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Abstract: The extinction of different species from the earth is increasing at an alarming rate. So,
assessment of probability of extinction of different important species in our ecosystem could help us
to take proper conservation policy for those population whose chance of extinction is high. In this
paper a method is developed to find the probability of extinction of populations in a general n-trophic
food chain model under demographic stochasticity. The birth-death process is used to incorporate the
demographic stochasticity and the necessary mathematical expressions are obtained. The theoretical
finding is validated by numerical simulation for a two dimensional predator-prey system.
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1. Introduction

The rapid fall in the survivability of different important species is a major issue in ecology. The un-
planned activity and indiscriminate use of biological resources lead to the unprecedented depletion in
the abundance of species [1]. The detail study regarding conservation of different species is important
since the loss of a strongly interactive species can lead to potential changes in ecosystem composition,
structure, and diversity [2, 3, 4, 5]. For example, the killing of large amount of great whales by indus-
trial whaling makes changes in the krill-consumer dynamics in the Southern Ocean, and it is observed
that, whaling is the main cause of megafaunal collapse in the North Pacific Ocean [6]. Moreover, the
functional dynamics of coastal marine ecosystems worldwide have been extremely altered due to over
fishing of large herbivores and predators [7]. It is frequently observed that the functional extinction of
species interactions takes place well before the species themselves become extinct. In ocean ecosystem,
large number of interactive species persists as rare adults, or small or juvenile individuals and do not
interact as large adults. In addition, many strongly interactive species such as mammals are becoming
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extinct from the areas which they occupy one or two century ago [8]. The problem continues to persist
since most conservation laws, such as the US Endangered Species Act (ESA) of 1973, fail to capture
the effects of extinction of strongly interacting species. It is to be noted that the ESA does not include
the inter-species interactions altogether in the criteria for recovery of endangered mammal species [4].
It only emphasizes the short-term, single-species, demographic viability in only a few areas. In reality,
most of the current recovery plans do not call for increase in numbers of individuals or numbers of
populations and geographic range [9, 10]. Several works are also performed [11, 12, 13, 14] to dis-
cuss this important issue. The persistence time of the population for a dynamical system is obtained
in [15, 16] which can be used to find the time to extinction of a population. However, as far as my
knowledge goes the mathematical form to find the probability of extinction of a species belonging to
any trophic level is still missing.

Stochastic population models serve as fundamental mathematical framework in modern ecological
theory and is applied in various research areas such as population ecology [17], epidemiology [18],
conservation biology [19] etc. Among all these areas, epidemiology is a major platform where the
knowledge of stochasticity is extensively used in [20, 21, 22] and [23]. It is observed that discrete and
continuous time Markov chain models and stochastic differential equation models are used in many
areas of population biology. The Kolmogorov differential equations (often termed as Master equation
[24]) are used to compute the transition probability distributions when the rates of different possible
transitions are provided (e.g. birth and death rates).

It is frequently observed that to model a dynamical problem under stochastic environment, a system
of Itostochastic differential equations is formed and studied. In many cases discrete stochastic models
are developed by studying changes in the system components over a small interval of time such as
birth-death process.

The prey-predator models regulated by deterministic differential or difference equations are crucial
in quantitative studies of the dynamics of natural populations. In general, the dynamical characteristics
of the systems, such as stability of equilibrium points, stability of limit cycles etc. can be predicted
uniquely in the deterministic set up. However, to apply these models in natural populations, it is more
realistic to consider the stochastic dynamics of the system, where the randomness is generated either
from variation among individual growth rates or due to environmental fluctuations. For such cases, the
characteristics of the deterministic models are replaced by the probability statements. As for example,
we may consider stochastic version of the logistic model, where the equilibrium point is replaced by
the equilibrium distribution, which is represented by the cloud points around the equilibrium point
rather than a fixed value [25]. The difference is that, in logistic growth, the carrying capacity is the
only stable point, hence the population never reaches zero for positive value of intrinsic growth rate,
whereas, in stochastic environment there is always a probability associated with the extinction of the
population. Thus the stochastic model framework is more appealing in real life scenarios [26, 27].

The stability related issues of a predator-prey system is well discussed from the theoretical work
of Lotka [28], Volterra [29] and the experimental work of Gause[30]. In many cases the dynamics
involving only two interacting species may not capture the real world scenario. The behavior of a
complex system may only be understood when the interactions among a large number of species are
incorporated [31, 32]. Thus, it should be noted that what amount of risk of extinction the interacting
species face for a given initial population size of prey and predator, is an important aspect of popula-
tion dynamics. Here the risk of extinction is quantified as the probability of reaching the extinction
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equilibrium, before reaching to a sufficiently large population size so that extinction can be avoided.
Theoretically, this large population tends to ∞[33, 34]. Recently [34] used the stochastic differential
equation model including demographic stochasticity and predicted the time to extinction and extinction
probability for the Atlantic Herring populations. They calculated the mean time to extinction from the
distribution of the sojourn time, the amount of time spent by the species at each population size given
an initial abundance [35].

In this paper, we explore the idea of obtaining the chance of extinction of species at any trophic
level of the n trophic food chain model. Discrete stochastic model is used to study the changes in the
system components over a small time interval to develop the probability of extinction. The theoretical
findings are validated by numerical simulation.

In next section (section 2), the background of the knowledge to be applied is discussed. In section
3, the main result of the paper is established with detail analysis followed by some case studies to
understand the applicability of the findings. Section 4 is the numerical part followed by section 5
which deals with conclusion and future direction.

2. Background of the work

In this section a two dimensional general predator prey system is considered as below,

dx
dt

= b1(x) − d1(x) − g(x, y) (2.1)

dy
dt

= αg(x, y) − d2(y)

where x and y denote the sizes of prey and predator population at time t, respectively; b1(.) is the birth
rate of the prey species; di(.)(i = 1, 2) are the natural death rates of the prey and predator popula-
tions respectively. The initial conditions are, x(0) ≥ 0, y(0) ≥ 0. The birth and death rates may be
density dependent or density independent, described by the biological background of the two interact-
ing species. The function g(x, y) denotes the inter-species interaction between the prey and predators,
known as predator’s functional response. α is the conversion rate of ingested prey into new predators
and assumed to lie between 0 and 1.

The stochastic formulation of the single species dynamics in absence of predators are studied by
many authors [33, 34]. In absence of predators, model (2.1) reduces to a single species model with
birth and death rates b1(x) and d1(x) respectively. The logistic model under stochastic environment
are studied in different ways in the literature [36, 37, 38, 39, 40]. In general, there are infinitely many
choices of functions available for birth and death rates for different choices of parameters. The choices
of the functions are mainly driven by the collected data on the species under investigation [41]. In
addition, when we study real populations, generally some other information is also available such as,
life expectancy. For example, the estimate of average life expectancy was used to obtain the estimates
of intrinsic rate parameters[37] to model the dynamics of muskrat population in Netherlands and it
help them to uniquely chose the value of the rate parameters.

The generalized form of the model (2.1) in n-trophic food chain serves as the deterministic skeleton
to formulate analogous stochastic models which account for the variation in births, deaths, transmission
and recovery. In the stochastic formulation of the model (2.1) we assume X(t) and Y(t) are two discrete
random variables representing the number of prey and predator populations respectively at time t and
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these two random variables take values in the state space {(x, y) : x = 0, 1, . . .M; y = 0, 1, . . .N} where
M and N are the maximum sustainable population sizes of prey and predator population respectively.
Here we assume that the time step ∆t is sufficiently small so that at most one change in the population
size is possible in this small time gap, i. e. ∆X(t) = X(t + ∆t) − X(t) ∈ {−1, 0, 1} and ∆Y(t) =

Y(t+∆t)−Y(t) ∈ {−1, 0, 1}. Thus the change in population sizes ∆X(t) and ∆Y(t) preclude the possibility
of more than one birth, death, or any other transformations in small time ∆t. In fact, these events have
probabilities of order (∆t)2. The infinitesimal probabilities associated with the birth and death of the
populations for the model (2.1) is depicted in table 1. For example, (∆X(t),∆Y(t)) = (1, 0) denotes the
event of the birth of a prey and no change in predator abundance during time ∆t. The probability of
this event is obtained by multiplying the probability of one birth of prey (b1(x)∆t) with the probability
of no death of predator ((1 − d2(y)∆t)). Similarly, the probabilities of the other events can be defined.

Table 1. Possible transitions in the predator-prey population sizes and the probabilities of
their occurrence for the model (2.1).

Event Transition Transition probability
Prey birth and no birth or
death of predator

(1, 0) b1(x)∆t(1 − d2(y)∆t)

One birth of predator due to
predation on prey

(−1, 1) αg(x, y)∆t

No birth or death of prey and
one death of predator

(0,−1) d2(y)∆t(1 − b1(x)∆t)

Death of one prey due to
intra-species competition or
predation and no birth or
death of predator

(−1, 0) d1(x)∆t + (1 − α)g(x, y)∆t

No birth or death of either
population

(0, 0) 1 − [b1(x) + αg(x, y) + d2(y)

+d1(x) + (1 − α)g(x, y)]∆t

We extend this idea for a tri-trophic food chain model given by,

dx
dt

= b1(x) − d1(x) − g1(x, y) (2.2)

dy
dt

= α1g1(x, y) − g2(y, z) − d2(y)

dz
dt

= α2g2(y, z) − d3(z)

where the transitions and the corresponding probabilities are given in the table 2.
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Table 2. Possible transitions in the predator-prey population sizes and the probabilities of
their occurrence for the tri-trophic food chain model (2.2).

Event Transition Transition probability (pi)
Prey birth and no birth or
death of predator

(1, 0, 0) b1(x)∆t = p1

One death of prey (−1, 0, 0) ((1 − α1)g1(x, y) + d1(x))∆t =

p2

One death of prey and one
birth of 1st predator due to
predation of 1st predator on
prey

(−1, 1, 0) α1g1(x, y)∆t = p3

No change of prey popula-
tion, one death of 1st predator
and one birth of 2nd predator
due to predation of 2nd preda-
tor on the 1st predator

(0,−1, 1) α2g2(y, z)∆t = p4

No change of prey and 2nd
predator and one death of 1st
predator population

(0,−1, 0) ((1 − α2)g2(y, z) + d2(y))∆t =

p5

No change of prey and 1st
predator and one natural
death of 2nd predator

(0, 0,−1) d3(z)∆t = p6

No change in predator and
prey population

(0, 0, 0) 1−(p1 + p2 + p3 + p4 + p5 + p6)

We extend this further for an n trophic food chain model also as given below.
The n trophic food chain model considered here is given by:

dx1

dt
= b1(x1) − g1(x1, x2) − d1(x1) ≡ f1 (2.3)

dx2

dt
= α1g1(x1, x2) − g2(x2, x3) − d2(x2) ≡ f2

dx3

dt
= α2g2(x2, x3) − g3(x3, x4) − d3(x3) ≡ f3

.

.

.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3537–3560



3542

dxn

dt
= αn−1gn−1(xn−1, xn) − dn(xn) ≡ fn

Here the functions bi(xi)’s, di(xi)’s and gi(xi, xi+1) denote the birth rates, death rates and the interaction
terms respectively.
It is assumed that Xi(t)(i = 1, 2, . . . , n) are the discrete random variables representing the number of
prey and predator populations in the food chain. X(t) is the vector random variable which represents
the population size at time t, that is X(t) = (X1(t), X2(t), . . . , Xn(t)) and it takes values in the state
space {x = (x1, x2, . . . , xn) : xi = 0, 1, . . .Mi}. Mi is the maximum sustainable population size of the
population belonging to ith trophic level. As before the time step ∆t is taken sufficiently small so that
only one change is possible in this small time interval, i. e. ∆Xi(t) = Xi(t + ∆t) − Xi(t) ∈ {−1, 0, 1}.
The infinitesimal probabilities of the birth death formulation of model (2.3) is depicted in table 3. For
example, ∆X(t) = (1, 0, . . . , 0) denotes the event of the birth of a prey and no change in the abundance
of remaining species in time ∆t. The probability of this event is (b1(x)∆t). Similarly probabilities of
the other events are defined in table 3.

It should be noted that the total number of transitions for an n trophic food chain model is 2n + 1.
The expected values of the changes in small time interval ∆t may be obtained as follows.

E(∆X1) = 1.b1(x1)∆t + (−1)(α1g1(x1, x2) + d1(x1) + (1 − α1)g1(x1, x2))∆t

= (b1(x1) − d1(x1) − g1(x1, x2))∆t [see table 3]

=
dx1

dt
∆t (2.4)

Similarly, we can find

E(∆Xi) = 1.αi−1gi−1(xi−1, xi) + (−1)(αigi(xi, xi+1) + (1 − αi)gi(xi, xi+1) + di(xi))∆t

= (αi−1gi−1(xi−1, xi) − gi(xi, xi+1) − di(xi))∆t for i = 2, 3, . . . , n − 1

=
dxi

dt
∆t (2.5)

Finally we have,

E(∆Xn) = (αn−1gn−1(xn−1, xn) − dn(xn))∆t

=
dxn

dt
∆t (2.6)

Now we will find the expressions for variance and co-variance terms for the changes.
We have,

E(∆X2
i ) = 12αi−1gi−1(xi−1, xi) + (−1)2(gi(xi, xi+1) + di(xi))∆t

= (αi−1gi−1(xi−1, xi) + gi(xi, xi+1) + di(xi))∆t (2.7)
for i = 2, 3, . . . , n − 1 (2.8)

E(∆X2
1) = (b1(x1) + d1(x1) + g1(x1, x2))∆t (2.9)

E(∆X2
n) = (αn−1gn−1(xn−1, xn) + dn(xn))∆t (2.10)
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Table 3. Possible transitions in the predator-prey population sizes and the probabilities of
their occurrence for the n-trophic food chain model (2.3).

Event Transition Transition probability
(pi)

One birth of prey and no change
in population size of the remaining
species

(1, 0, . . . , 0) b1(x)∆t = p1

One birth of 1st predator due to pre-
dation on the prey population

(−1, 1, 0, . . . , 0) α1g1(x1, x2)∆t = p2

One death of prey population and
no change in the size of the popu-
lations of other species

(−1, 0, 0, . . . , 0) d1(x)∆t + (1 −

α1)g1(x1, x2)∆t = p3

One birth of 2nd predator due to
predation on 1st predator

(0,−1, 1, 0, . . . , 0) α2g2(x2, x3)∆t = p4

One death of 1st predator and no
change in the population size in
other species

(0,−1, 0, . . . , 0) d2(x2)∆t + (1 −

α2)g2(x2, x3)∆t = p5

...
...

...

One birth of (n − 1)th predator due
to predation on (n − 2)th predator

(0, . . . , 0,−1, 1) αn−1gn−1(xn−1, xn)∆t =

p2n−2

One death of (n − 2)th predator and
no change in the population size of
other species

(0, . . . , 0,−1, 0) dn−1(xn−1)∆t + (1 −

αn−1)gn−1(xn−1, xn)∆t =

p2n−2

One death of (n − 1)th predator and
no change in the population size of
other species

(0, . . . , 0,−1) dn(xn)∆t = p2n

No change in the population size in
any of the species in the food chain

(0, 0, . . . , 0) 1 − Σ2n
i=1 pi

Now it can be shown that,

E(∆xi∆xi−1) = −αi−1gi−1(xi−1, xi)∆t for i = 2, 3, . . . , n − 1 (2.11)

It should be noted that, here the randomness in population growth rate is assumed to be demo-
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graphic stochasticity which is the chance variation in the number of individual births and deaths and
usually modeled by birth and death process. So the above model does not depict the random variations
in the environmental conditions although the environmental fluctuation has significant effect on the
population dynamics, for example it may have effect on the survival and reproduction rates [42].

3. Chance of extinction

In this section the expression for the probability of extinction of a particular species population in
the given food chain model is derived. Let Tx(s) be the first passage time of the random variable X to
the state s. This is also known as persistent time or the first exit time in engineering literature. Thus
the event Tx(0) < Tx(b) represents the event that starting with population size x, the species goes to
extinction before reaching to the population size b.

An n dimensional food chain model as given below is considered here.

dx1

dt
= b1(x1) − g1(x1, x2) − d1(x1) ≡ f1 (3.1)

dx2

dt
= α1g1(x1, x2) − g2(x2, x3) − d2(x2) ≡ f2

dx3

dt
= α2g2(x2, x3) − g3(x3, x4) − d3(x3) ≡ f3

.

.

.
dxn

dt
= αn−1gn−1(xn−1, xn) − dn(xn) ≡ fn

Suppose we are interested to find the chance of extinction of ith species. We start with the 1st species
(here the prey population) and subsequently do the same for ith species.

3.1. Probability of extinction for prey population

Define,

u1(x1, x2, . . . , xn) = P[Tx1(0) < Tx1(M1) (3.2)
|X1(0) = x1, X2(0) = x2, . . . , Xn(0) = xn] (3.3)

In this case it should be noted that, according to the definition u1 is not a random variable. We now
derive the pde for u1. It can be shown that,

u1(x1, x2, . . . , xn) = P[Tx1(0) < Tx1(M1)|X1(0) = x1, . . . , Xn(0) = xn]
= E[u1(x1 + ∆x1, x2 + ∆x2, . . . , xn + ∆xn)]

= E[u1(x1, x2, . . . , xn) + ∆x1
∂u1

∂x1
+ . . . + ∆xn

∂u1

∂xn

+
∑

i

∑
j

∆xi∆x j
∂2u1

∂xi∂x j
] [ignoring higher order terms]
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0 = E[∆x1]
∂u1

∂x1
+ E[∆x2]

∂u1

∂x2
+ . . . + E[∆xn]

∂u1

∂xn
+ (3.4)

E[(∆x1)2]
∂2u1

∂x2
1

+ . . . + E[(∆xn)2]
∂2u1

∂x2
n

+2E[∆x1∆x2]
∂2u1

∂x1∂x2
+ . . . + 2E[∆xn−1∆xn]

∂2u1

∂xn−1∂xn

0 =
∂u1

∂x1

dx1

dt
+
∂u1

∂x2

dx2

dt
+ . . . +

∂u1

∂xn

dxn

dt
+

(b1(x1) + d1(x1) + g1(x1, x2))
∂2u1

∂x2
1

+ . . .

(αn−1gn−1(xn−1, xn) + dn(xn))
∂2u1

∂x2
n

−α1g1(x1, x2)
∂2u1

∂x1∂x2
− . . .

−αn−1gn−1(xn−1, xn)
∂2u1

∂xn−1∂xn
(3.5)

see (2.4), (2.5), (2.6), (2.7), (2.11)

Now using the expressions of E(∆Xi), E(∆X2
i ) and E(∆Xi∆Xi−1) and noting that

∂u1

∂t
=
∂u1

∂x1

dx1

dt
+
∂u1

∂x2

dx2

dt
+ . . . +

∂u1

∂xn

dxn

dt
(3.6)

we get,

∂u1

∂t
= α1g1(x1, x2)

∂2u1

∂x1∂x2
+ α2g2(x2, x3)

∂2u1

∂x2∂x3
+ . . . + αn−1gn−1(xn−1, xn)

∂2u1

∂xn−1∂xn
(3.7)

− (b1(x1) + g1(x1, x2) + d1(x1))
∂2u1

∂x2
1

− (α1g1(x1, x2) + g2(x2, x3) + d2(x2))
∂2u1

∂x2
2

− . . .

− (αn−1gn−1(xn−1, xn) + dn(xn))
∂2u1

∂x2
n

Theoretically, probability of extinction of the prey species can be obtained by letting M1 −→ ∞. When
the system is in steady state ∂u1

∂t = 0.
So, in steady state the above pde takes the form,

0 = α1g1(x1, x2)
∂2u1

∂x1∂x2
+ α2g2(x2, x3)

∂2u1

∂x2∂x3
+ . . . + αn−1gn−1(xn−1, xn)

∂2u1

∂xn−1∂xn
(3.8)

−(b1(x1) + g1(x1, x2) + d1(x1))
∂2u1

∂x2
1

− (α1g1(x1, x2) + g2(x2, x3) + d2(x2))
∂2u1

∂x2
2

− . . .

−(αn−1gn−1(xn−1, xn) + dn(xn))
∂2u1

∂x2
n
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The boundary conditions are given by,

u1(0, x2, . . . , xn) = 1 (3.9)
u1(M1, x2, . . . , xn) = 0 (3.10)

u1(x1, 0, . . . , xn) = f1(x1) (3.11)
u1(x1, . . . ,Mi . . . , xn) = φi(x1, . . . , xi−1, xi+1, . . . , xn) say (3.12)

If the system starts with 0 population for 1st predator, the whole system becomes a single species
dynamical system consisting of the prey population only. Because in this case all the predator popula-
tion will die with probability 1. Hence, the said system will be governed by single species model and
there will be no interaction term. In that case u1(x, . . . , 0) = f1(x). The expression for f1 is given by
[35],

f1(x) =

∫ M1

x
exp[−φ(u)]du∫ M1

0
exp[−φ(u)]du

where

φ(u) = 2
∫

b1(u) − d1(u)
b1(u) + d1(u)

du

It can be shown that φi satisfies (3.4) by setting ∆x2
i = 0 and ∆xk∆xi = 0 (k = 1, 2, . . . , n, k , i)

because we assume that when the ith species reaches the state Mi, the small change in the population
size at ith trophic in time ∆t will be negligible compared to Mi.

3.2. Probability of extinction of population at ith trophic level

To find the chance of extinction of the ith species we define,

ui(x1, x2, . . . , xn) = P[Txi(0) < Txi(Mi)|X(0) = x,Txi−1(0) > Txi−1(Mi−1)] if xi, xi−1 , 0
= 1 if xi = 0 or xi−1 = 0 (3.13)

where X = (X1, X2, . . . , Xn) and x = (x1, x2, . . . , xn).
It should be noted that, in order to find the chance of extinction for ith(i = 2, 3, . . . , n)population,

the condition that the (i − 1)th species do not die out (Txi−1(0) > Txi−1(Mi−1)) is imposed. This condition
is necessary because the loss of a species leads to the extinction of other dependant species [1]. ui(x)
represents probability of extinction of ith species when Mi −→ ∞. Now

ui(x1, x2, . . . , xn) = P[Txi(0) < Txi(Mi)|X(0) = x,Txi−1(0) > Txi−1(Mi−1)]

=
P[Txi(0) < Txi(Mi),Txi−1(0) > Txi−1(Mi−1)|X(0) = x]

P[Txi−1(0) > Txi−1(Mi−1)|X(0) = x]

ui(x) =
wi−1(x)

1 − ui−1(x)
if xi, xi−1 , 0 i=2,3,. . . ,n (3.14)

= 1 if xi or xi−1 = 0

where,
wi−1(x) = P[Txi(0) < Txi(Mi),Txi−1(0) > Txi−1(Mi−1)|X(0) = x] (3.15)
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Following the same idea as applied in case of deriving the pde for u1, it can be shown that wi−1 satisfies
the same pde (3.7) as u1 does with the following boundary conditions.

wi−1(0, x2, . . . , xn) = 0 (3.16)
wi−1(x1, x2, . . . ,Mi, . . . , xn) = 0 (3.17)
wi−1(x1, x2, . . . ,Mk, . . . , xn) = ψk

i−1(x1, . . . , xk−1, xk+1, . . . , xn), (3.18)
for k , i (3.19)

This ψk
i−1 satisfies the pde obtained by setting ∆x2

k = 0 and ∆xk∆x j = 0 in (3.4) for j = 2, . . . , n and
j , k.

3.3. Case study for two and three dimensional food chain model

So far the discussion revolves around the general n-trophic food chain model. In this section two
particular cases viz. two dimensional and three dimensional food chain model for better understanding
are discussed.

3.3.1. Two dimensional food chain model

First, a two dimensional food chain model (2.1) is considered.
The probability of extinction for theses types of model is also provided in [43].
We define:

u(x, y) = P {Tx(0) < Tx(M)|X(0) = x,Y(0) = y} (3.20)

where Tx(.) is defined earlier. u(x, y) represents the probability of extinction when the dynamical
system start from the state (x, y) allowing M −→ ∞ [33]. Now,

u(x, y) = Σ∆xΣ∆yP {Tx(0) < Tx(M) ,
X(0 + ∆t) = x + ∆x,Y(0 + ∆t) = y + ∆y|X(0) = x,Y(0) = y}

(3.21)

From [35], it can be shown that

u(x, y) = E
[
u(X(∆t),Y(∆t))|X(0) = x,Y(0) = y

]
(3.22)

Now,

u(x + ∆x, y + ∆y) = u(x, y) + ∆x
∂u
∂x

+ ∆y
∂u
∂y

+
1
2

(∆x)2∂
2u
∂x2 + ∆x∆y

∂2u
∂x∂y

+
1
2
∂2u
∂y2 (∆y)2

Taking expectation on both sides and using (3.22) we get,

u(x, y) = u(x, y) + E(∆x)
∂u
∂x

+ E(∆y)
∂u
∂y

+
1
2
E(∆x)2∂

2u
∂x2
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+E(∆x∆y)
∂2u
∂x∂y

+
1
2
∂2u
∂y2E(∆y)2 (3.23)

Using the equation (2.1), we obtain the following equation

0 = [b1(x) − g(x, y) − d1(x)]
∂u
∂x

+ [αg(x, y) − d2(y)]
∂u
∂y

+
1
2

[b1(x) + g(x, y) + d1(x)]
∂2u
∂x2 − αg(x, y)

∂2u
∂x∂y

+
1
2

[αg(x, y) + d2(y)]
∂2u
∂y2

Now replacing the coefficients of ∂u
∂x and ∂u

∂y by dx
dt and dy

dt respectively, by virtue of the equation (2.1),
and noting that, ∂u

∂t = ∂u
∂x

dx
dt + ∂u

∂y
dy
dt , we obtain the following partial differential equation

0 =
∂u
∂t

+
1
2

[b1(x) + g(x, y) + d1(x)]
∂2u
∂x2 − αg(x, y)

∂2u
∂x∂y

+
1
2

[αg(x, y) + d2(y)]
∂2u
∂y2

Therefore the above expression can be written as

∂u
∂t

= −
1
2

[
b1(x) + g(x, y) + d1(x)

] ∂2u
∂x2 + αg(x, y)

∂2u
∂x∂y

−
1
2

[
αg(x, y) + d2(y)

] ∂2u
∂y2 (3.24)

In steady state the pde (3.24) takes the form:

1
2

[
b1(x) + g(x, y) + d1(x)

] ∂2u
∂x2 − αg(x, y)

∂2u
∂x∂y

+
1
2

[
αg(x, y) + d2(y)

] ∂2u
∂y2 = 0 (3.25)

Lemma 3.1. The pde (3.25) is elliptic in nature.

Proof. The standard form of a second order partial differential equation is

A
∂2u
∂x2 + B

∂2u
∂x∂y

+ C
∂2u
∂y2

+D
∂u
∂x

+ E
∂u
∂y

+ Fu + G = 0 (3.26)

In this case A = 1
2 [b1(x) + g(x, y) + d1(x)], B = −αg(x, y) and C = 1

2 [αg(x, y) + d2(y)]. Therefore,
B2 − 4AC = −α(1 − α)g2(x, y) − d2(y)(b1(x) + d1(x)) − g(x, y)(αb1(x) + αd1(x) + d2(y)) < 0 since
g(x, y), b1(x), d1(x), d2(y) are all positive and α < 1.

Hence the pde (3.25) is elliptic.
�
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To compute the first passage probabilities given the size of prey and predator, the above equation
is solved numerically. We now proceed to develop appropriate boundary conditions for the above
differential equation. We have,

u(x, y) = P {Tx(0) < Tx(M)|X(0) = x,Y(0) = y}

Therefore

u(0, y) = P {Tx(0) < Tx(M)|X(0) = 0,Y(0) = y}

= 1 (3.27)

because, if the initial prey population is 0, the event Tx(0) < Tx(M) is a certain event.
Also,

u(x, 0) = P{Tx(0) < Tx(M)|X(0) = x,Y(0) = 0}
= P{Tx(0) < Tx(M)|X(0) = x}

= f (x) say (3.28)

The function f (x) is given by ([35])

f (x) =

∫ M

x
exp[−φ(u)]du∫ M

0
exp[−φ(u)]du

where (3.29)

φ(u) = 2
∫

b(u) − d(u)
b(u) + d(u)

du (3.30)

Now

u(M, y) = P{Tx(0) < Tx(M)|X(0) = M,Y(0) = y}

= 0, because P{Tx(0) < Tx(M)|X(0) = M} = 0 (3.31)

u(x,N) = P{Tx(0) < Tx(M)|X(0) = x,Y(0) = N}

= g(x) (say) (3.32)

The differential equation for g(x) = u(x,N) can be derived by setting the coefficients of ∂2u
∂y2 and ∂2u

∂x∂y in
(3.23) to be 0 as N is assumed to be the maximum possible size of predator population. In addition to
this ∂u

∂t = 0 for stationary state. Thus,
d2g
dx2 = 0 (3.33)

The boundary conditions are g(0) = u(0,N) = 1, g(M) = u(M,N) = 0. Using this, the solution of the
above differential equation is,

g(x) = u(x,N) = 1 −
x
M

(3.34)
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Remark 1. We have,
lim

M−→∞
u(x,N) = lim

M−→∞
(1 −

x
M

) = 1 (3.35)

This indicates that if the predator population is at its maximum level, the extinction of the prey
population is inevitable if the prey population is sufficiently small compared to the maximum size (M)
of the prey population.

Now we will develop the method of finding the probability of extinction of predator population. We
define

v(x, y) = P{Ty(0) < Ty(N)|Tx(0) > Tx(M), X(0) = x,Y(0) = y} if x, y , 0
= 1 if x = 0 or y = 0 (3.36)

The condition Tx(0) > Tx(M) is imposed since otherwise the extinction of predator species is certain.
We can write,

v(x, y) =
P{Ty(0) < Ty(N),Tx(0) > Tx(M)|X(0) = x,Y(0) = y}

P(Tx(0) > Tx(M))

=
w(x, y)

1 − u(x, y)
(3.37)

where
w(x, y) = P{Ty(0) < Ty(N),Tx(0) > Tx(M)|X(0) = x,Y(0) = y} (3.38)

It can be shown that (in a similar way as in the case of u) w satisfies the same pde as u with the boundary
conditions given next.

We have,

w(0, y) = v(0, y)(1 − u(0, y))
= 0 (∵ u(0, y) = 1) (3.39)

w(M, y) will be obtained as in case of u(x,N) and is found to be,

w(M, y) = 1 −
y
N

(3.40)

Remark 2. We have

v(M, y) =
w(M, y)

1 − u(M, y)

=
w(M, y)
1 − 0

= w(M, y) (3.41)

Now it should be noted that,
lim

N−→∞
w(M, y) = lim

N−→∞
(1 −

y
N

) = 1 (3.42)

The implication of this result is that if the prey population size is at its maximum, the predator popula-
tion will reach state 0 before it reaches its maximum (i. e. N) if N is very large compared to the initial
population size of predator.
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The remaining boundary conditions are,

w(x, 0) = v(x, 0)(1 − u(x, 0))
= 1 − u(x, 0) since v(x, 0) = 1 (3.43)

w(x,N) = 0 (3.44)

3.3.2. Three dimensional food chain model

In many cases tri-trophic food chain model is appropriate to capture more information for a complex
system [44]. In order to find the chance of extinction of a population at any trophic level, we can extend
the above idea for tri-trophic food chain model also. Here a tri-trophic food chain model of the form
given below is considered,

dx
dt

= b1(x) − g1(x, y) − d1(x)

dy
dt

= α1g1(x, y) − g2(y, z) − d2(y)

dz
dt

= α2g2(y, z) − d3(z) (3.45)

Similar procedure may be used to define,

u1(x, y, z) = P {Tx(0) < Tx(M)|X(0) = x,Y(0) = y,Z(0) = z} (3.46)

We can follow the same argument as in the case of general n-trophic food chain model to show that,

∂u1

∂t
= −

1
2

[
b1(x) + g1(x, y) + d1(x)

] ∂2u1

∂x2 −
1
2

[
α1g1(x, y) + g2(y, z) + d2(y)

] ∂2u1

∂y2

−
1
2

[
α2g2(y, z) + d3(z)

] ∂2u1

∂z2 + α1g1(x, y)
∂2u1

∂x∂y
+ α2g2(y, z)

∂2u1

∂y∂z
(3.47)

The six boundary conditions on the six surfaces are given by,

u1(0, y, z) = 1
u1(M1, y, z) = 0

u1(x, 0, z) = f (x)
u1(x,M2, z) = f1(x, z) say

u1(x, y, 0) = f2(x, y) say
u1(x, y,M3) = f3(x, y) say (3.48)

The function f1(x, z) can be found in the following way:
Since M2 is assumed to be the maximum possible population size of 1st predator, the decrease of

it by one individual is negligible compared to M2. Hence we may set ∆x2 = 0 and (∆x2)2 = 0 in the
general equation (3.4) for 1st predator.
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This will give the following differential equation in stationary state,

[
b1(x) + g1(x, y) + d1(x)

] ∂2 f1

∂x2 +
[
α2g2(y, z) + d3(z)

] ∂2 f1

∂z2 = 0 (3.49)

f1 satisfies the boundary conditions,

f1(M1, z) = u1(M1,M2, z) = 0

f1(x,M3) = 1 −
x

M1

f1(0, z) = 1

f1(x, 0) = u1(x,M2, 0) = 1 −
x

M1
(3.50)

In case of u1(x, y, 0), the system is free from 3rd predator and hence it is equivalent to 2dimensional
prey-predator system. This suggest that u1(x, y, 0) = u(x, y) = f2(x, y).

Following the argument in order to derive the differential equation for f3, it can be shown that,

(b1(x) + g1(x, y) + d1(x))
∂2 f3

∂x2 + (α1g1(x, y) + g2(y,M3) + d2(y))
∂2 f3

∂y2 − 2α1g1(x, y)
∂2 f3

∂x∂y
= 0 (3.51)

The boundary conditions for (3.51) are,

f3(M1, y) = 0
f3(0, y) = 1

f3(x,M2) = 1 −
x

M1

f3(x, 0) = f (x) (as given in the previous section) (3.52)

In case of 1st predator population we define,

u2(x, y, z) = P
{
Ty(0) < Ty(M2)|Tx(0) > Tx(M1), X(0) = x,Y(0) = y,Z(0) = z

}
if x, y , 0

= 1 if x = 0 or y = 0 (3.53)

As in the case of two dimensional model, the expression for u2 can be written in the form,

u2(x, y, z) =
w1(x, y, z)

1 − u1(x, y, z)
if x, y , 0

= 1 if x = 0 or y = 0 (3.54)

where,
w1(x, y, z) = P[Ty(0) < Ty(M2),Tx(0) > Tx(M1)|X(0) = x,Y(0) = y,Z(0) = z] (3.55)

w1 satisfies the same pde as u1 with suitable boundary conditions given below.
w1(0, y, z) = 0. From the definition of w1 we have,

w1(x, 0, z) = P[Ty(0) < Ty(M2),Tx(0) > Tx(M1)|X(0) = x,Y(0) = 0,Z(0) = z]
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= P[Tx(0) > Tx(M1)|X(0) = x,Y(0) = 0,Z(0) = z] ×
P[Ty(0) < Ty(M2)|Tx(0) > Tx(M1), X(0) = x,Y(0) = 0,Z(0) = z]

= (1 − u1(x, 0, z))u2(x, 0, z)
= (1 − u1(x, 0, z)).1 (3.56)

Hence we have w1(x, 0, z) = 1 − u1(x, 0, z) = 1 − f (x). It can be shown that w1(x,M2, z) = 0. In order
to find w1(x, y, 0) we follow the following procedure.
Let w1(x, y, 0) = φ(x, y)(say). It can be shown that φ(x, y) satisfies the pde (3.3.2) with the coefficients
of ∂2φ

∂z2 , ∂2φ

∂y∂z to be 0. Hence φ(x, y) satisfies at steady state,

0 =
[
b1(x) + α1g(x, y) + d1(x)

] ∂2φ

∂x2 +
[
α1g1(x, y) + g2(y, z) + d2(y)

] ∂2φ

∂y2

−2α1g1(x, y)
∂2φ

∂x∂y
(3.57)

φ(x, y) satisfies the following boundary conditions. φ(x, 0) = w1(x, 0, 0) = 1− f (x) using the expression
for w1(x, 0, z) given above. φ(x,M2) = 0, φ(0, y) = 0 and φ(M1, y) = 1 − y

M2
.

Similarly, w1(x, y,M3) = ψ(x, y) can be shown to satisfy

0 =
[
b1(x) + α1g1(x, y) + d1(x)

] ∂2ψ

∂x2 +
[
α1g1(x, y) + g2(y,M3) + d2(y)

] ∂2ψ

∂y2

−2α1g1(x, y)
∂2ψ

∂x∂y
(3.58)

The boundary conditions for ψ are:

ψ(x, 0) = 1 − f (x)
ψ(x,M2) = 0

ψ(0, y) = u2(0, y,M3)(1 − u1(0, y,M3))
= u2(0, y,M3)(1 − 1) = 0

ψ(M1, y) = 0
w1(0, y, z) = 0

w1(M1, y, z) = ξ(y, z)(say) (3.59)

which can be obtained in similar way.

In continuation of this process of formulating the probability of extinction we can find the same (u3)
for the 2nd predator also.

4. Numerical simulations

In this section the theoretical findings are validated by using the following simple two dimensional
Lotka-Volterra food chain model.

dx
dt

= rx(1 −
x
K

) − xy
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dy
dt

= αxy − dy (4.1)

Here r is the intrinsic growth rate of the prey population, K is the carrying capacity, α is the conversion
coefficient and d is the natural death rate of the predator population. If we compare the model (4.1)
with the model (2.1), we may consider the following birth-death and interaction terms.

b1(x) = (r + 1)x −
r

2K
x2 (4.2)

d1(x) = x +
r

2K
x2 (4.3)

g(x, y) = xy (4.4)
d2(y) = dy (4.5)

The probability of extinction of prey population (u) and predator population (v) are generated numeri-
cally taking help of finite difference method using the procedure as given in section (3.3.1). Sufficiently
large values of M and N are considered to have better approximation for probability of extinction. The
surface of u(x, y) and v(x, y) are given in the figures 1 and 2.
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Figure 1. The plot of u vs. the initial population sizes of prey and predator for the model
(4.1). The parameters are r = 0.2, K = 20, α = 0.5, d = 0.1.
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Figure 2. The plot of v vs. the initial population sizes of prey and predator for the model
(4.1). The parameters are r = 0.2, K = 20, α = 0.5, d = 0.1.

One can notice in the figure 1 that the probability of extinction is high in the region where the initial
population sizes of both prey and predator population are low and vice-versa. Note that it is natural for
any species to be prone to extinction if its initial population size is very small. This natural phenomena
is captured in this proposed method. The solution set of u(x, y) and v(x, y) provide the probability of
extinction of prey and predator population respectively.

To extend the applicability of this method or to understand the theoretical findings in a better way,
we also consider the effect of initial population size of either prey or predator separately on the extinc-
tion probability. We observe that if the prey population size increases, the probability of extinction of
prey population diminishes for any fixed initial population size of predator(Figure 3). The interesting
result we observe that, if the initial size of predator increases, the chance of extinction of prey decreases
until the initial size of predator population reaches a certain value. The further increase in the initial
size of predator increases the chance of extinction of prey population (see Figure 3 and 4). Thus the
presence of a moderate amount of predator in the system is important to avoid extinction of prey which
in turn helps the predator to survive also.

In figure 5, we observe that if the initial prey population increases, the chance of extinction (v
here) of predator decreases rapidly up to a certain value of initial prey. The change in the extinction
probability of predator is not significant for further increase in the prey population and when initial
prey population size exceeds a certain value, the chance of extinction of predator increases. Here also
we observe that if a food chain model start with very high abundance of initial prey population predator
population may become extinct with high probability. We also observe that for any fixed value of initial
prey population, the higher the initial predator population, lower is the chance of extinction of it.
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Figure 3. The plot of u vs. the initial population sizes of prey for three different initial
population size of predator. The parameters are r = 0.2, K = 20, α = 0.5, d = 0.1.
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Figure 4. The plot of u vs. the initial population sizes of predator for three different initial
population size of prey. The parameters are r = 0.2, K = 20, α = 0.5, d = 0.1.

5. Conclusion and future direction

Indiscriminate use of biological resources along with unplanned activity of human [45] has adverse
effect on ecosystem. As a result, a good number of rare and endangered species are becoming extinct
very rapidly. If this continues to happen it can be predicted that the species in the ecosystem will
be extinct in an unprecedented rate [46, 47]. In this context, the assessment of extinction threats of
different rare and endangered species are needed so that corresponding safeguard can be provided.

In this paper we have formulated the technique to find the probability of extinction for an n-trophic
food chain model. This process can be used to find the extinction probability of species belonging to
any trophic level of the food chain and proper conservation policy can be implemented in advance.
This strategy may help significantly to account for the extinction threat of species in widely recognized
bio-diverse places like Atlantic Forest [48], Sumatra and Madagascar etc. [49]. It is observed that,
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Figure 5. The plot of v vs. the initial population sizes of prey for three different initial
population size of predator. The parameters are r = 0.2, K = 20, α = 0.5, d = 0.1.

the variables determining the extinction probabilities follow few partial differential equations some of
which are very complex in nature and can not be solved explicitly. The complexity increases with the
increase in the dimension of food chain. So numerical method may be used to find the solution of those
differential equations to get the probability of extinction.

In this paper we consider only demographic variability. The impact of environmental noise on any
food chain is also significant. It will be interesting and more appropriate if this work is extended
incorporating environmental noise also.
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