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Abstract: In this paper, a delayed Nicholson,s blowflies model with a linear harvesting term is
investigated. By transforming the model into an equivalent integral equation, and applying a fixed
point theorem in cones, we establish a sufficient condition which ensure the existence of positive almost
periodic solutions for the Nicholson,s blowflies model. The results of this paper are completely new
and complement those of the previous studies. The approach is new.
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1. Introduction

In recent years, various Nicholson,s blowflies models have been extensively studied by many
scholars due to their theoretical and practical significance in biology. In 1954 Nicholson [1] and in
1980 Gurney et al. [2] proposed the following Nicholson,s blowflies model

ẋ(t) = −δx(t) + px(t − τ)e−ax(t−τ), δ, p, τ, a ∈ (0,∞) (1.1)

to describe the population of the Australian sheep-blowfy lucilia cuprina. Here x(t) denotes the size
of population at time t, p denotes the maximum per capita daily egg production rate, δ denotes the
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per capita daily adult death rate, 1
a denotes the size at which the blowfly population reproduces at its

maximum rate, τ denotes the generation rate. Since then, model (1.1) and its revised version have been
extensively investigated. For example, Kulenovic et al. [3] considered the global attractivity of model
(1.1), So and Yu [4] analyzed the stability and uniform persistence of the discrete model of (1.1), Ding
and Li [5] discussed the stability and bifurcation of numerical discretization model (1.1). For more
details, we refer the readers to [6–21].

In 2011, assuming that a harvesting function is the delayed estimate of the true population,
Berezansky et al. [22] presented an overview of the results on the classical Nicholson,s blowflies
models and established the following Nicholson,s blowflies model with time-varying delay and a
linear harvesting term

ẋ(t) = −δx(t) + px(t − τ)e−ax(t−τ) − Hx(t − σ), δ, p, τ, a,H, σ ∈ (0,∞), (1.2)

where Hx(t−σ) is the linear harvesting term, x(t) denotes the size of population at time t, p denotes the
maximum per capita daily egg production rate, δ denotes the per capita daily adult death rate, 1

a denotes
the size at which the blowfly population reproduces at its maximum rate, τ denotes the generation rate.
Berezansky et al. [22] also proposed an open problem: How about the dynamic behaviors of model
(1.2)?

It is well known that the varying environment plays an important roles in many biological and
ecological dynamical systems [23–35]. Inspired by the viewpoint, Duan and Huang [36] proposed the
following Nicholson,s blowflies model with varying coefficients and a linear harvesting term

ẋ(t) = −δ(t)x(t) + p(t)x(t − τ(t))e−a(t)x(t−τ(t)) − Hx(t − σ(t)), (1.3)

where δ(t), p(t), a(t),H(t) : R → (0,+∞), τ(t), σ(t) : R → [0,+∞) are continuous functions. Applying
the fixed point theorem and the properties of pseduo almost periodic function and Lyapunov functional
method, Duan and Huang [36] obtained some sufficient conditions on the existence and convergence
dynamics of positive pseudo almost periodic solution of (1.3).

Here we would like to point out that in real natural world, the almost periodic phenomenon usually
more frequent than periodic ones. Moreover, a great deal of almost periodic phenomenon often
appear in applied science such as physics, mechanics and engineering techqique fields. In recent
years, there are numerous results on the existence of almost periodic solutions to Nicholson,s
blowflies models(see, e.g., [25,37–39]). To the best of knowledge, up to now, there is no paper that
deal with the almost periodic solution of (1.3). Motivated by this discussion, we will investigated the
almost periodic solution of model (1.3). For the sake of simplification, we assume that a(t) = a is a
constant and σ(t) = τ(t), then system (1.3) takes the form as follows

ẋ(t) = −δ(t)x(t) + p(t)x(t − τ(t))e−ax(t−τ(t)) − H(t)x(t − τ(t)), t ∈ R. (1.4)

The main aim of this article is to discuss the existence of almost periodic solutions of (1.4). By
transforming the model into an equivalent integral equation, and applying a fixed point theorem in
cones, we obtain a set of sufficient condition which guarantees the existence of positive almost periodic
solutions for the Nicholson,s blowflies model (1.4).

The remainder of the paper is organized as follows. In section 2, we introduce some notations and
assumptions, which can be used to check the existence of almost periodic solution of system (1.4). In
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section 3, we present a sufficient condition for the existence of almost periodic solution of (1.4). An
example is given to illustrate the effectiveness of the obtained results in section 4. A brief conclusion
is drawn in section 5.

2. Preliminaries

For convenience, in this section, we would like to introduce some notations, definitions and
assumptions which are used in what follows.

Definition 2.1. [40–41] Let f (t) : R → Rn be continuous in t. f (t) is said to almost periodic on R, if
for any ε > 0, the set T ( f , ε) = {δ : | f (t + δ) − f (t)| < ε,∀t ∈ R} is relatively dense, i.e., for ∀ε > 0, it
is possible to find a real number l = l(ε) > 0, for any interval with length l(ε), there exists a number
δ = δ(ε) in this interval such that | f (t + δ) − f (t)| < ε, for ∀ ∈ R.

Definition 2.2. Let z ∈ Rn and Q(t) be a n × n continuous matrix defined on R. The linear system

dz
dt

= Q(t)z(t) (2.1)

is said to admit an exponential dichotomy on R if there exist constants k, λ > 0, projection P and the
fundamental matrix Z(t) of (3.1) satisfying

||Z(t)PZ−1(s)|| ≤ ke−λ(t−s), f or t ≥ s, ||Z(t)(I − P)Z−1(s)|| ≤ ke−λ(t−s), f or t ≤ s.

In this paper, we denote by AP(R) the set of such function. Let BC(R,R) denote the set of bounded
continuous functions from R to R, ||.|| denote the supremum norm || f || = supt∈R | f (t)|.

Lemma 2.1. [41–42] If the linear system (3.1) admits an exponential dichotomy, then the following
almost periodic system

dz
dt

= Q(t)z(t) + g(t) (2.2)

has a unique almost periodic solution z(t) and

z(t) =

∫ t

−∞

Z(t)PZ−1(s)g(s)ds −
∫ +∞

t
Z(t)(I − P)Z−1(s)g(s)ds.

Lemma 2.2. [41–42] Let ai(t) be an almost periodic function on R and ai(t) > 0. Then the system

dz
dt

= diag(−a1(t),−a2(t), · · · ,−an(t))z(t) (2.3)

admits an exponential dichotomy.

Remark 2.1. It follows from Lemma 3.2 that system (3.3) has a unique almost periodic solution z(t)
which takes the form

z(t) =

∫ t

−∞

Z(t)Z−1(s)g(s)ds =

(∫ t

−∞

e−
∫ t

s a1(u)dug1(s)ds, · · · ,
∫ t

−∞

e−
∫ t

s an(u)dugn(s)ds
)
.
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Lemma 2.3. [43] Let C be a normal and solid cone in a real Banach space X, and φ : C0 → C0

be a nondecreasing operator, where C0 is the interior of C. Suppose that there exists a function φ :
(0, 1) × C0 → (0,+∞) such that for each λ ∈ (0, 1) and x ∈ C0, φ(λ, x) > λ, φ(λ, .) is nondecreasing in
C0, and Φ(λx) ≥ φ(λ, x)Φ(x). Assume, in addition, there exists z ∈ C0 such that Φ(z) ≥ z. Then Φ has
a unique fixed point x∗ in C0. Moreover, for any initial x0 ∈ C0, the iterative sequence

xn = Φ(xn−1), n ∈ N, (2.4)

satisfies
||xn − x∗|| → 0(n→ +∞). (2.5)

Throughout this paper, denote

h+ = sup
t∈R

h(t), h− = inf
t∈R

h(t), a+ = max
t∈R
{a(t)},

where h(t) is a bounded continuous function on R. Denote

f (x) =

 xe−ax −
H(t)x
p(t) , 0 ≤ x ≤ 1

a ,
1
ae −

H−
ap+ , x > 1

a .
(2.6)

For convenience, we make the following assumptions.

(H1) δ− > 0, p− > 0 and τ− > 0.

(H2) 0 < p+

δ−

(
1
ae −

H−
ap+

)
≤ 1

a .

(H3) p−− H+

a
δ+ > 1.

Remark 2.2. In model (1.4), Hx(t − τ(t)) is the linear harvesting term, x(t) denotes the size of
population at time t, p(t) denotes the maximum per capita daily egg production rate at time t, δ(t)
denotes the per capita daily adult death rate at time t, 1

a(t) denotes the size at which the blowfly
population reproduces at its maximum rate at time t, τ(t) denotes the generation rate at time t. Thus
all the conditions (H1)–(H3) have practical significance of neural networks. If these variables in
model (1.4) satisfy an appropriate condition, then model (1.4) has a unique almost periodic solution.
From this viewpoint, all the assumptions (H1)–(H3) represent some problem of applied nature.

3. Existence of almost periodic solution

In this section, we will establish sufficient conditions on the existence of almost periodic solutions
of (1.4). Now we are in a position to state our main results on the existence of almost periodic solution
for system (1.4).

Lemma 3.1. Suppose that (H1) and (H2) hold. Then, in the sense of almost periodic nonnegative
solution, system (1.4) is equivalent to the following integral equation:

x(t) =

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s) f (x(s − τ(s))]ds, t ∈ R. (3.1)
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That is to say, every almost periodic nonnegative solution ϕ of system (1.4) is an almost nonnegative
solution of (3.1), and vice versa.

Proof. Let ϕ be an almost periodic nonnegative solution of (1.4). Notice that τ(t) is almost periodic,
we can easily obtain

ϕ(· − τ(·)) ∈ AP(R).

Then
p(·)ϕ(· − τ(·))e−ax(·−τ(·)) − H(·)ϕ(· − τ(·)) ∈ AP(R).

Since δ− > 0, it follows from Lemma 2.1 that

ϕ(t) =

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s) f (ϕ(s − τ(s))]ds, t ∈ R.

By (H2), we have

ϕ(t) ≤
∫ t

−∞

e−δ
−(t−s)

[
p+

(
1

a−e
−

H−

a+ p+

)]
ds

=
p+

δ−

(
1

a−e
−

H−

a+ p+

)
≤

1
a+
, t ∈ R.

Then
p(s)ϕ(s − τ(s))e−aϕ(s−τ(s)) − H(s)ϕ(s − τ(s)) = f (s − τ(s)), s ∈ R.

Thus

ϕ(t) =

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s) f (x(s − τ(s))]ds, t ∈ R.

So, ϕ is an almost periodic solution of system (3.1). Similar to the above proof, for every almost
periodic nonnegative solution ψ of system (3.1), we can easily to prove that ψ is an almost periodic
solution of system (1.4). The proof of Lemma 3.1 is completed.

Now we will state our main result.

Theorem 3.1. Suppose that (H1)–(H3) are satisfied. Then (1.4) has exactly one almost periodic
solution x∗ with a positive infimum. Moreover, for any initial x0 ∈ AP(R) with positive infimum, the
iterative sequence

xk(t) =

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s)xk−1(s − τ(s))e−axk−1(s−τ(s)) − H(s)xk−1(s − τ(s))]ds, k = 1, 2, · · · (3.2)

satisfies
||xk − x∗||AP(R) → 0, k → +∞. (3.3)

Proof. Let
C = {x ∈ AP(R)| x(t) ≥ 0 for all t ∈ R}.
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It is easy to prove that C is a normal and solid cone in AP(R), and

C0 = {x ∈ AP(R)| There exists ε > 0 such that x(t) > ε for all t ∈ R}.

Define a nonlinear operator Φ on C0 as follows

Φ(x)(t) =

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s) f (x(s − τ(s))]ds, t ∈ R.

Next, we will prove that Φ satisfies all the assumptions in Lemma 2.3. It is not difficult to prove that Φ

is a nondecreasing operator. Firstly, we show that Φ is from C0 to C0. Let x0 ∈ C0. Then there exists a
ε0 > 0 such that x0(t) ≥ ε0 for all t ∈ R. Thus for all t > R, we have

Φ(x)(t) ≥
∫ t

−∞

e−δ
+(t−s)

[
p−min

{
ε0e−aε0 −

H+

ap−
,

1
ae
−

H−

ap+

}]
ds

=
p−min

{
ε0e−aε0 − H+

ap− ,
1
ae −

H−
ap+

}
δ+

> 0,

which implies that Φ(x) ∈ C0. By (H3), we can choose ε∗ ∈ (0, 1
a ) satisfying

p−ε∗e−aε∗ − H+

a

δ+
≥ 1.

Then for t ∈ R,

Φ(ε∗)(t) ≥
p−ε∗e−aε∗ − H+

a

δ+
≥ ε∗,

Namely, Φ(ε∗) ≥ ε∗. Next, we will show that there exists a function φ : (0, 1)×C0 → (0,+∞) such that
for each λ ∈ (0, 1) and x ∈ C0, φ(λ, x) > λ, φ(λ, ·) is nondecreasing in C0, and φ(λ, x) ≥ φ(λ, x)φ(x). For
λ ∈ (0, 1) and x ∈ (0,+∞), let

ψ(λ, x) =


λe(1−λ)ax, 0 ≤ x ≤ 1

a ,

λ 1
1

a−e−
H−

a+ p+

e−λax, 1
a < x < 1

λa ,

1, x > 1
λa .

(3.4)

Hence, for λ ∈ (0, 1) and x ∈ (0,+∞), we get

f (λx) ≥ ψ(λ, x) f (x).

Let
φ(λ, x) = ψ(λ, inf

t∈R
x(t)), λ ∈ (0, 1), x ∈ C0.

Since ψ(λ, ·) is nondecreasing in (0,+∞), then ϕ(λ, ·) is nondecreasing in (0,+∞). In addition, we have
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Φ(λx)(t) =

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s) f (λx(s − τ(s))]ds

≥

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s)ψ(λ, x(s − τ(s)) f (x(s − τ(s))]ds

≥

∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s)φ(λ, x) f (x(s − τ(s))]ds

≥ φ(λ, x)
∫ t

−∞

e−
∫ t

s δ(θ)dθ[p(s) f (x(s − τ(s))]ds

≥ φ(λ, x)Φ(x)(t).

Thus for all λ ∈ (0, 1) and x ∈ C0, we have Φ(λx) ≥ φ(λ, x)Φ(x).

Applying Lemma 2.3, we can conclude that (3.1) has exactly one almost periodic solution x∗ with a
positive infimum. In view of Lemma 3.1, we know that x∗ is the unique almost periodic solution with
a positive infimum of (1.4). By (2.4) and (2.5), we can conclude that (3.2) and (3.3) hold. The proof
of Theorem 3.1 is completed.

Remark 3.1. In [36], the authors investigated the convergence dynamics of positive pseduo almost
periodic solution of Nicholson,s blowflies model with varying coefficients and a linear harvesting term
by applying the fixed point theorem and the properties of pseduo almost periodic function and Lyapunov
functional method. They did not consider the existence of almost periodic solution. In this paper, we
consider the existence of positive almost periodic solutions for the Nicholson,s blowflies model. The
results of this paper are completely new and complete the previous results in [36].

Remark 3.2. Although the model (1.1) of this paper is a special case of the model (1.1) in [44], the
analysis method is different from that in [44]. In addition, check carefully, we find that the method used
in this paper is similar to that in [20] and [45], but the analysis technique is quite different due to the
different models.

4. Numerical example

In this section, we will give an numerical example and its simulations to illustrate the effectiveness
of our main results. Considering the following delay Nicholson,s blowflies model with a linear
harvesting term

ẋ(t) = −δ(t)x(t) + p(t)x(t − τ(t))e−ax(t−τ(t)) − H(t)x(t − τ(t)), (4.1)

where

δ(t) = 1 +
| sin t +

√
3 sin

√
2t|

20
, p(t) = 2 +

1 + sin2 πt
5

,

H(t) = 0.04 + 0.02 sin2 t, a = 1, τ(t) = 1 + 0.02 sin t.

Then we have
δ− = 1, δ+ = 1.1, p+ = 2.4, p− = 2.2,H+ = 0.06,H− = 0.02.
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Thus all assumptions in Theorems 3.1 are satisfied. Thus we can conclude that (4.1) has exactly one
almost periodic solution with a positive infimum. The results are verified by the numerical simulations
in Figure 1.
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Figure 1. Time response of state variable x(t).

5. Conclusion

In this paper, we study a delay Nicholson,s blowflies model with a linear harvesting term. By
transforming the model into an equivalent integral equation, and applying a fixed point theorem in
cones, we establish some sufficient conditions for the existence of almost periodic solution of the delay
Nicholson,s blowflies model with a linear harvesting term. The obtained sufficient conditions are given
in terms of algebraic inequalities, which is easy to check in practice. An example with its numerical
simulations is given to illustrate the feasibility of the theoretical findings. The results of this article are
completely new and complement those of the previous studies in [22,36].
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