/|Ω|. From the
epidemiology point of view, the more crowded the population is, the easier endemic a disease becomes.

Secondly, we analyse the asymptotic profile of EE when it exists. Regarding this, it is worthwhile
to mention the following three results.

(i) The diffusion rate of the susceptible individuals dS is small. Theorem 4 in [1] indicates that the
asymptotic profile is some spatially inhomogeneous DFE. However, our results for (1.2) show that EE
(if it exists) may approach a coexistence limiting equilibrium where the susceptible individuals
spatially heterogeneously exist and the infected population is a spatially homogeneous state (see
Theorem 1.3(ii) and Corollary 1.5). Furthermore, we observe that the coexistence limiting
equilibrium tends to a spatially inhomogeneous DFE when the saturated coefficient m is large. From a
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(1) dS = 104 and dI = 104

(2) dS = 0.1 and dI = 104

Figure 4. The profile of the EE (S (x), I(x)) when dI is large with a = 1.5, b = 4.5 and m = 2.
Left column: S (x); Right column: I(x).

(1) m = 2

(2) m = 103

Figure 5. The influence of m on the EE (S (x), I(x)) with a = 1.5, b = 4.5, dS = 0.1 and
dI = 0.5. Left column: the profile of S (x); Right column: the profile of I(x).
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disease control point of view, if a disease is governed by system (1.2), it is not enough to just restrict
the movement of the susceptible individuals to completely eradicate the disease in the whole habitat
in certain situations, especially if the rate of disease transmission β is a constant and Ω is a high-risk
domain; see Corollary 1.5 (i).

(ii) dI → 0 and dI/dS → d ∈ (0,∞). Theorem 1.1(2) and Corollary 1.1(i) of [20] show that the
existence habitat of the infective individuals is exactly the high-risk set. However, in our results, the
ratio d plays a key role (see Theorem 1.6 and Remark 1.7). If d = 1, the infected individuals survive
exactly in the high-risk set; if d ∈ (0, 1), the habitat of infected individual is confined within some
subset of the high-risk set; if d > 1, the infected individuals only die out at part of the low-risk sites.
This information suggests that reducing the radio d to less than 1 will help to control disease; in other
words, the more isolated the patients become, the better disease control is.

(iii) The saturated coefficient m is large. For model (1.2), Theorem 1.9 indicates that the EE tends
to the DFE, i.e., the infective individuals cannot persist. This result seems to coincide with the realistic
intuition: the more inhibition effect from the behavioral change of the susceptible individuals when
their number increases or from the crowding effect of the infective individuals, the better for disease
control.

Finally, we would like to mention some open problems left for future study: (1) the existence of EE
when dS < dI and R0 ∈ (dS /dI , 1); (2) the asymptotic profile of EE when R0 > 1 and 1

|Ω|

∫
Ω

γ(x)
β(x) dx <

N
|Ω|
≤ max

x∈Ω̄

γ(x)
β(x) as dS → 0+; (3) the uniqueness of EE if it exists when dS < dI .
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Appendix

We recall the following well-known facts without proof.
Let λ1(d, g) be the principal eigenvalue ofd∆ϕ + g(x)ϕ + λϕ = 0, x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω,

(A.1)

where g(x) ∈ L∞(Ω) and d > 0. It is folklore that λ1(d, g) is given by

λ1(d, g) = inf
{∫

Ω

(
d|∇ϕ|2 − g(x)ϕ2

)
dx : ϕ ∈ H1(Ω) and

∫
Ω

ϕ2dx = 1
}
. (A.2)

The properties of λ1(d, g) are stated as follows; they can be found in [1, 3].

Lemma A.1.
(i) If g1(x) ≤ g2(x) in Ω with gi ∈ L∞(Ω) for i = 1, 2, then λ1(d, g1) ≥ λ1(d, g2) with equality holds if
and only if g1 = g2 a.e. in Ω;

(ii) if g ∈ L∞(Ω) is non-constant, then λ1(d1, g) < λ1(d2, g) when d1 < d2;

(iii) λ1(d, g) depends continuously on g and d, and it satisfies

lim
d→0+

λ1(d, g) = min
x∈Ω̄
{−g(x)} and lim

d→∞
λ1(d, g) = −

1
|Ω|

∫
Ω

g(x)dx. (A.3)

The following lemma is about the existence of an elliptic problem and its asymptotic profile (as
d → 0+), which can be found in [3] or can be directly proved by an upper/lower solution argument.
Let us denote h+(x) := max{h(x), 0} for any function h defined on Ω̄.

Lemma A.2. Suppose that positive functions a(x), b(x), d(x) ∈ Cα(Ω̄). Then the following statements
hold for the problem d∆u +

(
a(x)

1+b(x)u − c(x)
)

u = 0, x ∈ Ω,
∂u
∂ν

= 0, x ∈ ∂Ω.
(A.4)
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(i) If λ1(d, a − c) ≥ 0, then u = 0 is the only non-negative solution of (A.4);

(ii) if λ1(d, a − c) < 0, then (A.4) has a unique positive solution u ∈ C2+α(Ω̄). Furthermore, u→
(

a−c
bc

)+

as d → 0+ provided a(x0) − c(x0) > 0 for some x0 ∈ Ω̄.

To obtain the priori estimates for solutions, the following maximum principle (due to Lou and
Ni [18]) and the Harnack’s inequality (see, e.g., [17]) are useful.

Lemma A.3. Suppose that g ∈ C(Ω̄ × R).

(i) Assume that ω ∈ C2(Ω) ∩C1(Ω̄) and satisfies∆ω(x) + g(x, ω(x)) ≥ 0, x ∈ Ω,
∂ω
∂ν

= 0, x ∈ ∂Ω.

If ω(x0) = max
x∈Ω̄

ω(x), then g(x0, ω(x0)) ≥ 0.

(ii) Assume that ω ∈ C2(Ω) ∩C1(Ω̄) and satisfies∆ω(x) + g(x, ω(x)) ≤ 0, x ∈ Ω,
∂ω
∂ν

= 0, x ∈ ∂Ω.

If ω(x0) = min
x∈Ω̄

ω(x), then g(x0, ω(x0)) ≤ 0.

Lemma A.4. Let w ∈ C2(Ω) ∩C1(Ω̄) be a positive solution of∆ω(x) + c(x)ω(x) = 0, x ∈ Ω,
∂ω
∂ν

= 0, x ∈ ∂Ω,

where c(x) ∈ C(Ω̄). Then there exists a positive constant C = C(n,Ω, ‖c‖∞) such that

max
Ω

w ≤ C min
Ω

w.
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