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Abstract: A new alcoholism model with treatment and effect of Twitter is introduced. The stability
of all equilibria which is determined by the basic reproductive number R, is obtained. The occurrence
of backward and forward bifurcation for a certain defined range of R, are established by the center
manifold theory. Numerical results and sensitivity analysis on several parameters are conducted. Our
results show that Twitter may be a good indicator of alcoholism model and affect the emergence and
spread of drinking behavior.
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1. Introduction

The harmful use of alcohol causes a large disease, social and economic burden in societies. In
2012, about 3.3 million deaths, or 5.9% of all global deaths, were attributable to alcohol consumption.
Alcohol consumption can have an impact not only on the incidence of diseases, injuries and other
health conditions, but also on the course of disorders and their outcomes in individuals [1]. According
to a research report by the Shanghai Institute of Environmental Economics, the number of patients due
to alcoholism has increased by 28.5 times, and the number of deaths has increased by 30.6 times in the
past seven years [2]. Thus, it is very important to study drinking behavior.

Recently, many authors have studied mathematical models of drinking [3, 4, 5, 6, 7, 8, 9]. Bani et al.
[3] studied the influence of environmental factors on college alcohol drinking patterns. Mulone et al.
[4] developed a two-stage (four compartments) model for youths with serious drinking problems and
their treatment, and the stability of all the equilibria was obtained. Mushayabasa et al. [S] formulated a
deterministic model for evaluating the impact of heavy alcohol drinking on the reemerging gonorrhea
epidemic. Lee et al. [6] studied the optimal control intervention strategies in low- and high-risk
problem drinking populations. Mubayi et al. [7] studied the impact of relative residence times on
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the distribution of heavy drinkers in highly distinct environments and found that alcohol consumption
is a function of social dynamics, environmental contexts, individuals’ preferences and family history.
Huo, Chen and Xiang [8] introduced a more realistic binge drinking model with time delay, in which
time delay is used to represent the time lag of the immunity against drinking. Xiang, Liu and Huo [9]
proposed a new SAIRS alcoholism model with birth and death on complex heterogeneous networks.

Media coverage is one of the effective ways to control alcoholism or infectious diseases, many
authors have studied alcoholism or epidemic models with media coverage [10, 11, 12, 13, 14]. Cui et al.
[10] developed a three dimensional compartmental model to investigate the impact of media coverage
to the spread and control of infectious diseases. Pawelek et al. [11] studied the impact of twitter on
influenza epidemics. Huo and Zhang [12] introduced a more realistic mathematical influenza model
including dynamics of Twitter, which might reduce and increase the spread of influenza. Huo and
Zhang [13] formulated a novel alcoholism model which involved impact of Twitter and investigated
the occurrence of backward, forward bifurcation and Hopf bifurcation. Huo and Yang [14] introduced
a novel SEIS epidemic model with the impact of media. Above results show that media coverage
can regard as a good indicator in controlling the emergence and spread of the epidemic disease or
alcoholism. Many scholars have done a lot of researches on drinking or infectious diseases with or
without media coverage [15, 16, 17, 18, 19, 20, 21, 22].

Alcoholism can be defined as a pattern of alcohol use that compromises the health and safety of
oneself and others. There are a variety of treatment methods currently available, such as behavioral
treatments, medications and mutual-support Groups [23]. The goal of a person pursuing treatment is to
abstain from alcohol or to cut back on drinking. Many people have studied the epidemic or alcoholism
models with treatment [24, 25, 26].

Motivated by the above [13, 14], we set up a new alcoholism model with treatment and effect of
Twitter in this paper. We derive the basic reproductive number of the model and study the stability of
our model. Furthermore, we investigate the occurrence of backward and forward bifurcation.

The organization of this paper is as follows: In Section 2, we present a new alcoholism model
with treatment and effect of Twitter. In Section 3, we derive the basic reproductive number and study
the stability of all equilibria. We also study the occurrence of backward and forward bifurcation. In
Section 4, we perform some numerical simulations to illustrate and extend our main results. Sensitivity
analysis and some discussion are given in last section.

2. The model formulation

2.1. System description

The total population in this model is divided into four compartments: S (¢), L(¢), H(t), R(t). S(t)
represents the number of moderate drinkers, that is, the people who do not drink or drink within daily
and weekly limits [13]. L(¢) represents the number of light problem drinkers, that is, the drinkers who
drink beyond daily or weekly ceiling [13]. H(¢) represents the number of heavy problem drinkers,
that is, the drinkers who drink far more than daily and weekly limits [13]. R(¢) represents the number
of quitting drinkers , that is, the people who quit problem drinking by treatment permanently. 7'()
represents the number of messages that Twitter provide about alcoholism at time t. The total number
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of population at time t is given by

N(@) =S()+ L(t) + H(t) + R@®).

The population flowing among those compartments is shown in the following diagram (Figure 1).
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Figure 1. Flowchart of the alcoholism model with the influence of Twitter.

The diagram leads to the following system of ordinary differential equations:

ds

i A+qH-BSHe ™" — a8,
dL

E =ﬁSHe_“T —pL - Cl’lL,

dH

U =pL—-yH - qH — (a1 + a»)H,
dR o R

_ = - s

dr Y 1

dr

N =S + wolL + usH + uyR — 77T.

2.1

Where all the parameters are positive constants and A is the recruitment rate of the population. a; is
the natural death rate. a; is the alcoholism-related death rate. S is the rate of transmission between
moderate drinkers and heavy problem drinkers, and it is reduced by a factor ™7 due to the behavior
change of the public after reading information about alcoholism. « is the coeflicient that determines
how effective the drinking information can reduce the transmission rate. 7 is outdated-rate of tweets.
p is the transmission rate from the light problem drinkers to the heavy problem drinkers. After treat-
ment, the transfer rate of the heavy problem drinkers to the moderate drinkers is ¢, the transfer rate
of the heavy problem drinkers to the quitting drinkers is y. w;(i = 1,2,3,4) are the rates that mod-
erate drinkers, light problem drinkers, heavy problem drinkers and quitting drinkers may tweet about

alcoholism during an alcoholism occasion, respectively.
Adding the first four equations of system (2.1), we have
dN dS dL dH dR

—=—+—+—+—=A-aN-ayH<A-a)N.
ar dr ar T ar T ar Gy m @i =s Ao
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Then it follows that lim sup N(r) < 2.

t—00

According to the fifth equation of system (2.1), we obtain

dr Ay + o + pz +
FTi 1S + oL+ pusH + pyR — 7T < (i + o + 3+ 1)
@

1T,

then it follows that lim sup T'(¢) < W, so the set is
>0

Ay + po + pis +,U4)}

A
Q={(S.L.HRT)€R,:0<S,LLHREN< —0<T <
a7

(03]

(2.2)
Therefore, we will consider the global stability of system (2.1) on the set Q.

3. Analysis of the model

3.1. Alcohol free equilibrium and the basic reproductive number

It is easy to see that system (2.1) always has a alcohol free equilibrium Py = (S, Lo, Ho, Ry, To),
where
S() = A,Lo = O,H() = O,Ro = O,TO = M
aq )T
By applying the method of the next generation matrix in [27], we obtain the basic reproduction

number R,. System (2.1) can be written as

dx
~-F — V(x),
— = F(0) - V()
where x = (L,S,H,R, T)",
BSHe T pL+a L
0 —A —gH +BSHe™ T + 8
F(X) = 0 , and V()C) = —pL + qH + 'yH + (a/] + a,z)H
0 ~yH + aR
0 —p1S — oL — psH — R + 7T

The Jacobian matrices of F(x) and V(x) at the alcohol free equilibrium P, are

00 %55 00
0 0 0 00
DF(Po)={ 0 0 0 0 0|
00 0 00
00 0 00
and

p+a; 0 0 0
0 ) ’D\/—f;e_(y:ll’A -q 0
DV(Py) = -p 0 a+ar+g+y 0 O
0 0 -y a; 0
—H2  —H M3 M4 T
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Therefore, the basic reproduction number R is

—ap A

ABoe a1t
Ry = ppe . 3.1)
a(a; +p)ar +ax+qg+7y)

3.2. Stability of alcohol free equilibrium

Theorem 1. When Ry < 1 and T(¢) > % the alcohol free equilibrium P, of system (2.1) is globally

asymptotically stable; When Ry < 1 and T'(¢) < A the alcohol free equilibrium Py of system (2.1) is

T’

locally asymptotically stable; When Ry > 1, the alcohol free equilibrium Py of system (2.1) is unstable.
Proof. The characteristic equation of the system (2.1) at the alcohol free equilibrium Py is

- A

A+ 0 /;—]Be “r —q 0 0
0 A+ (a +p) —’;—fgeizﬁlf 0 0
0 —p A+ (@ +a+qg+7y) 0 o |=0 (3.2)
0 0 -y A+ a 0
—H —H2 —H3 My A+T
Therefore, Eq.(3.2) can be written as
A —ap A
A+ DA+ a)?|(A+ (@1 +p)A+ (1 + a2 + g +7)) - ?e | =0. (3.3)
1
Therefore, the three eigenvalues of the Eq.(3.2) are 4y = -1, 4, = —a;, 43 = —a4, and the other
eigenvalues are determined by the equation
At (@ + P+ (@1 + s+ g+ 7)) — PP (3.4)
ay
Therefore, the Eq.(3.4) can be written as
A +A2a+ar+qg+y+p)+(a +p)ay +ar+g+v)(1 —Ry) =0. 3.5

By Viete theorem, we have
A+ As5=—QCay+ar+qg+y+p) <0,

and
Agds = (¢ + p)(ay + a2 + g +y)(1 — Ry).

Thus, when R < 1, the alcohol free equilibrium Py is locally asymptotically stable; when Ry > 1, the
alcohol free equilibrium Py is unstable.
Define the Lyapunov function

M(S,L,H,R,T) = pL(t) + (a + p)H(?).
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It is clear that M(#) > O and the equality holds if and only if L(r) = H(f) = 0. Differentiating
M(S,L,H,R,T) and from the Eq.(2.2), we obtain S (f) < &. Therefore, when T'(¢) > A " we have

dM(S,L,H,R,T) dL(?) (o + )dH(t)
= o
dt P~ IR

=p(BSHe™" — (a; + p)L) + () + p)(pL — (@) + a2 +y + @)H)
= [pBS e — (a1 +p)a) +ar +y + q)|H

—au A
< [%e ar — (g +p)ag+ay+y+ q)]H (3.6)
1
- A
Aﬁpe T
= (a; + +ar+y+qQH -1
(@ + )+ y + H e s ]

= (a) +p)a; +a +y + @QH[Ry - 1].
It follows that M(S, L, H, R, T) is bounded and non-increasing. Thus, limM(S, L, H, R, T') exists. Note
t—00
that Ry < 1 guarantees that w < 0 for all # > 0. Consequently, for system (2.1) there holds

limL(t) =0, limH(¢) =0.
—o0

—o0

Hence, by LaSalle’s Invariance Principle [28], the alcohol free equilibrium is globally attractive. We
show that the alcohol free equilibrium Py is globally asymptotic stability when Ry < 1.

3.3. Existence of alcoholism equilibrium

Theorem 2. (I) When 6 = 0 and R, > 1, the system (2.1) has a unique positive alcoholism equilibrium
P

(I(I))When 6 # 0 and Ry > max{Ry;, 1}, the system (2.1) has a unique positive alcoholism equilibrium
Py

(IiI)When Rp» = Ry < min{Ryy, 1}, the system (2.1) has a unique positive alcoholism equilibrium P3;
(IV)When Ry, < Ry < min{Ry,, 1}, the system (2.1) has two different positive alcoholism equilibria P;
and P;.

Proof. Assuming the right-hand sides of system (2.1) is 0, we have

A+qgH—-BSHe™™ —a,§ =0,

BSHe™" —pL —a,L =0,

pL—vH - gH — (a) + az)H =0, (3.7)
vH —a R =0,

S + oL + usH + uyR — 7T = 0.

Let(S,L,H,R,T)=(S",L*, H",R*, T") be the solution of Eq.(3.7), we have

A+qH —BS"H e — ;8" =0,

BS*H*e " —pL* —a L" =0,

pL* —yH" — gH" — (a1 + an)H" = 0, (3.8)
vyH* — a1R* = 0,

WS+ oL + usH* + uyR* — T = 0.
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By Eq.(3.8), we obtain

A + lpg — (a1 + p)a) +ar +y + @) |H

ST = )
(03] ap
I (@1 +ar+y+qH"
p b
H*
R* — 7 ,
(03]
" A/Jl H*
= —+ [ti1gp — iy + p)a + a2+ g +7y)

T Pt
taipa(a) + az + g +y) + e + ypap).

Combine the above Eqs.(3.9)-(3.12) and the first equation of Eq.(3.8), we have

OH*
[1 - ]Ro = e_BH 5
Roi
where
Apb
Ry = ,
(a1 +p)a +ax+q+7y)—pq
and
0= —alpigp — (e + p)ag + @+ g +y) + aypo(a) + a2 + g +7y) + @ipzp + ypap)

a1pT

For the sake of simplicity, we define
R02 = R()lel_RO] .
In what follows, we assume
. R .
F(H") = Ry — —Y0H" — ¢
Roi
Thus R
F(H) =60 - g,
Ro
F'(H") = —6?e™1",

The following work is to discuss the properties of Eq.(3.17).

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(I) When 6 = 0 and R, > 1, the existence of the unique alcoholism equilibrium P of system (2.1) can

be obtained by Eq.(3.13), as shown in line L, of Figure 2, where

. A 1
H; = P 1-—).
(a1 +p)a; +ar+q+7y)—pgq Ry
A A 1
§r = ——=(1-—),
0 (0] CZ]( RQ)
. ANaj+a+qg+7y) 1
LO = (1__)’
(a1 +p)a; +ar+qg+7y)—pg Ry
. A 1
R, = e (1-—)

a[(a) +p)a) +ax+q +7y) - pql " R
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A,U] + A
it at[(a; +p)ar +ar + g+ ) — pql

Ty, = [1gp + arpzp + yuap

1
+apo(a + @ +qg+y) — (e +p)ar +ax + g+ )| - IT)'
0

(I) When 6 # 0 and Ry, > 1, we have F(0) = Ry — 1 > 0 and F(c0) = —oco < 0. Assume that
F(H") < 6(1 - I%)' Thus, when 6 > 0 and R, > Ry; or 6 < 0, we obtain F'(H*) < 0. Therefore, there
is a unique positive solution for Eq.(3.17). Thus, the alcoholism equilibrium P} = (S7, L}, H{, R}, T})
can be obtained, as shown in regions 4 and Qp of Figure 2.

(II1) When 6 > 0 and Ry < 1, we have F(0) = Ry — 1 < 0, F(c0) = —co < 0 and F'(H*) < 0. Assume
that F'(H") = 0" — 226 = (™" — £). If F'(H") = 0, Eq.(3.17) has the unique positive solution
H; = éln(%‘) when Ry < Ry;. Meanwhile, we also have

R )
F(H) = Ry — —0H;, — ™" = 0.
Roi

Therefore, we obtain Ry = Rp = Rpe'™ Y . Thus, the alcoholism equilibrium P; =
(S5, L5, H3,R;, T5) can be obtained, as shown in line L, of Figure 2.
(IV) When Ry, < Ry < 1, we have F(H;) > 0. Eq.(3.17) has two different positive solutions H; and
Hy, where H and H) satisfy the following condition H; < H; < H}. Thus, the alcoholism equilibria
Py =(S3, L5, H;,R;, T;) and P, = (S}, L}, H}, R, T}) can be obtained, as shown in region Q of Figure
2.
Remark 1. For simplicity, the six curves (L;,i = 1,2, 3,4,5, 6) divide the space in which R, and 8 are
located into seven regions as shown in Figure 2.

Li: Ry= R01(9),With Ry > 1,

L,: Ry= ROI(Q)el_ROI(g), with Ry < min{ROl(H), 1},

Ly: 6= O,WithRO <1,

L4 0= O,WithRO > 1,

Ls: Ry =Ry (0)e' @ with Ry;(6) < Ry < 1,

L6 . RO =1.
A
2 RD L
L, (Existence of alcoholism Qg —_,
equilibrium P;) 1.8} (Existence of L,
alcoholism L
P — 4
1.6} equilibrium
Q . Ls
A P) L
(Existence of 14fF 6

alcoholism equilibrium P'l) Qs
(Nonexistence of

alcoholism equilibrium)

1.2f

- Q
Q, (Nonexistence of Q, Exist E .
alcoholism equilibrium) 0.8 (Existence o
alcoholism
equilibrium
0.6 Q . .
. P, and P,
Qe (Nonexistence of 3 )
(Nonexistence of 0.4/ alcoholism equilibrium)

alcoholism equilibrium)
024 L2 (Existence of alcoholism
equilibrium P;)
. L .

Ly

L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10 0

Figure 2. The regions for the existence of alcoholism equilibrium of system (2.1).
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3.4. Stability of the alcoholism equilibrium

In this section, we study the local stability of the alcoholism equilibria Pi(i = 0,1,2,3,4). First
we obtain the characteristic matrix of system (2.1) at the alcoholism equilibria P}(i = 0,1,2,3,4), as
follows

A+BH e + 0 BSie i — g 0 —aBS;H; e
—BH e T A+ (ar +p) —BSre i 0  apSiHeT
0 -p A+(y+a,+g+7y) 0 0 =0. (3.20)
0 0 -y A+ @ 0
—H —H2 —H3 —Ha A+T

In order to simplify Eq.(3.20), we have

ay(a; +p)a) +ay +y + q)e T

(D :ﬁe—(lT,* = Aari; RO
Ape_ (YIT
_a(atp)ar+art+y+ Q)eeH;R
- Ap 0>
o7 = (1 +p)ay+a,+y+¢q) _ ﬁ ‘.
p Ro
Then the characteristic equation can be rewritten as:
A+ a))G) =0, (3.21)
G) = A* + ai(HHAX + ay(H)A* + as(H)A + ay(H?) = 0, (3.22)
where
ay(H) = 3a1+ax+qg+y+p+7+HO, (3.23)
aH) = Qay+ax+qg+y+p+10)(a +HO)+ Qay+ax+qg+y+p)1
. N0
+aH; (o= + Q2 — ), (3.24)
01
a;(H) = Qay+ar+q+y+p)a +H D)t
+Ha+ o+ g+ Y H O+ (o) + ay +y)pH; @
. N0
+aH; (R_ +@Qay + az + g+ ¥z — ) + p(uz — )], (3.25)
01
ay(H?) = 7t(a;+p)a; +ax+qg+y)(a + H®) - a (1 +H0)]. (3.26)

Theorem 3. For system (2.1), we assume that y; = y, = s = .

(I) When 6 = 0,a; = 0 and Ry > 1(i.e., Ly), the alcoholism equilibrium Py is locally asymptotically
stable;

(IDWhen 6 # 0, Ry > max{1, Ry;}(i.e., 4, and Qp), ® > a0 and T > p, the alcoholism equilibrium P}
is locally asymptotically stable;

(IIHWhen Ry, = Ry < min{l1, Ry;}(i.e., L), the alcoholism equilibrium P; may be locally stable or not;
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(IV)(A)When Ry, < Ry < min{l1, Ry }(i.e., Qr), the alcoholism equilibrium P is unstable,

(i))When Ry, < Ry < min{l, Ry;}(i.e., Q) and 7 > p, the alcoholism equilibrium P} is locally asymp-
totically stable.

Proof. (DWhen 8 = 0, applying to the proof of (I) of Theorem 2. We linearize the system (2.1) and
evaluate the characteristic equation at the alcoholism equilibrium P;, and get

A+ BHe™ o + 0 BSie™ Mo — g 0 —aBS;Hje "0
—BHe™ 7o A+ (ar+p)  —BSzeho 0  apSyHje™ "o
0 —p A+ (a1 +qg+7y) 0 0 =0.
0 0 -y A+ @ 0
—H —Hi —Hi —Hi A+T

Thus, the characteristic equation can be rewritten as:
A+ a)A+1)Gi(1) =0,

Gi(D) =2+ b2 +b A+ by =0,

where

by = 3a1+q+y+p+ H,
by = Qa;+q+y+p)a+ Hy®),
by = [(a1 +p)a;+7y)+ CVl‘]]HS(I’-

It is clear that b; > 0, b, > 0 and b3 > 0. Applying Routh—Hurwitz [13], by assuming that B =
b1b, — bs. Then, we obtain

B = Qa;+q+vy+p) (Hy®)
+ (7@12 + 5019 + Sayy + Sa1p + ¢* + 2qy + 2gp + ¥ +vp +p2) (HyD)
+6a° + 5 a%q + Sayty + Sap + ai1¢” + 2a.qy
+2a1gp + alyz + 2a1yp + a1p2 >0

Hence, the alcoholism equilibrium Pj is locally asymptotically stable.
(IlWhen p; = up = puz = uq and ® > @46, by Eqgs.(3.23)-(3.26), we have

a(H) = 3+ +q+y+p+7+HD >0,
a(H) = Qay+ax+q+y+p+1)(a) + HO)
+QRa +ay +g+y+p)T >0,
as(H)) = Qay+ar+q+y+p)a + HD)r
+Ha+a + g+ y)H{O+ (o) + az +y)pH{ D > 0,
as(H)) = 71(a; +p)a; +a +q+y)(a) + HHP) —a (1 + H{6)] > 0.

Applying Routh—Hurwitz [13], let C = a;a, — a3. Then, we obtain

C = ClHikz + szlik +c3 >0,

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3595-3622
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where

et = 20701+ PP + PPy + PP g+ D’ p+ PP >0,

c = 7(Da12+(I)a22+d)y2+(I)q2+d)p2+(I)7'2+5CDa1a2+5d)a1)/
20,y +5Pa1g+2Pag+5Pap+Pap+6Da;t
+20gp+20g7+2Pp1+DPyp+20yg+2Da7+20y7 >0,

3 = @t + 507, + a1y2 + 5a12y + a/lq2 + 5a12q + a1p2 + 5a/12p
0o’ T+t + Ty Y T T A Pt pTi Pt T
21 qg+2a1mp+6iaT+2a1yqg+2a1yp+6a1yT
+6 a1 qT+20qT+ 6@ PpT+20pT+2yYqT+2YpT+2qpT
+2a1qp+3alrz+6a/13+2a1a2y+2a2y‘r>0.

Then, let D = as[a;a, — a3] — a?ay, and get
D =d\H;* + d,H; + ds,

It is clear that D > 0 and d; > 0(i = 1,2, 3), when 7 > p. Because the expression of d;,(i = 1,2, 3) are
too long, we list them in Appendix. Hence, the alcoholism equilibrium P is locally asymptotically
stable.

(IH)Applying to the proof of (III) of Theorem 2, when H} = éln(%), we obtain ® = 6. Thus, by
Eq.(3.26), we have

a,(Hy) = 7(a) + p)a; + az + g + y)[(e; + H;®) — ai(1 + H30)] = 0,
and by Eq.(3.23), we have
ay(Hy) =31 +ax+q+y+p+7+ H,0>0.

Thus, we know that Eq.(3.21) has negative and zero eigenvalues. Therefore, the alcoholism equilibrium
P73 may be locally stable or not.

(IV)(i)Applying to the proof of (IV) of Theorem 2, when H; < Hj = éln(%‘), we obtain @ < 6.
Thus, by Eq.(3.26), we have

as(Hy) = t(ay + p)a) + a2 + g + p)[(e; + H;®) — a1 (1 + H30)] <0,
and by Eq.(3.23), we have
ay(Hy) =31 +aa+q+y+p+7+ H;®>0.

Assuming g(H3), g2(H3), g3(H3), g4(H}) is the root of Eq.(3.22), and we assume that the real parts
satisfying Re(g1(H3)) < Re(g2(H3)) < Re(g3(H3)) < Re(g4(H3)), so we obtain

81(H3) + g2(H3) + g3(H3) + g4(H3) = —ai(H3) <0,

and
g1(H3)g2(H73)g3(H3)g4(H3) = ay(H3) < 0.
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There are Re(g1(H3)) < 0 and Re(g4(H3)) > 0, thus, the alcoholism equilibrium P75 is unstable.
(i))When H; > H} = %ln(%), we obtain @ > @, 6. Thus, by Eq.(3.26), we have

as(Hy) = t(ay + p)a) + a2 + g + y)|(a) + H;®) — a; (1 + H;60)] > 0.

By 1 = pa = p3 = py, we have

a(Hy)) = 3a+a+q+y+p+7+H, D >0,
a(Hy) = Qay+ax+g+y+p+1)a+HP)+Ray+ar+g+y+p)7>0,
as(Hy) = Qay+ar+q+y+p)a + H0)t

+a+ o +q+y)aHy® + (o) + ay + y)pH,® > 0.
Applying Routh—Hurwitz [13], by assuming that E = a;a, — as. Then, we obtain
E = elsz + e H, +e3 >0,
where

e = 2(1)2a1+CD2a/2+(D2y+CD2q+(D2p+(I)ZT>O,

e = TP +Pa)’ + DY +OF +Pp* +PT* +5Pa a0, + 5Py +2Dyg+ Dyp
+50a1g+2Pa,y+5Qa1p+2Pa g+ Papp+6Pa7+2Par7+20yT
+20gp+20gTt+2DPpT1 >0,

e = 5a/12a/2+ala/22+a1y2+5a/127+alq2+5a12q+a1p2+5&12p+3a1‘r2
0T+ T+ T+ YT+ Y T+ T+ Pt p T PP T+ 60 + 201 a0y
21 g+2a1mp+6iaT+2a1yqg+2a1yp+ 61 yT+H20yT+H219p
+2a,gT+ 61 qT+ 6@ pT+20pT+2ypT+2YqT+2q9pT > 0.

Then, by assuming that F = as[a;a, — as] — ajas, and get
F = fiH + LH, + fi,

It is clear that D > 0, when f; > 0(i = 1,2,3) and 7 > p. Because the expression of f;(i = 1,2, 3) are
too long, we do not list it here, and it is placed in Appendix. Hence, the alcoholism equilibrium P is
locally asymptotically stable.

3.5. Forward and Backward Bifurcation

In this section, we study the change of the parameter 8 causing a forward or a backward bifurcation
to occur.

Theorem 4. (I) If Ry; > 1, when Ry = 1, the system (2.1) appears a backward bifurcation.
(II) If Ry; < 1, when R, = 1, the system (2.1) appears a forward bifurcation.
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Proof. Using the central manifold theory described in [29]. Introducing x; = S, x, = L, x3 = H,
x4 = R, x5 = T, the system (2.1) becomes

dx

d_zl = A+ qx; - Bxixze ™ —ayx; = fi,
dX2 —ax

—= = pxixze T —pxy —ayx; = o,

dt

d)C3

7 TP YN qxs - (a1 + @2)x3 := f3, (3.27)
dX4

— =YXz — Q1 X4 = [fa,

gy YBTak Ja

dX5

ar = M1 X1 + foXy + U3X3 + [aXs — TX5 = f5.

Thus, the alcohol free equilibrium Py is

A

A
Py =Xo =(—,0,0,0,
(03] a7

)

In view of Theorem 4.1 [29], the Jacobian matrix J(P,) of the system (3.27) in the alcohol free equi-
librium is

—ap A
—a 0 q- g—lfe oE 0
—au A

0 —(a)+p) Mo 0

X =1 o o —(@+a+qg+y) 0 0

0 0 0% -a; 0

M1 H2 H3 M4 —T

We establish the local stability of alcohol free equilibrium taking 5 as bifurcation parameter, when
Aap
Ry = 1 corresponding to 8 = 8* = ‘”("‘J“")("'*A‘;f*q”)e " thus, we obtain
—a 0 _ ai(@i+p)(ai+art+g+y) 0 0
: qa(a+)(a+€y++)

0 —(0/1+p) 11Pp12‘]“/ 0 0

JXo)=| 0 o (a1 +a+g+y) 0 0

0 0 0% -a; 0
Hi H2 M3 Ha —T

It is clear that O is a simple eigenvalue of J(P,). Therefore, there is a right eigenvector associated with
0 eigenvalues that is R = (ry, 1y, 13, 14, 75)7, there is a left eigenvector associated with 0 eigenvalues is
L= (,1,1,1,Is), and it is required to satisfy LR = 1.

Therefore, the right eigenvector is

—ay(a1tar+qt+y)—pla;+az+y)

) +gzlgq+y
P
R = 1 ,
X

@
—(u—p)@itantgty) (@i —aipz+aop +yp —ypa)
pT a7
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the left eigenvector is

P ay +p
Raytatqry+p 2a1tar+qty+p’

L=(0 0,0).

In view of Theorem 4.1 [29], we know that

Therefore, we obtain

2r1r3 Ox10x3 2F3r Ox0%1 2F3 5—6)638)65 2Fs 3—6x56x3
& f>(Xo) 3% f(Xo)
=21 — Z S
2(1’11”3 Ox10%3 + rars 30 )

e
_ —2pAafe i [al(ﬂz — ) +ay +q+y) = plajp — s + arpy +yup — 7144)]
a1ay+a,+q+y+p)

a1pT
_ Aoy
2ppe 1t [—(al +p) e+ +y) - alq]
201 +ary+q+y+p ap

ai(ar +p)ar + @+ g+ y)* +plar +p)ar + e+ )@ + a2+ g +7)
ApQay+ay+g+v+p)

Aoy

8 f(Xo) _ Ape it
0x30pB a1Ray+a+g+vy+p)

=2 |®or = 1.

> 0.

b :lzl’3

According to Theorem 4.1 of [29], we notice that the coeflicient b is always positive. The coefficient
a is positive when Ry; > 1. In this case, the direction of the bifurcation of the system (2.1) at Ry = 1
is backward, as shown in the Figure 9(a). The coeflicient a is negative when Ry; < 1. Under this
circumstance, the direction of the bifurcation of the system (2.1) at Ry = 1 is forward, as shown in the
Figure 9(b).

4. Numerical results

The goal of this section is to present some numerical simulations which complement the theoretical
results in the previous sections. We choose some parameters based on the Table 1.
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Table 1. The parameters description of the alcoholism model.

Parameter Description Value Source
A The constant recruitment rate of the population 0.7 - 0.8day™! [30]
B Transmission coefficient from the moderate drinkers

compartment to the light problem drinkers compartment ~ 0.0099 — 0.9person™'  Estimate
o The coeflicient that determines how effective the positive

drinking information can reduce the transmission rate 0.00091 — 0.8tweet™'  Estimate
Je, Transmission coefficient from the light problem drinkers

compartment to the heavy problem drinkers compartment  0.04 — 0.99day™! Estimate
i The rates that the moderate drinkers may tweet

about alcoholism during an alcoholism occasion 0 — 1day™ [11]
o The rates that the light problem drinkers may tweet

about alcoholism during an alcoholism occasion 0 - lday™! [11]
U3 The rates that the heavy problem drinkers may tweet

about alcoholism during an alcoholism occasion 0 - lday™! [11]
Uy The rates that quitting drinkers may tweet

about alcoholism during an alcoholism occasion 0 - lday™! [13]
g The natural death rate of the population 0.009 — 0.6year™! [4, 5]
a; The death rate due to heavy alcoholism 0.02 — 0.5day™! Estimate
q Transmission coefficient from the heavy problem drinkers

compartment to the moderate drinkers compartment 0.006 — 0.99day™! Estimate
y Transmission coefficient from the heavy problem drinkers

compartment to quitting drinkers compartment 0.006 — 0.99day™! Estimate
T The rate that message become outdated 0.03 — 0.6year™! [11]

As an example, we choose a set of the following parameters, the parameter values are A =
0.8, = 0.007,a; = 0.009,a, = 05,7 = 0.04,0 = 08,5 = 0.8, 4 = 0.8,y = 0.1,9 =
0.07,p = 0.09,7 = 0.03 and 8 = 0.001. It follows from Theorem 1 that the alcohol free equilibrium
Py = (88.89,0,0,0,118.52) of system (2.1) is globally asymptotically stable for any value of time #
when Ry = 0.0519 < 1 (see Figure 3 (a) and (b)). Furthermore, we can also observe that the value of
the equilibrium P*(¢) changes as ¢ increasing and eventually tends to Py, = (88.89,0,0,0, 118.52) from
Figure 3 (a) and (b).

In order to verify the local stability of the alcoholism equilibrium P7;, we choose a set of the fol-
lowing parameters, the parameter values are A = 0.8, @ = 0.007, ¢; = 0.009, @, = 0.5, u; = 0.04, ur =
0.04,u3 = 0.04, 44 = 0.04,y = 0.1,g = 0.07,p = 0.09, 7 = 0.03 and 5 = 0.004. It follows from The-
orem 3 that the alcoholism equilibrium P} = (28.16,6.09,0.81,8.97,58.71) of system (2.1) is locally
asymptotically stable for any value of time # when Ry = 2.0765 > max{l, Ry}, where Ry; = 0.6128
(see Figure 4 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium P*(r)
changes with 7 increasing and eventually tends to P} = (28.16,6.09,0.81,8.97,58.71) from Figure 4
(a) and (b).

In order to verify the local stability of the alcoholism equilibrium P}, we choose a set of the follow-
ing parameters, the parameter values are A = 8, = 0.07,a; = 0.003,a, = 0.005,; = 0.025, 1, =
0.025,u3 = 0.025,u4 = 0.025,y = 0.01,9 = 0.07,p = 04,7 = 0.45 and B8 = 0.9. It follows from
Theorem 3 that the alcoholism equilibrium P, = (254.1677,85.2877,387.8429, 1292.7081, 112.2223)
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of system (2.1) is locally asymptotically stable for any value of time # when Ry, < Ry < max{l, Ry},
where Ry, = 2.7788, Ry = 0.8486 and Ry, = 0.4692 (see Figure 5 (a) and (b)). Furthermore, we can
also observe that the value of the equilibrium P*(¢) changes with ¢ increasing and eventually tends to
P, =(254.1677,85.2877,387.8429,1292.7081, 112.2223) from Figure 5 (a) and (b).
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Figure 3. Alcohol free equilibrium P of system (2.1) is globally asymptotically stable.
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Figure 4. Alcoholism equilibrium P; of system (2.1) is locally asymptotically stable.

Then, we choose a set of the following parameters, the parameter values are A =

0.8, =

0.007,; = 0.009,@» = 0.5,1; = 0,o = 0.008,5 = 08,4 = 0.8,y = 0.1,¢g = 0.99,p =

0.99,7 = 0.03 and g = 0.0204.

It follows from Theorem 3 that the alcoholism equilibrium

P} = (49.19,0.92,0.57,6.37, 185.30) of system (2.1) is locally asymptotically stable for any value
of time r when Ry = 1.1238 > max{1,Ry} and 8 < %, where Ry; = —2.9044 and 8* = 0.021 (see

Figure 6 (a) and (b)).
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Figure 5. Alcoholism equilibrium P} of system (2.1) is locally asymptotically stable.

50 A
— S(t)
254
{ -
0 l — L)
@
]
g AN
204 v
954
& | — H()
[
[}
s AAANA
o 0L MAAAAT
871
g 6 AvAvAvAva.
Z5] — R(t)
150 4 —_—T(t)
100 1
50 4
0 500 1000 1500 2000 2500 3000
Days
(@)
7.5
7
6.5
6
T
5.5
5
4.5
4 ‘ ‘ ‘
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
H(t)
(©

. .
30 35 40 45 50 55
S(Y)

(b)

200

150
£ 100
=

50

® o

(d)

Figure 6. Alcoholism equilibrium P} of system (2.1) is locally asymptotically stable when
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If we choose g as 0.076 (see Figure 7 (a) and (b)), we have more intricate dynamic behaviors on
system (2.1). As an example, we choose a set of the following parameters, the parameter values are
A =0.8,a = 0.00626,a; = 0.009,a, = 0.4,; = 0.009,, = 0.004, 3 = 0.8, u4 = 0.8,y =0.1,9 =
0.06,p = 0.9,7 = 0.03 and 8 = 0.076. The alcoholism equilibrium P} of system (2.1 ) occurs a Hopf
bifurcation when Ry = 9.9478 > 1 and 8 > B*, where 8 = 0.011 (see Figure 7 (a-d)). In Figure 7 (a-d),
we can readily see that the solution curves of system (2.1) perform a sustained periodic oscillation and
phase trajectories approaches limit cycle.
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Figure 7. Alcoholism equilibrium P7 of system (2.1) occurs a Hopf bifurcation when g > *.

In order to demonstrate some results about Hopf bifurcation, we consider  as bifurcation parameter.
We know that the alcoholism equilibrium Pj is feasible for g € [0.0099,0.8]. Thus, system (2.1) is
stable when 0.0099 < 8 < 0.011, and Hopf bifurcation occurs at the alcoholism equilibrium P} when
0.011 < B < 0.08, and system (2.1) becomes stable again when 0.08 < 8 < 0.2, as depicted in Figure
8(a-e).
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The backward and forward bifurcation diagram of system (2.1) is shown in Figure 9, and the di-
rection of bifurcation depends upon the value of Ry;. As seen in the backward bifurcation diagram of
Figure 9(a) when Ry; = 4.4936 > 1, there is a threshold quantity R, which is the value of R,. The
alcohol free equilibrium is globally asymptotically stable when Ry < R,, where R, = 0.1350. There are
two alcoholism equilibria and a alcohol free equilibrium when R, < Ry < 1, the upper ones are stable,
the middle ones are unstable and the lower ones is globally asymptotically stable. There are a stable
alcoholism equilibria and an unstable alcohol free equilibrium when Ry, > 1. As seen in the forward
bifurcation diagram of Figure 9(b) when Ry; = 0.5357 < 1, the alcohol free equilibrium is globally
asymptotically stable when Ry, < 1. There are a stable alcoholism equilibria and an unstable alcohol
free equilibrium when Ry > 1.
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Figure 9. (a) Illustration of backward bifurcation when one parameter S in Ry is varied. (b)
[lustration of forward bifurcation when one parameter S in Ry is varied.

5. Sensitivity analysis

In this section, we examine the effects of changes in some parameters on the number of heavy
problem drinkers. Therefore, we carry out the sensitivity analysis of heavy problem drinkers H.

Figure 10 shows a comparison between the parameters of system (2.1) versus the heavy problem
drinkers, we main consider the effect of u;, g, y, T on the dynamics of heavy problem drinkers. Firstly,
we choose the effect of parameter ¢, on the dynamics of heavy problem drinkers, the other parameter
values are A = 0.8, = 0.07,¢; = 0.009,a, = 0.5,, = 0.8, 3 = 0.8, 4 = 0.8,y =0.1,¢g = 0.09,p =
0.09,7 = 0.03 and B = 0.04, as depicted in Figure 10(a). We know that the number of heavy problem
drinkers will decrease when y; increase from Figure 10(a). The simulation shows that more Twitter
messages can result in the lower alcoholism cases, and changing the number of Twitter messages posted
per day does affect the time when the alcoholism reaches the peak. Secondly, we choose the effect of
parameter g on the dynamics of heavy problem drinkers, the other parameter values are A = 0.8,a =
0.007,a; = 0.009,a, = 05,41 = 0.04,u, = 0.8,u3 = 0.8, 4 = 0.8,y = 0.1,p = 0.09,7 = 0.03
and 8 = 0.15, as depicted in Figure 10(b). We know that the number of heavy problem drinkers
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will decrease when ¢ increase from Figure 10(b). Thirdly, we choose the effect of parameter y on
the dynamics of heavy problem drinkers, the other parameter values are A = 0.8, = 0.007,a;, =
0.009,a, = 0.5, = 0.04, 1, = 0.8, u3 = 0.8, 44 = 0.8, = 0.07,7 = 0.03,p = 0.01 and g = 0.15,
as depicted in Figure 10(c). We know that the number of heavy problem drinkers will decrease when
v increase from Figure 10(c). The simulation results in Figure 10(b) and 10(c) show that treatment
significantly reduces the number of alcoholism cases. Finally, we choose the effect of parameter 7 on
the dynamics of heavy problem drinkers, the other parameter values are A = 0.8, = 0.007,a; =
0.009,a, = 0.5,u; = 0.04,, = 0.8, 43 = 0.8, 44 = 0.8,y = 0.1, = 0.07,p = 0.09 and 5 = 0.15,
as depicted in Figure 10(d). We know that the number of heavy problem drinkers will increase when
7 increase from Figure 10(d). This indicates that the rate of upper outdated Twitter messages result in
the upper alcoholism cases.
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Figure 10. Sensitivity analysis of heavy problem drinkers H.
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6. Discussion and conclusion

We construct a new alcoholism model with treatment and effect of Twitter in this paper. We study
the stability of all equilibria and derive the basic reproductive number R,. We also investigate the
occurrence of backward and forward bifurcation for a certain defined range of R, by the center manifold
theory. Furthermore, we give some numerical results and sensitivity analysis to extend and illustrate
our results. Our results show that Twitter may be a good indicator of alcoholism model and affect the
emergence and spread of drinking behavior. How to prove existence of Hopf bifurcation analytically
is interesting and still open. We will leave this work in future.
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Appendix A

The formula of d;, d5, d; in the proof of (II) of Theorem 3.

d = 7(D2a14+12CI)2a13az+12(D2a13)/+12(l)2a13q+12®2al3p+18CD2a13T+6CD2a/12a/22
+120% 0l ary+ 12020l ar g+ 18D% > arp + 21 D @ ? an T+ 6 D a2 Y + 12 D% % y g
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+ D2 T+ DY p+ DY 14202 gp+ 3PP Y T+ DY PP + 27 Y pT + 2 DP YA TP
+ Oy P p+3P°y P T +2D7yqp* + 3D yqpT+ 4Dy gt + PPy pP + 21 yp T
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