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Abstract: The past two decades have seen the development of numerous mathematical models to
study various aspects of prostate cancer in clinical settings. These models often contain large sets of
parameters and rely on limited data sets for validation. The quantitative analysis of the dynamics of
prostate cancer under treatment may be hindered by the lack of identifiability of the parameters from
the available data, which limits the predictive ability of the model. Using three ordinary differential
equation models as case studies, we carry out a numerical investigation of the identifiability and uncer-
tainty quantification of the model parameters. In most cases, the parameters are not identifiable from
time series of prostate-specific antigen, which is used as a clinical proxy for tumor progression. It
may not be possible to define a finite confidence bound on an unidentifiable parameter, and the relative
uncertainties in even identifiable parameters may be large in some cases. The Fisher information ma-
trix may be used to determine identifiable parameter subsets for a given model. The use of biological
constraints and additional types of measurements, should they become available, may reduce these
uncertainties. Ensemble Kalman filtering may provide clinically useful, short-term predictions of pa-
tient outcomes from imperfect models, though care must be taken when estimating “patient-specific”
parameters. Our results demonstrate the importance of parameter identifiability in the validation and
predictive ability of mathematical models of prostate tumor treatment. Observing-system simulation
experiments, widely used in meteorology, may prove useful in the development of biomathematical
models intended for future clinical application.
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1. Introduction

By 1941, Huggins and Hodes [1] had demonstrated that castration induces the regression of prostate
tumors, which implies that the growth of prostate cancer cells is highly dependent on androgen (male
sex hormones). Their work showed, perhaps for the first time, that some cancers potentially could
be clinically treatable by chemical means, and Huggins shared the 1966 Nobel Prize in Medicine and
Physiology for this discovery [2]. Nowadays, hormone therapy—specifically, androgen suppression
therapy—is a common treatment for localized and locally advanced prostate cancer and has been shown
to have a significant survival benefit, albeit with considerable side effects [3]. Typically, continuous
androgen suppression (CAS) therapy is given until the tumor evolves resistance, at which point the
patient’s prognosis becomes unfavorable [4, 5].

Intermittent androgen suppression (IAS) therapy aims to reduce the side effects of CAS and po-
tentially delay the onset of hormonal resistance [6]. During IAS, the patient is put on treatment until
his blood serum level of prostate-specific antigen (PSA, a biomarker for prostate cancer) falls below
a predetermined lower threshold. Treatment is halted until the patient’s PSA level later rises above
a predetermined upper threshold, when it is restarted. The on-off cycles are repeated until the tumor
becomes resistant. Although IAS reduces the side effects of treatment, its ability to forestall treatment
resistance is not yet clear [7].

Over the last decade, various mathematical models have been developed to describe the dynamics of
prostate cancer under IAS, as measured by clinical time series of blood serum levels of PSA, and possi-
bly also of androgen, of individual patients in clinical trials. The models are clinically validated insofar
as initial conditions and rate parameters can be selected so that the numerical solutions reproduce the
observed time series with reasonable fidelity. Several such models are described in Section 1.2.

1.1. Motivating example

One of the main clinical problems in any individual patient case, and one for which a validated
mathematical model of prostate cancer might provide insight, is whether another round of IAS therapy
will be helpful. Thus it is reasonable to ask, if a given mathematical model accurately reproduces past
observations of PSA, can it predict future observations with an acceptable degree of reliability? If not,
then why not?

To illustrate, we consider a particular patient in a clinical trial of IAS whose serum PSA levels
are measured approximately every 30 days. This patient starts treatment on day 0, goes off treatment
around day 300, restarts around day 600, and so on for five intervals of approximately 300 days each.
Using a fitting procedure described in Section 2.4, parameters for two models, which we call Model H
and Model P in Section 1.2, are selected to provide “optimal” values of the model parameters, insofar
as each model solution, starting from a fixed initial condition and integrated for 900 days, yields the
smallest root-mean-square difference with the data. In addition, we vary the relative value of one of
the model parameters by up to 10 percent from the “optimal” one.

Figure 1 shows the results. The solid curves in each panel show the respective model’s solutions
obtained from both the “optimal” parameters and from varying one of the parameters slightly as just
described. The models are integrated for 1500 days from a suitable initial condition to demonstrate 900
days of approximate agreement with clinical measurements of PSA (the “fitted” interval) and another
600 days of predicted PSA levels (the “predicted” interval), assuming that the last cycle of IAS therapy
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Figure 1. Results of fitting model parameters to approximately 900 days of clinical measure-
ments of PSA, and the corresponding model predictions, for two models of prostate cancer
dynamics under IAS for the same patient. Red dots: clinical measurements. Solid curves:
model solutions for “optimal” parameters chosen according to the procedure described in
Section 2.4 and for a parameter value with a relative difference of 10% from optimal. (a)
Model H; (b) Model P.

begins around day 1200. Although Model P (Figure 1(b)) reproduces the observed PSA levels through
day 900 better than Model H, its predictions of PSA levels for days 900–1500 are much worse. Both
Model H and Model P significantly overestimate—by factors of greater than 2 and 4, respectively—the
observed PSA level in the second off-treatment interval, depending on the choice of parameter. One
choice of parameter vector for Model P yields a pretty good prediction of the effect of the next cycle
of treatment, but the others do not, even though all the choices accurately reproduce the observations
over the “fitted” interval.

We investigate two principal mathematical questions in this paper. First, can the parameters of
a given model be estimated reliably from available clinical data, which typically consists of serial
measurements of serum PSA? This question motivates our investigation into parameter identifiability,
which includes issues of structural and practical identifiability [8, 9]. Second, what are some useful
approaches to quantify the uncertainties in parameter estimates and the reliability of “patient-specific”
forecasts of treatment response, based on a particular model? This question motivates our use of an
ensemble Kalman filter (EnKF), which is widely used for data assimilation and parameter estimation
in weather forecasting and similar predictive settings.

Our main conclusions are that, while parameters for a deterministic model may reproduce clinical
measurements well, they may be subject to large uncertainties, as may the predictions of such a model.
Additional types of clinical measurements, if available, may help constrain the values of more parame-
ters. To be clinically practicable, model design must take into consideration the nature of the available
observations. The next sections provide an overview of some dynamical models of IAS therapy and
some background on parameter identifiability and uncertainty quantification.
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1.2. Mathematical models of prostate cancer treatment

Jackson [10] laid the groundwork for several data-driven mathematical models for prostate can-
cer [11, 12, 13]. The three models considered in this paper all assume that the tumor is composed of
two or more subpopulations of cells that differ in their degree of androgen dependence. However, the
models differ in the way they represent the biological details, particularly the role in which androgen
fuels the growth of the tumor cells.

1.2.1. Model H: the Hirata et al. model

Hirata et al. [14, 15, 16] introduced a piecewise-linear model (“Model H”) of the dynamics of
prostate cancer under IAS therapy. Model H proposes that there are three cancer cell subpopulations,
x1, x2, and x3, that represent, respectively, treatment-sensitive, -insensitive, and irreversibly treatment-
insensitive cells. It has been used to study parameter estimation and optimal control of IAS therapy as
well as forecasting of treatment resistance and uncertainty quantification [14, 17, 18, 19].

Model H is constructed by assuming that the rates of biphasic increase and decrease of PSA levels
during the respective off- and on-treatment intervals are linear combinations of the tumor cell subpop-
ulations. At any given instant, cells in subpopulation j grow at the rate w j jx j; cells transition from
subpopulation j to k at the rate wk jx j, j, k ∈ {1, 2, 3}, and w3 j = 0, j = 1, 2. There are two ver-
sions of each parameter: w0

jk during the off-treatment intervals and w1
jk during treatment. During the

on-treatment intervals, Model H takes the form

d
dt


x1(t)
x2(t)
x3(t)

 =


w1

1,1 0 0
w1

2,1 w1
2,2 0

w1
3,1 w1

3,2 w1
3,3



x1(t)
x2(t)
x3(t)

 . (1.1)

This form implicitly takes into account the lack of androgen, which retards the growth of the x1 and x2

subpopulations and also selects for the fully treatment-resistant phenotype, x3.
During off-treatment intervals, Model H assumes that the partially treatment-resistant (x2) subpop-

ulation reverts back to the sensitive one (x1) at a certain rate, while the growth of the x3 population
depends only on its present size:

d
dt


x1(t)
x2(t)
x3(t)

 =


w0

1,1 w0
1,2 0

0 w0
2,2 0

0 0 w0
3,3



x1(t)
x2(t)
x3(t)

 . (1.2)

Model H also assumes that the level of serum PSA at time t is proportional to the sum of the three
tumor subpopulations,

P(t) = H(x(t)) = α(x1(t) + x2(t) + x3(t)). (1.3)

For simplicity, the units of tumor cell populations and PSA level are scaled such that α = 1. Although
the validity of the biological assumptions in Model H is debatable, it reproduces clinical time series of
PSA data well [14, 16, 20].

Model H has 10 parameters and 3 initial conditions that must be estimated from PSA data (androgen
is not explicitly incorporated). There are no a priori constraints on the parameters, other than clinically
realistic bounds on the net tumor growth rate.
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1.2.2. Model P: The Portz et al. model

In contrast to the phenomenological approach in Model H, Portz, Kuang, and Nagy [12] have formu-
lated a mechanistic model (“Model P”), inspired by Droop’s nutrient-limiting theory [21], that regards
androgen as the limiting nutrient for cancer growth and transformation. Model P has inspired several
variants [9, 20, 22, 23, 24, 25], but we focus on the original formulation here. Model P presumes
that the tumor is comprised of treatment-sensitive and -insensitive prostate cancer cells, each of which
requires a minimum level of androgen, called the cell quota. When the available androgen falls below
the cell quota, the respective subpopulation declines. Cells may mutate from one subpopulation to the
other in response to selection pressure from IAS therapy.

Model P contains explicit equations that govern the intracellular androgen levels, Q1 and Q2, of the
treatment-sensitive and -insensitive subpopulations x1 and x2, respectively. Androgen data is used to
interpolate values for the serum androgen function A(t), which acts as an external forcing to represent
the on- and off-treatment cycles. The growth and transformation rates for both cell subpopulations
depend on the intracellular androgen levels, while the death rates are constant [12].

Model P is defined by the following system of differential equations:

dx1

dt
= µm

(
1 −

q1

Q1

)
x1︸            ︷︷            ︸

growth

− d1x1︸︷︷︸
death

− c1λ1(Q1)x1 + c2λ2(Q2)x2︸                          ︷︷                          ︸
mutation

(1.4)

dx2

dt
= µm

(
1 −

q2

Q2

)
x2︸            ︷︷            ︸

growth

− d2x2︸︷︷︸
death

− c2λ2(Q2)x2 + c1λ1(Q1)x1︸                          ︷︷                          ︸
mutation

(1.5)

dQ1

dt
= vm

(
qm − Q1

qm − q1

) (
A(t)

A(t) + vh

)
︸                          ︷︷                          ︸

androgen influx to x1 cells

− µ(Q1 − q1)︸      ︷︷      ︸
x1 androgen uptake

− bQ1︸︷︷︸
degradation

(1.6)

dQ2

dt
= vm

(
qm − Q2

qm − q2

) (
A(t)

A(t) + vh

)
︸                          ︷︷                          ︸

androgen influx to x2 cells

− µ(Q2 − q2)︸      ︷︷      ︸
x2 androgen uptake

− bQ2︸︷︷︸
degradation

(1.7)

dP
dt

= σ(x1 + x2)︸      ︷︷      ︸
baseline PSA production

+
σ1x1Qm

1

Qm
1 + ρm

1
+
σ2x2Qm

2

Qm
2 + ρm

2︸                    ︷︷                    ︸
tumor PSA production

− δP︸︷︷︸
degradation

. (1.8)

The cell quota for each subpopulation is q j, the death rate is d j, and the mutation rate from subpop-
ulation i is λ j(Q j) = K j/(Q j + K j), j = 1, 2. Since x2 is the less treatment-sensitive subpopulation,
q2 < q1. The PSA production rate depends on the tumor cell subpopulations. Further details about the
development of this model are found in [12].

Model P contains 21 parameters and a 5-dimensional state vector. It is possible to find parameters
so that model solutions replicate clinically observed time series of serum PSA levels [12, 20]. While
the PSA data is utilized for estimating the model parameters, the available androgen data is used only
for the interpolation of A(t). The parameters in Model P are biologically meaningful, and ranges for
most of them can be found in the literature.
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1.2.3. Model T: the Phan et al. model

One difficulty with Model P is that it cannot reproduce PSA relapse under CAS [26] within the pa-
rameter ranges given in [12]. The problem may arise from the assumption that the cell subpopulations
can mutate from one to the other [9]. To address these issues, Baez and Kuang [22] introduced a simpli-
fication of Model P, which has been further refined into Model T, below. (See [24] for the derivation.)
Key changes include the addition of an irreversibly treatment-resistant tumor subpopulation (similar to
that of Model H) and the addition of a compartment for serum androgen, A:

dx1

dt
= µ1

(
1 −

q1

Q

)
x1︸           ︷︷           ︸

growth

− (D1(Q) + δ1x1) x1︸                ︷︷                ︸
death

− λ(Q)x1︸ ︷︷ ︸
mutation

(1.9)

dx2

dt
= µ2

(
1 −

q2

Q

)
x2︸           ︷︷           ︸

growth

− (D2(Q) + δ2x2) x2︸                ︷︷                ︸
death

+ λ(Q)x1︸ ︷︷ ︸
mutation

(1.10)

dQ
dt

= m(A − Q)︸     ︷︷     ︸
androgen diffusion A→ Q

−
µ1(Q − q1)x1 + µ2(Q − q2)x2

x1 + x2︸                                ︷︷                                ︸
androgen uptake

(1.11)

dA
dt

= γ2 + γ1(A0 − A)︸             ︷︷             ︸
production

−A0γ1u(t)︸      ︷︷      ︸
suppression of production

(1.12)

dP
dt

= bQ︸︷︷︸
baseline PSA production

+ σ(Qx1 + Qx2)︸           ︷︷           ︸
tumor PSA production

− εP︸︷︷︸
degradation

, (1.13)

where the respective androgen-dependent death and mutation rates are D j(Q) = d jR j/(Q+R j), j = 1, 2
and λ(Q) = cK/(Q + K). The unit step function u(t) is 1 when when the patient is on treatment and is
0 otherwise; the treatment time intervals are determined directly from the data.

Model T has 21 parameters and a 5-dimensional state vector. Biologically realistic estimates of the
parameters are given in Table 1. In this paper, we fix the parameters c = 0.00015, K = 1, δ1 = 5, δ2 = 5,
and γ2 = 0.005 in all simulations, as their values have relatively little effect on the model output [24].
For simplicity, we also set µ1 = µ2 = µm, which leaves a model with 13 adjustable parameters that
we call T-13. Based on the results of a prior a sensitivity analysis [24], we also consider a version of
Model T, which we call T-5, in which all but 5 of the parameters are fixed. (The adjustable parameters
in Eqs. 1.9–1.13 in Model T-5 are µm, q2, d1, γ1, and A0.) The parameter estimation and time series
prediction procedures processes described in Section 2 are carried out on versions T-13 and T-5 using
time series of serum PSA and androgen levels.

2. Materials and methods

As described in the introduction, we are concerned with two main questions: the reliability with
which model parameters can be estimated from the available data, and the trustworthiness of model
predictions after the parameters have been selected to maximize the agreement between model observ-
ables and prior clinical measurements of PSA. In this section, we briefly survey the data sources that
we use and the mathematical approaches that we apply to each question.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3512–3536.
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Table 1. Estimated biologically realistic ranges of the parameters for Model T. The values
of parameters with a single asterisk are fixed in all simulations described here (see Sec-
tion 1.2.3), and column T-5 shows the values of the parameters that are fixed in Model T-5.
Parameters with double asterisks may vary considerably between patients [24].

Param Description Range T-5 Unit

µm max proliferation rate [0.001, 0.09] varies [day]−1

µ1 max proliferation rate (AD cells) [0.001, 0.09] µm [day]−1

µ2 max proliferation rate (AI cells) [0.001, 0.09] µm [day]−1

q1 min AD cell quota [0.41, 1.73]∗∗ 0.6130 [nmol][day]−1

q2 min AI cell quota [0.01, 0.41]∗∗ varies [nmol][day]−1

b baseline PSA production rate [0.0001, 0.1] 0.0379 [µg][nmol]−1[day]−1

σ tumor PSA production rate [0.001, 1] 0.8667 [µg][nmol]−1[L]−1[day]−1

ε PSA clearance rate [0.0001, 0.1] 0.0565 [day]−1

d1 max AD cell death rate [0.001, 0.09] varies [day]−1

d2 max AI cell death rate [0.01, 0.001] 0.0633 [day]−1

δ1 density death rate [1, 90]∗ 5 [L]−1[day]−1

δ2 density death rate [1, 90]∗ 5 [L]−1[day]−1

R1 AD death rate half-saturation [0, 3] 1.2499 [nmol][L]−1

R2 AI death rate half-saturation [1, 6] 2.7351 [nmol][L]−1

c maximum mutation rate [10−5, 10−4]∗ 0.00015 [day]−1

K mutation rate half-saturation level [0.8, 1.7]∗ 1 [nmol][day]−1

γ1 primary androgen production rate [0.008, 0.8] varies [day]−1

γ2 secondary androgen production rate [0.001, 0.1]∗ 0.005 [day]−1

m diffusion rate from A to Q [0.01, 0.9] 0.7188 [day]−1

A0 maximum serum androgen level [27, 35]∗∗ varies [nmol][day]−1

x1(0) Initial population of AD cells [0.009, 0.02] 0.01 [L]

x2(0) Initial population of AI cells [10−4, 10−3] 0.0001 [L]

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3512–3536.
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2.1. Data

The data for this study comes from a clinical trial at the Vancouver Prostate Center, which admitted
patients who demonstrated a rising serum PSA level after they received radiotherapy and had no evi-
dence of metastasis [27]. The study admitted patients who had not had hormonal suppression therapy,
with the exception of less than 3 months of neoadjuvant androgen suppression, and who experienced
PSA relapses after radiotherapy with no evidence of distant metastasis (e.g., bone metastasis) [27].
The study contains patients with high serum PSA levels prior to androgen suppression therapy (i.e.,
PSA > 6 µg/L).

The data used in the parameter-fitting and prediction efforts in this paper come from two dis-
joint subsets totaling 54 patients, for whom we have approximately monthly measurements of serum
PSA and androgen levels. One subgroup of 28 patients has data for at least one cycle of androgen-
suppression treatment, and the second subgroup of 26 patients, 2.5 cycles. We do not have imaging
data or other independent measures of tumor volume, nor any biopsy, genomic, or cell receptor infor-
mation from these patients.

2.2. Parameter identifiability and associated metrics

Each of the models considered here defines a vector field F of an m-dimensional state vector x(t) that
depends upon a fixed q-vector of parameters p. At each measurement time, the clinical observations
are assumed to be a function H : Rm → Rs of the tumor state; in this paper, s = 1 or 2 depending on
whether both androgen and PSA levels are observed. We may represent the mathematical setup as a
system of the form

dx
dt

= F(x(t,p)) (2.1)

y(t,p) = H(x(t,p)). (2.2)

Here y(t,p) represents the observables (predicted observations) from the given initial condition and
parameter vector at time t. We represent by the s-vector yobs(t) the actual data (observations) at selected
measurement times.

If any component of p is an implicit function of some of the others, then, in general, different values
of p yield the same solution vector x(t,p) for a given initial condition. In such a case, p is said to be
structurally non-identifiable because p cannot be estimated uniquely from a given set of observables.
In general, it is not possible to define a confidence interval for numerical estimates of structurally
non-identifiable parameters.

If no implicit functional relationship exists between the elements, then p is structurally identifi-
able [28, 29]. Practical identifiability refers to the question of whether the components of p can be
estimated with suitably small confidence bounds from observations with noise of finite variance. Struc-
tural identifiability is a necessary condition for practical identifiability [30, 31, 32, 33].

2.2.1. The Fisher information matrix

The Fisher information matrix (FIM) measures the sensitivity of the model output at measurement
times tn with respect to the model’s parameter vector. It can detect combinations of identifiable param-
eters [34, 35, 36]. Given a set of measurements at N distinct time points and an ODE model with an

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3512–3536.
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m-dimensional state vector and q-vector of parameters, the Nm × q sensitivity matrix S consists of N
time-dependent m × q blocks A(tn):

S =


A(t1)
A(t2)
...

A(tN)

 , where A jk(tn) =
∂x j(tn,p)
∂pk

, n = 1, . . . ,N, k = 1, . . . , q. (2.3)

The q × q Fisher information matrix is M = STS. (In practice, each A jk must be approximated numeri-
cally.) The parameter vector p is structurally identifiable if and only if M has full rank [31]. The rank
of M corresponds to the number of identifiable parameter combinations in p. The condition number of
M is a measure of the practical identifiability of the parameters: if the condition number is large, then
small amounts of measurement noise can render reliable estimation of p impossible.

The Cramér-Rao bound covariance matrix is C = M−1. The diagonal element C j j is the asymptotic
variance of the jth parameter; C1/2

j j is the standard deviation (S D j) of p j. The coefficient of varia-
tion [34] for the jth parameter is

CV j =
S D j

|p j|
. (2.4)

If CV j ≥ 1, then the uncertainty in p j is at least as great as its value, which may be considered a useful
upper bound for practical identifiability. If CV j is large (say, CV j > 104), then p j simply may not be
estimable from the data, which renders it structurally unidentifiable [8, 34].

2.2.2. The profile likelihood method

The available observations in this study are time series of serum PSA, and, in some cases, of serum
androgen, so the observation vector yobs(tn) has at most 2 components (with respective standard er-
rors σ jn). For a fixed time series of such observation vectors, and a given set of observables y(t,p)
(Eq. 2.9), the negative log likelihood function takes the form

− LL(y | p) =
sN
2

ln(2π) +
1
2

s∑
j=1

N∑
n=1

y j(tn,p) − yobs
j (tn)

σ jn

2

, (2.5)

where p is the model parameter vector. There are N measurement time points and s observations at
each time point (s = 1 or 2 for the models discussed here). When the measurement variances σ jn are
all equal to the same known constant, the minimization of −LL is equivalent to the minimization of
the third term on the right-hand side of Eq. 2.5, and, thus, parameter estimation with the negative log
likelihood is equivalent to least-squares minimization. (We take σ jn = 1 for the PSA and androgen
time series used in this paper.)

The profile likelihood is computed by fixing one element of p and choosing the remaining elements
over appropriate ranges to minimize Eq. 2.5. The profile likelihood PL j is computed as

PL j(p) = min
{p|p j=c}

−LL(y | p), (2.6)

where all but the jth component of p is varied over an appropriate interval. The confidence interval α
for the profile likelihood of parameter p j is

CIα =
{
c : PL j(c) ≤ min−LL(y | p) + ∆(α)/2

}
. (2.7)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3512–3536.
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For a sufficiently large data set, ∆(α) takes the following form asymptotically:

∆(α) = icdf(χ2, α, d f ). (2.8)

Here icdf(χ2, α, d f ) is the inverse cumulative distribution function for χ2 with α-quantiles (e.g., α =

0.95 for a 95% confidence interval) and d f degrees of freedom, which can be taken as 1 when all but
one element of the parameter parameter vector is fixed, or as q for a simultaneous confidence interval
for all components of the model parameter vector [8, 29, 37].

2.3. Uncertainty quantification: the ensemble transform Kalman filter

The ensemble Kalman filter (EnKF) is a common approach to data assimilation [38, 39]. It is used
to estimate the m-dimensional state vector of a dynamical model given a set of noisy observations that
can be regarded as a “predictor-corrector” scheme.

The simulations presented here use the ensemble transform Kalman filter [40], which is one of
several possible square-root filters. Details of the implementation are given in the appendix, but we
briefly summarize the approach here. Starting with a set of K initial conditions at tn, we integrate the
model to time tn+1 to produce a background ensemble

{
x(tn+1)b(k)

}K
k=1. Let yobs(tn+1) denote the vector

of measurements at tn+1. (Depending on the time series, the measurement is either a 1-vector of serum
PSA level or a 2-vector of serum PSA and androgen levels.) Here we assume that the observables (i.e.,
predicted observations) are related to the model state vector by the function H, sometimes called the
forward operator, as

y(tn+1) = H(x(tn+1)). (2.9)

In the models considered in this paper, H may be a linear (e.g., Eq. 1.3) or a nonlinear (e.g., Eqs. 1.8
and 1.13) function of the model state vector.

The objective of the ensemble transform Kalman filter is to find a linear combination of the elements
of the background ensemble that best match the data, in the sense that the weight vector w minimizes
the sum of squares

J(w) = (K − 1)wTw +
[
yobs −H(xb + Xbw)

]T R−1 [
yobs −H(xb + Xbw)

]
, (2.10)

where

xb = K−1
K∑

k=1

x(tn+1)b(k) (2.11)

is the ensemble mean, Xb is the m×K ensemble perturbation matrix whose ith column is x(tn+1)b(k)−xb,
k = 1, . . . ,K, R is the covariance matrix of the errors in the observations, and H is the forward operator
associated with the model. (The ensemble mean and perturbation matrix vary with time, as may H
and R, but the explicit time dependence is omitted here to simplify the notation.) The filter produces
the analysis ensemble {wa(k)}

K
k=1, which in model space becomes

x(tn+1)a(k) = xb + Xbwa(k), i = 1, . . . ,K. (2.12)

(See the appendix for further details.) The analysis ensemble defined in Eq. 2.12 forms a new set
of initial conditions, which are then integrated to the next observation time tn+2, and the process is
repeated until the end of the data series.
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The process begins with a preselected set of initial conditions at t0. The results described below
include patients for whom there are at least 20 observation time points.

State augmentation. The Kalman filter can be used to estimate q model parameters with the rest of
the m-dimensional state vector by considering the (m + q)-dimensional vector x∗ = (x,p)T that solves
the augmented system

dx∗

dt
=

(
dx/dt
dp/dt

)
=

(
F(t, x,p)
G(t, x,p)

)
. (2.13)

In our case, the associated forward operator is H∗ = (H, 0)T because the parameter vector is not ob-
served directly. Here G can be any model for the evolution of the parameter vector p. In the simplest
case, which is considered here, the parameters are assumed constant over the course of treatment, so
G = 0, but a more sophisticated model of parameter drift could be used.

2.4. Mean-squared-error parameter estimation

Our metric for the agreement between the observations and the model observables at the nth mea-
surement time, n = 1, 2, . . . ,N is the mean squared error (MSE) defined by

E(x0,p) =
1

sN

s∑
j=1

N∑
n=1

H j(x(tn,p)) − yobs
j (tn)

σ jn

2

, (2.14)

where σ jn is the variance of the measurement error in the kth component of the observation vector at
time tn. (We take σ jn = 1 for the data used in this paper.) If the measurement errors are normally
distributed, then E has a χ2 distribution, and minimizing E is equivalent to maximum likelihood esti-
mation [29]. In the numerical investigations described in Section 3, the parameter estimation is carried
out using the MATLAB built-in function fmincon.

Because the exact analytical expressions for the solutions of the models in question are difficult or
impossible to find, the blocks of the sensitivity matrix S (Eq. 2.3) are estimated numerically at the time
of each clinical measurement. We illustrate the approach first with Model H, Eqs. (1.1)–(1.2), which
has 10 parameters.

Initially, the total tumor cell population (x1 + x2 + x3) in Model H numerically equals the first clin-
ical measurement of serum PSA level. For parameter identification purposes, we fix the initial cell
populations x1(0), x2(0), and x3(0) to be 0.95%, 0.05%, and 0%, respectively, of the initial PSA mea-
surement. For our numerical computations, we use the time series of serum PSA data from Patient 1
in the Vancouver Prostate Center public dataset [27] (any patient will do). Clinical measurements are
taken approximately at monthly intervals; P(t0) is the initial clinical measurement of PSA level at the
start of treatment, and P(tn), the nth subsequent measurement. We select the parameters to minimize
E(x0,p), Eq. (2.14), using the built-in MATLAB function fmincon.

All 10 parameters are minimized simultaneously using the time series of PSA data from the first 1.5
cycles of treatment (i.e., the initial on-off-on treatment intervals). The allowed parameter ranges for
Model H, used as constraints in fmincon, are taken from [20]. The output is an estimated parameter
vector,

p∗ =
(
w1∗

1,1,w
1∗
2,1,w

1∗
2,2,w

1∗
3,1,w

1∗
3,2,w

1∗
3,3,w

0∗
1,1,w

0∗
1,2,w

0∗
2,2,w

0∗
3,3

)T
,

for which a model integration starting from the initial condition above produces observables (i.e.,
predicted serum PSA levels, Eq. 1.3), that minimize E(x0,p).
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An analogous procedure is performed for the 21 parameters of Model P, using the initial condition
x1(0) = 99, x2(0) = 1, Q1(0) = 0.5, Q2(0) = 0.5. The initial PSA level, P(0), is taken as the first clinical
measurement of PSA. The process is similar for Model T using the initial conditions in Section 3.2.

2.5. Numerical estimation of the Fisher information matrix

After the parameter estimates are obtained from fmincon, we estimate the uncertainty in each pa-
rameter as follows. At time t0, i.e., at the time of the first clinical measurement of PSA after treatment
begins, we perturb the first parameter, p∗1 = w1∗

1,1, to generate two new values, w1∗,±
1,1 = (1 ± 0.01)w1∗

1,1,
from which we integrate the model to the first measurement time, t1. Then we approximate

A j1(t1) =
∂x j(t1,p∗)

∂p∗1

(cf. Eq. 2.3) by finite differencing the two solutions at t1 with respect to the jth component of the model
state vector, j = 1, 2, 3. We proceed likewise for w1∗

2,1 through w1∗
3,3 to estimate the first block A(t0) of the

sensitivity matrix. During the on-treatment intervals, the elements of A corresponding to parameters
w0∗

1,1 through w0∗
3,3 are zero.

This process begins anew at t1, starting with the state vector x(t1,p∗), to estimate A(t1). When we
reach the end of the first on-treatment interval at tn1 , the process continues with components w0∗

1,1, w0∗
1,2,

w0∗
2,2, and w0∗

3,3 of p∗ through the first off-treatment interval at tn2; the elements of A corresponding to w1∗
1,1

through w1∗
3,3 are zero. Finally, we proceed as above with parameters w1∗

1,1 through w1∗
3,3 for the second

on-treatment interval through tn3 . The numerical estimates of A(tn), n = 1, . . . ,N3 yield the sensitivity
matrix S, from which we compute the Fisher information matrix M = STS and the Cramér-Rao bound
covariance matrix, C = M−1.

3. Results and discussion

One naı̈ve way to estimate the uncertainty in model parameters is to run MATLAB’s fmincon func-
tion to determine a vector of parameters for which the model’s observables of PSA agree closely with a
given patient’s clinical time series. For this purpose, we have used Model T-13 and minimized Eq. 2.14
subject to the biological constraints in Table 1. Such a calculation was run for 28 different patients over
their first on-off-on treatment intervals.

Table 2 shows the sample means and variances of the parameters returned by fmincon for this set
of patients. The “optimal” parameter values are about the same for each patient for the most part.
One may wonder whether the sample variances obtained in this manner are realistic. The analyses in
Sections 3.1–3.2 suggest that they are not, and, in fact, that the actual uncertainties are much larger
than the results in Table 2 might suggest.

In this section, we present the results obtained from studying the identifiability and uncertainty
quantification of parameters and predictions from Models H, P, T-13, and T-5. We show that, based on
the available time series data, the parameters of models H, P, and T-13 are not practically identifiable.
The method of profile likelihood shows that the parameters of Model T-5 are identifiable under the
biological constraints given in Table 1.

We also use the ensemble Kalman filter on the associated augmented systems to assess the short-
and long-term predictive capability of Model T-5. Although we obtain some promising initial results
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Table 2. Sample mean and variance of parameter vector components of Model T-13 from
running fmincon on a set of 28 patients from the Vancouver Prostate Center over their first
on-off-on treatment intervals.

Parameter µm q1 q2 b d1 R1

mean 0.0710 0.6130 0.1971 0.0379 0.0687 1.2499

variance 0.0006 0.0111 0.0091 0.0008 0.0005 0.4059

Parameter γ1 σ ε A0 d2 R2 m

mean 0.3742 0.8667 0.0565 11.63 0.0633 2.7351 0.7188

variance 0.0928 0.0680 0.0006 23.69 0.0006 1.2527 0.0604

Table 3. Rank of the numerically estimated Fisher information matrix for a fixed set of initial
conditions. Only the parameters in Model T-5 are identifiable from the available data.

Model H P T-13 T-5
# fitted parameters 10 21 13 5

FIM rank 9 15 12 5

for many patients, there is evidence of significant model error.

3.1. Parameter identifiability of Model H and Model P

Table 3 shows the rank of the Fisher information matrix M obtained using the numerical procedure
described in Section 2.5. In particular, the rank of M for Models H and P is 9 and 15, respectively.
Because the rank is less than the number of model parameters, we conclude that neither model has a
parameter vector that can be identified uniquely from the available observations.

To illustrate one of the implicit functional relationships between some of the model parameters,
Figure 2 shows a plot of the profile likelihood (Eq. 2.6) between a selected pair of parameters from
each of Models H and P. The negative log likelihood function can be minimized by multiple choices of
the two selected parameters within the ranges specified on each graph. The two parameters are related
by an implicit function within and beyond the indicated bounds on the axes, and it is not possible to
associate a confidence interval to them. These results suggest that the parameters in Models H and P
are structurally unidentifiable when the only observables are time series of PSA levels.

Next we turn to the uncertainties in the parameters returned by fmincon, as estimated from the
Crámer-Rao covariance matrix, M−1. Table 4 shows the resulting coefficients of variation (Eq. 2.4).
The coefficient of variation of all parameters except w1

1,1 in Model H and µm in Model P is greater than
unity (i.e., the uncertainty is at least as large as the estimated parameter value). Thus, the parameters
are practically unidentifiable given the available clinical time series.

The numerical results presented here are based on time series from one representative patient (Pa-
tient 39) in the Vancouver Prostate Center clinical dataset; analogous results are obtained for other
patients. Although it is possible to find estimates of the parameter vector for each of Model H and P
that provide reasonably good agreement with clinical observations, such estimates are not unique, and
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Model PModel H(a) (b)

Figure 2. Profile likelihoods from selected pairs of parameters in Models H and P. The
color coding represents the values of the profile likelihood, Eq. 2.6, as a function of each
parameter. (a) Profile likelihood obtained from Model H during an off-treatment interval
when fixing w0

1,2 and w0
3,3 (cf. Eq. 1.2). (b) Similarly for Model P (Eqs. 1.4–1.8), when all

parameters are fixed except for µm and c1.

they may be subject to large relative errors. The uncertainties in the parameters lead to unreliable
predictions for the future clinical course of individual patients (Figure 1).

3.2. Parameter identifiability in Models T-13 and T-5

The numerical estimation of the Fisher information matrix for these models proceeds in the same
manner as described in Section 2.5. We fix the initial values of x1 and x2 to 0.01 and 0.0001, respec-
tively, and A(0) and P(0) are taken as the first value of recorded androgen and PSA data; we assume
that Q(0) = 0.90A(0). The results shown in Table 3 indicate that Model T-13 has 2 unidentifiable
parameters, as the rank of the Fisher information matrix is 11. In contrast, the rank of the Fisher
information matrix is 5 for Model T-5, so all of the adjustable parameters are identifiable.

The coefficients of variation in Table 4 indicate that estimates of all but two of the parameters in
Model T-13 are subject to large uncertainties. In contrast, 4 of the 5 adjustable parameters in Model
T-5 may be practically identifiable.

The computations reported in Table 4 do not account for biologically realistic bounds on the param-
eters. To assess the practical identifiability of model T-5 with respect to the biological constraints in
Table 1, we use the clinical time series from Patient 39 in the Vancouver database as a representative
case to compute the profile likelihood for all 5 model parameters, shown in Figure 3. Each black curve
represents the value of the negative log likelihood, Eq. 2.5, when all parameters are set to the values
returned by fmincon (Section 2.4) except for the one that is varied within the interval shown on the
horizontal axis.

Also shown in the graphs is the 95% confidence threshold, Eq. 2.7, as a dotted red line. The
corresponding confidence interval in the parameter consists of those parameter values for which the
profile likelihood lies below the dotted line. In some cases, the confidence interval lies outside a
biologically realistic range. For example, only nonnegative values of parameter d1 (Figure 3(c)) are
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Table 4. Coefficients of variation (CV) for Models H, P, T-13, and T-5. A parameter for
which CV ≥ 1 has an uncertainty that is at least as large as its estimated value. The estimated
uncertainties do not account for biological constraints on the parameter values.

H w1
11 w1

21 w1
22 w1

31 w1
32 w1

33 w0
11 w0

12 w0
22 w0

33

value -0.055 0.002 -0.000 0.001 -0.003 0.002 0.003 0.175 0.008 -0.056
CV 2 · 10−1 7 · 100 2 · 102 1 · 101 1 · 101 2 · 101 2 · 104 6. · 105 2 · 101 1 · 101

P µm q1 q2 d1 d2 c1 K1 c2 K2 n qm

value 0.018 0.207 0.193 0.005 0.005 0.000 0.524 0.000 1.499 2.226 4.446
CV 4 · 10−1 7 · 103 2 · 103 3 · 103 7 · 104 7 · 104 2 · 106 1 · 108 2 · 108 1 · 105 2 · 104

vm vh b σ1 σ2 ρ1 ρ1 m σ0 ε

value 0.144 4.484 0.087 0.003 0.117 1.092 1.193 4.496 0.002 0.070
CV 2 · 103 5 · 103 7 · 102 4 · 105 5 · 104 4 · 105 2 · 105 7 · 102 5 · 102 9 · 101

T-13 µm q2 d1 γ1 A0 q1 b R1 σ ε d2

value 0.060 0.240 0.089 0.012 11.000 0.500 0.050 3.000 0.500 0.050 0.009
CV 2 · 101 3 · 104 2 · 101 6 · 10−2 1 · 10−2 2 · 103 7 · 100 1 · 102 6 · 101 7 · 100 7 · 103

R2 m
value 4.000 0.500
CV 1 · 104 4 · 101

T-5 µm q2 d1 γ1 A0

value 0.060 0.240 0.089 0.012 11.000
CV 2 · 10−1 2 · 101 5 · 10−1 4 · 10−1 1 · 10−2

9 10 11
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Figure 3. The negative log likelihood (vertical axes), Eq. 2.6, of all adjustable parameters in
Model T-5. Intervals where the black curves lie below the red dotted line are the 95% confi-
dence intervals, which in some cases lie outside of the biologically realistic ranges indicated
in Table 1.
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biologically meaningful, yet the left endpoint of the 95% confidence interval is a negative value. The
parameter q2 corresponds to the cell quota for the androgen-independent call subpopulation, and, by
hypothesis, is less than q1. That the right endpoint of the 95% confidence interval extends beyond the
biologically meaningful upper limit for q2 suggests that q2 may not be practically identifiable from the
available observational data.

3.3. Data assimilation for Model T-5

The ensemble Kalman filter (EnKF) provides another way to quantify the uncertainties in model
predictions and parameters, provided that the latter are identifiable. As outlined in Section 2.3, the
Kalman filter updates the model state vector whenever new observations become available, and the
updated state vector becomes the new initial condition for the subsequent time interval. We use an
augmented system, Eq. 2.13, for the vector field F defined by Model T, Eqs. 1.9–1.13, in the results
described here. We consider only version T-5 of this model, as the 5 adjustable parameters form an
identifiable subset. Of these 5 parameters, we fix µm and d1, as their values do not vary significantly
between patients. Only A0, γ1, and q2 are estimated as part of the augmented state vector. In general, a
smaller state vector helps to reduce the ensemble variance, all other factors being equal. In this case,
however, including q2 as a parameter to be estimated proves problematic, as we discuss in more detail
below.

An open question is a suitable choice of the starting ensemble. The sample variance of the initial
conditions should reflect that of the underlying state vector, but we know neither the initial fraction of
treatment-resistant cells nor the amount of intracellular androgen in each patient’s tumor. Furthermore,
the uncertainty in “patient-specific” model parameters may be large. As a guess, we form the ensemble
by choosing 100 initial values of the initial state vector from 0.7 to 1.6 times the value of each com-
ponent of the initial condition x0 estimated for each patient in [24]. The initial ensemble mean values
of the parameters A0 and γ1 are given by the output of fmincon to minimize Eq. 2.14 for each respec-
tive patient, and the standard errors are approximated from the respective 95% confidence intervals in
Figure 3. Altogether, the augmented state vector is x∗ = (x1, . . . , x5, A0, γ1, q2)T. We assume that the
errors in the observations of serum PSA and androgen levels are independent and have variance 1.

We integrate each initial condition of the 100-member ensemble to the first observation time t1,
then compute the linear combination of ensemble members that minimizes Eq. 2.10, which becomes
the new initial condition. The integration continues to the second observation time t2, and the process
is repeated until the end of the dataset or until another prespecified ending time. Altogether, we ran
the EnKF on time series from 26 patients from the Vancouver Prostate Center database. This set of
patients is disjoint from the set used to estimate model parameters in Sections 3.1–3.2.

Figure 4 shows some representative results for the PSA component of the ensemble state vectors
for 3 different patients using the EnKF as a data assimilation system. The red curve in each plot shows
the ensemble mean value of the PSA level, and the gray curves show each ensemble realization of the
PSA levels. (Analogous plots can be made of the other components of the model state vector.)

To return to one of the questions asked in the introduction, we consider what happens when the
EnKF is run for the first on-off-on treatment intervals to compute an ensemble estimate of the aug-
mented state vector. Using the analysis at the end of the second on-treatment interval, we run the
model for a period of 400 to 800 days, depending on the patient, to predict the serum PSA levels
for the next cycle, that is, over the next treatment hiatus and subsequent on-treatment interval. The
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Figure 4. Representative ensemble Kalman filtering results from slightly different initial
ensembles for three patients. Black dots: clinical observations. Gray curves: individual
ensemble solutions. Red curves: ensemble mean. Left panels, (a)–(c): the Kalman update is
run for the first on-off-on treatment intervals for each patient, marked “filtered,” and the last
analysis update ensemble is used as initial conditions for a free run of the model for the next
off-on treatment interval, marked “predicted.” Right panels, (d)–(f): the ensemble Kalman
filter is run for the patient’s entire clinical course.
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ensemble predictions are shown for each patient to the right of the vertical dotted line in panels (a)–(c).
The panels on the right, Figure 4(d)–(f), show the outputs of the filter as it is run over the entire time

series of clinical PSA observations (shown as round circles). At each observation time tn, we compute
the mean of the predicted PSA level from the analysis at tn−1 over all 100 ensemble members, i.e.,

ȳn =
1

100

100∑
k=1

H
(
xb(k)(tn)

)
,

and, at the end of the time series, the root mean square (RMS) of the one-step ahead prediction error
of serum PSA level averaged over all N observation time points is

P̂ =

 1
N

N∑
n=1

(
ȳn − yobs(tn)

)2
1/2

.

The respective values of P̂ for panels (d)–(f) are 1.80, 2.38, and 2.84 µg/L.
In the case of Patient 15, the EnKF produces good agreement with observations throughout the

clinical data record. When the forecast/update cycle is halted shortly after day 800 and the model is
run freely for the next 500 days or so, the model provides a good prediction of the patient’s clinical
course during the next off- and on-treatment cycle. When the EnKF is run continuously throughout
Patient 15’s clinical course, the ensemble variance increases notably toward the end of the second off-
treatment interval, and the filter takes 5 or so update cycles for the ensemble mean to settle near the
observed clinical PSA values. As mentioned above, the RMS error of the ensemble mean’s one-step
ahead prediction of serum PSA is about 1.80 µg/L.

The results are similar for Patient 39, panels (b) and (e), although the ensemble mean tends to
underestimate the observed serum PSA levels towards the end of each on-treatment interval. As with
Patient 15, the EnKF produces an augmented state vector at the end of the second on-treatment interval
that yields a reasonable 450-day prediction of Patient 39’s clinical course.

Serious problems are evident in the case of Patient 29. It is not clear whether the filter is even
convergent after more than a handful of observation time points. How can a filter initialized in the same
way as for the other patients produce such poor results? The answer turns on the inclusion of Model
T-5’s adjustable parameter q2, the cell quota for the treatment-resistant tumor cell subpopulation, in the
augmented state vector. The analysis in Section 3.2 suggests that q2 may not be practically identifiable;
in any case, its 95% confidence interval as estimated from the profile likelihood includes values that
are not biologically meaningful. A similar problem bedevils the augmented ensemble for this patient
case.

Figure 5 shows the time evolution of the EnKF’s estimates of the adjustable parameters A0, γ1,
and q2 for Patient 15 (Figure 4(a)). The green curve shows the ensemble mean value of each parameter
as the forecast/update cycle proceeds, and the blue starred curves at the bottom and top represent
the ensemble minimum and maximum values at each analysis time point. In particular, the EnKF’s
estimate of q2 remains within the biologically realistic interval given in Table 1 and is less than the
value of q1 = 0.613 that is fixed for Model T-5.

In the case of Patient 29, however, the ensemble estimates of q2 are much larger. After a few anal-
ysis cycles, some of the ensemble estimates of q2 exceed q1 (not shown in the figure). At this point,
the dynamical model no longer makes sense, because for these ensemble members, the model includes
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Figure 5. Augmented ensemble Kalman filter parameter estimates of Patient 15 from
Model T-5. Green curve: ensemble mean; blue curves: minimum and maximum ensem-
ble values.

a treatment-resistant cell subpopulation with a greater cell quota for androgen than the treatment-
sensitive one. The forecast ensemble quickly diverges from reality, and of course the model’s predic-
tions are not believable.

We include this last example as a cautionary note in the application of ensemble Kalman filters.
One must be careful that the parameters being estimated have a sufficiently small variance so that their
ensemble updates remain within a sensible range for the model under consideration. It is possible to
modify the EnKF to add a suitable penalty term to Eq. 2.10 to further constrain the parameter values,
but the resulting minimization problem becomes nonlinear and is more expensive to solve numerically.

4. Conclusions

Prostate cancer has attracted the development of numerous mathematical models to study various
aspects of the cancer dynamics under different treatment scenarios, especially in the last two decades.
However, deterministic ODE models tend to contain many rate parameters [12, 15, 22, 24]. Because
clinical data used for parameter calibration typically is limited to time series of serum PSA and possibly
also androgen levels, parameter identifiability is a significant issue. It is not possible to quantify the
uncertainty in unidentifiable parameters. Furthermore, the ability of the model to fit prior clinical data
with suitable choices of parameters does not imply that the model’s predictions of the future clinical
course can be trusted.

In this paper, we investigate three existing models (H, P, and T) for prostate cancer, each of which
has been validated with clinical data [12, 15, 24]. All of the models divide the tumor cell population
into two or more classes that differ in their sensitivity to androgen deprivation therapy and presume
an autonomous relationship between the size of the tumor cell classes and the rate of serum PSA
production.

The limited set of observables leads to unidentifiable sets of parameters in each of Models H, P,
and T. By restricting the set of adjustable parameters in Model T using a sensitivity analysis in [24], we
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show that a 5-parameter version of Model T is identifiable (Table 3) given only clinical time series of
PSA levels. Nevertheless, given the available time series, 3 of the 5 identifiable parameters are subject
to relative uncertainties of at least 40 percent (Table 4). Models H and P have only one practically
identifiable parameter, i.e., only one of the parameters is estimable from the available data with a
relative uncertainty of less than unity.

Past is not prologue. Although it may be possible to find a set of parameters so that the model
observables agree well with previous clinical measurements, the model’s predictions of future time
series of PSA need not be reliable.

In some cases, fixing many of the parameters in a complex model may yield an identifiable
version that can produce reasonable predictions of PSA dynamics. This is the approach taken
with Model T, which contains 21 parameters, all but 5 of which can be fixed to yield an identifiable
subset and for which confidence intervals can be constructed using the method of profile likelihood
(Section 3.2). However, the confidence intervals may not lie within biologically realistic bounds.
Conversely, however, biological constraints may help to reduce the uncertainty in numerical estimates
of a given parameter.

The ensemble Kalman filter is a useful way to assimilate data and quantify the uncertainty
in model predictions. The EnKF provides a systematic and consistent method to account for new
observations and update the associated model state vector accordingly. Nevertheless, for best results,
one needs good estimates of the initial uncertainty in the state vector, which are not available for the
models considered here. Systematic model errors (biases) can be accounted for in EnKF schemes [41],
but we have not pursued this approach here.

Improved models are needed. Resistance to androgen deprivation therapy, or, alternatively, the
androgen cell quota, probably exists on a continuum in a typical prostate tumor. The division of the tu-
mor cell population into two or three distinct subpopulations may be too much of an oversimplification
for clinically useful predictions. Although the notion of a nutrient-limiting mechanism to tumor growth
is biologically reasonable, the dynamics of androgen metabolism probably are not well characterized
in Models P and T. More work is needed to improve them.

The development of clinically applicable dynamical models of prostate cancer treatment, and
of many other cancers, may benefit from the application of observing-system simulation experi-
ments. OSSEs have been widely used in numerical weather prediction for over half a century. Broadly
speaking, in an OSSE, synthetic data is assimilated into a complex dynamical model to assess measures
like prediction accuracy (forecast skill) as a function of the accuracy, sparsity, and types of observa-
tions. An historical overview may be found in [42]; one early example was an attempt to test whether
the wind field of an atmospheric model could be estimated from measurements of temperature alone.
Another important application concerns “the potential improvements in climate analysis and weather
prediction to be gained by augmenting the present atmospheric observing system with additional envi-
sioned types of observations that do not yet exist” [43]. In the present context, OSSEs might be used
to quantify errors in parameter estimates from data with various noise levels or to assess the impact of
a new assay or other tumor diagnostic on the predictive ability of a given model. In the authors’ view,
such efforts will be necessary to develop clinically validated mathematical models that will be useful
tools for physicians and patients.
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Appendix

Kalman filter algorithm

Here we outline the implementation of the ensemble transform Kalman filter used in the simulations
described in Section 3.3. Additional details concerning the motivation and derivation of the filter are
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given in [40].
At time tn, we begin with an ensemble of initial conditions, which can be regarded as a sample

drawn from a normal distribution about a mean state that we wish to estimate. A forecast (often called
the background) is made by integrating the model of interest from each ensemble member to time tn+1,
at which point additional measurements have become available. The EnKF seeks a linear combination
of the forecasts that best fits the data in a weighted least-squares sense; the linear combination serves
as a new set of initial conditions, called the analysis, at tn+1 from which the model is integrated to
time tn+2, when the process is repeated. The mean of the analysis ensemble is the updated estimate
of the “true” state of the system, and the sample covariance represents the uncertainty in the analysis
mean.

All the computations below are done at tn+1, so we omit the time dependence to simplify the nota-
tion. Let {xb(k)}

K
k=1 be the set of K state vectors (each of dimension m) that represent the background

ensemble, and let xb denote the ensemble mean, Eq. 2.11. Let Xb be the m × K matrix whose kth
column is xb(k) − xb, k = 1, . . . ,K. If w is a Gaussian K-vector with mean 0 and covariance (K − 1)−1I,
then x = xb + Xbw has mean xb and covariance (K − 1)XbXT

b , which, in model space, is the ensemble
estimate of the forecast uncertainty.

Let yobs be the s-vector of observations, which is assumed to be related to the “true” model state
vector xt by

yobs = H(xt) + ε, (.1)

where ε is a Gaussian random s-vector of mean 0 and covariance R (cf. Eq. 2.9). The ensemble trans-
form Kalman filter minimizes the cost function given in Eq. 2.10, where, as necessary, we approximate
a nonlinear forward operator H as

H(xb + Xbw) ≈ yb + Ybw, (.2)

where the s-vector yb is the mean of the background observation ensemble

yb(k) = H(xb(k)), k = 1, . . . ,K (.3)

and the kth column of the s × K matrix Yb is yb(k) − yb. The minimizer of Eq. 2.10 is found from

wa = P̃aYT
b R−1(yobs − yb) (.4)

P̃a =
[
(K − 1)I + YT

b R−1Yb

]−1
(.5)

which in model space yields the analysis mean and covariance

xa = xb + Xbwa (.6)
Pa = XbP̃aXT

b . (.7)

As mentioned above, the analysis ensemble is constructed from a linear combination of the background
ensemble members. The first step in this procedure is to compute the symmetric square root

Wa =
[
(K − 1)P̃a

]1/2
. (.8)
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One rationale for the symmetric square root in Eq. .8 is that the elements of the resulting matrix vary
continuously with the observational data. The analysis ensemble {wa(k)}

K
k=1 is formed by adding wa to

each column of Wa; in model space, the analysis ensemble is

xa(k) = xb + Xbwa(k), k = 1, . . . ,K. (.9)

Further details on the derivation of the ensemble transform Kalman filter are given in [40].
In the results described in the paper, we apply the ensemble transform Kalman filter to the aug-

mented dynamical system defined by Eq. 2.13. Let F̃ = (F,G)T denote the augmented vector field (F
is the vector field representing the ODE model in question, and G is the model for the time evolution
of the parameters). The (m + q)-dimensional state vector of the augmented system is x∗ = (x,p)T.

The forecast-update cycle may be expressed in the following steps:

1. Begin with the analysis ensemble at tn, {xn
a(k)}

k
k=1 with the associated analysis covariance matrix

Pn
a, and set each xa(k), k = 1, . . . ,K as the initial condition for the next forecast.

2. Integrate the model F̃(t, x∗) from tn to tn+1 for each initial ensemble member xn
a(k), k = 1, . . . ,K.

The K solutions now become the background ensemble at time tn+1:
{
xn+1

b(k)

}K

k=1
.

3. Interpolate between the background ensemble and observations at time tn+1 by applying the
forward operator H∗ to each of the background ensemble member and form a new ensemble
yb(k) = H∗(xb(k)), k = 1, . . . ,K.

4. Minimize the Kalman filter cost function, Eq. 2.10, of the current time step to produce the analysis
at time tn+1:

{
xn+1

a(i)

}k

i=1
associated with analysis covariance matrix Pn+1

a .

5. Use
{
xn+1

a(k)

}K

k=1
as the initial conditions for the next background ensemble and repeat the steps.
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