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Abstract: Since most of the previous video watermark algorithms regard a video as a series of 

consecutive images, the embedding and extraction of watermark are performed on these images, and 

the correlation and redundancy among frames of a video are not considered. Such algorithms are 

weak in protecting against frame attacks. In order to improve the robustness, we take into 

consideration the correlation and redundancy among the frames of a video to propose a blind video 

watermark algorithm based on tensor decomposition. First, a grayscale video is represented as a 

3-order tensor, and the core tensor is obtained by tensor decomposition. Second, the watermark 

embedding position is selected based on the stability of the maximum value in the core tensor 

because the core tensor represents the main energy of a video. Then, the watermark is embedded by 

quantifying the maximum value in the core tensor. Finally, the watermark is uniformly distributed 

across frames of a video by inverse tensor decomposition. The experiments show that our algorithm 

based on tensor decomposition has better imperceptibility and robustness against common video 

attacks. 
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1. Introduction  

Copyright protection is more and more important as digital videos become popular. Video 

watermark technology is the digital watermark technology with video being the carrier. It embeds 

confidential information into carrier based on the video’s redundancy. Video watermark technology 

is invisible, able to resist malicious attacks, and has achieved video copyright protection or video 

content authentication [1]. 
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Video watermark technology is classified into spatial domain watermark technology and 

transform domain watermark technology. Kalker [2] introduced spread spectrum into video 

watermark and proposed a classic video watermark algorithm for video broadcast monitoring. The 

algorithm regards a video as a sequence of images and embeds the watermark into the video frames 

in the spatial domain. The algorithm works well with broadcast transmission signal processing and 

produces a detection process with low complexity. But it is not robust against common attacks. The 

spatial video watermark algorithm proposed by Hartung [3] converts the original video image into a 

one-dimensional signal and modulates the watermark into a pseudo-random sequence. This 

watermark is embedded into the one-dimensional signal. This classical spatial domain algorithm has 

disadvantages in robustness against attacks such as video compression and filtering. Karybali [4] 

proposed an effective spatial watermark algorithm to improve robustness by perceptual masking and 

watermark blind extraction. 

A spatial watermark algorithm directly modifies pixels of image in spatial domain. The 

advantages are good transparency and low complexity, whereas one main disadvantage is watermark 

loss after image compression or geometric attack [5–7]. A transform domain watermark algorithm 

transforms an image into a domain by Discrete Wavelet Transform (DWT), Discrete Fourier 

Transform (DFT), or Discrete Cosine Transform (DCT), and so forth. Watermark embedding is 

performed after the transform. The transform domain watermark technology is robust against attacks 

such as filtering and image compression. In 1995, Koch proposed a watermark algorithm in DCT 

domain, which is robust against compression and filtering attacks [8]. In 1997, Cox [9] summarized 

and analyzed the existing transform domain watermark algorithms and proposed to embed 

watermark into the low frequency coefficients of an image. The robustness of the watermark was 

effectively improved. In order to further improve anti-attack capability, Chandra [10] first used 

Singular Value Decomposition (SVD) for digital watermark in 2001, and embedded watermark 

image into singular value of the carrier image. The digital watermark algorithms with SVD can 

improve anti-attach capability, especially against geometric attacks. 

Most video watermark algorithms so far regard a video as a series of consecutive images and 

embed watermark into the images. However, the correlation and redundancy among the frames of a 

video are not considered. They are not robust against frame attacks such as frame addition, frame 

deletion, or frame averaging. 

We introduce tensor into video watermark in order to solve the above problems. A tensor is a 

multi-dimensional array and has advantages in representing multi-dimensional data. Tensor 

computation has been successfully used in face recognition [11], visual tracking [12] and action 

classification [13]. Tensor decomposition [14–16] has become a landmark in video-related research. 

However, published studies on tensor-based video watermark are rare [17,18]. In [17]，Abdallah 

proposed a tensor-based video watermarking algorithm, but it is non-blind. Recently, Xu [18] 

represented a color image as a third-order tensor, and proposed a robust watermark algorithm, but 

that is only suitable for color image. In this study, we represented a grayscale video as a 3-order 

tensor and proposed a blind video watermark algorithm based on tensor decomposition. The flow 

chart of our algorithm is shown in Figure 1. The core tensor is obtained by Tucker decomposition of 

the 3-order tensor. The watermark is embedded by parity quantization [19] of the maximum value of 

core tensor. The modified core tensor is uniformly distributed across frames of a video by inverse 

Tucker decomposition. The watermark extraction is simply the inverse process of embedding. 

Experiments show that our algorithm is robust against common video attacks and imperceptible. 
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The main contributions of this study are as follows: 

(1) We introduce tensor into video watermark. The correlation and redundancy among the 

frames of a video are considered to enhance the robustness against frame attacks. 

(2) The stability of the algorithm is guaranteed because Tucker decomposition is reversible, and 

the core tensor represents the main energy of the original video and is relatively invariant. 

(3) The modified core tensor is uniformly distributed among the frames of a video by inverse 

Tucker decomposition, so that the video quality and the imperceptibility of watermark are 

guaranteed. 

This paper is organized as follows. The basics of tensor are introduced in Section 2, our 

watermark embedding and extraction algorithm is described in Section 3, and the experiment results 

are shown in Section 4. 

178 176 … 123
233 234 … 124
 .   .  …  .
 .   .  …  .
 .   .  …  .
102 103 … 203

234 234 … 124
233 234 … 124
 .   .  …  .
 .   .  …  .
 .   .  …  .
102 103 … 163

233 234 … 123
233 234 … 124
 .   .  …  . .   .  …  .
 .   .  …  .
102 103 … 173

234  340 … 113
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  87

330  340 … 101
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  85

9840 340 … 120
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  87

234  340 … 113
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  87

330  340 … 101
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  85

9780 340 … 120
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  87

179 177 … 123
233 234 … 124
 .   .  …  .
 .   .  …  .
 .   .  …  .
102 103 … 203

235 232 … 122
233 234 … 125
 .   .  …  .
 .   .  …  .
 .   .  …  .
102 103 … 167

228 232 … 122
233 235 … 126
 .   .  …  .
 .   .  …  .
 .   .  …  .
101 103 … 175

234  340 … 113
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  87

330  340 … 101
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  85

9780 340 … 120
 87   45 …  64
  .    . …  .
  .    . …  .
  .    . …  .
  37  34 …  87

Video Tensor Core tensor
Divide the video 

into groups of 

k frames

Tucker decomposition 

on each tensor

Modified 

core tensor

Watermarked 

video

Modify the maximum of 
each core tensor

Inversely tucker 

decomposition on 

each modified 

core tensor

Divide the video 

into groups of

 k frames
Tucker decomposition 

on each tensor

The maximum Parity

Watermarked 

video
Tensor Core tensor

Watermark

 Watermark embedding 

 Watermark extraction

 

Figure 1. Video watermark framework based on tensor decomposition. 
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2. Tensor 

The next notations are used. 

Scalar: (a, b, etc.); Vector: (a, b, etc.); Matrix: (A, B, etc.); High-order tensor: (        ). 

A tensor is a high-order matrix, an extended form of a matrix toward the higher dimension. 

Vector and matrix are first-order tensor and second-order tensor, respectively. A N-order tensor   is 

defined as             . A video sequence can be regarded as a 3-order tensor, and its three 

dimensions are the width, height and length of the video. 

2.1. Tensor unfolding 

Tensor has many advantages in representing multi-dimension data. For example, if a video is 

considered as a tensor, the properties of the original video can be preserved to the maximum extent. 

However, high-order tensor results in higher-level computation. So, tensor is usually unfolded to 

matrices for easy computation [20].  

 is N-order tensor             , tensor   is unfolded into matrices          ,    

                            . The unfolding of a 3-order tensor is shown in Figure 2. 
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Figure 2. The unfolding of a 3-order tensor. 

2.2. The mode-n product of tensor and matrix 

The mode-n product of a N-order tensor              and a matrix         is noted as 

    ，where                                , the entries are given by: 
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[                                            
  
    ] (1)  

The mode-1 product of a 3-order tensor and a matrix is shown in Figure 3. 
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Figure 3. The mode-1 product of a 3-order tensor and a matrix. 

2.3. Tensor decomposition 

Tensor decomposition is generalization of matrix singular value decomposition in high 

dimensions [21]. An image F with size       can be decomposed by SVD as follows:  

[                           
 ] (2)  

where U and V are the left and right singular matrices of F, respectively. S is the diagonal matrix 

composed of the singular values of F.  

A matrix is regarded as a 2-order tensor. According to the definition of mode product of tensor 

and matrix, the singular value decomposition SVD of a matrix can be represented as a 2-order tensor 

S mode product of a matrix     and a matrix      sequentially: 

[               ] (3)  

with 

[            
 ] (4)  

[             
 ] (5)  

For a tensor of high-order (k>2), CP（CANDECOMP/PARAFAC）decomposition [22] and 

Tucker decomposition [23] are often used. CP decomposes a tensor into a finite sum of rank-1 

tensors. CP guarantees the uniqueness of the decomposition result, but its rank solution is an NP 

problem. Tensor is decomposed into the mode product of the core tensor and factor matrices by 

Tucker decomposition. The core tensor contains the main information of the original tensor. Tucker 

decomposition is used in our study. High-Order Singular Value Decomposition (HOSVD) is the 
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classic algorithm for Tucker decomposition. Given a tensor   with size      , Tucker 

decomposition with HOSVD [24] is as follows: 

[            ] (6)  

with 

[          
 ] (7)  

[          
 ] (8)  

[          
 ] (9)  

where          are the unfolding matrices of   in three directions, respectively. And the core 

tensor   writes: 

[               ] (10)  

Tucker decomposition of a 3-order tensor is shown in Figure 4, where       ，

      ，      . 
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Figure 4. Tucker decomposition of a 3-order tensor. 

3. A watermark algorithm based on tensor decomposition 

In our watermark algorithm, a video is initially represented as a tensor, which contains the 

relevance and redundancy among the frames of a video. Then, a core tensor is obtained by Tucker 

decomposition. Finally, a watermark is embedded into the core tensor by parity quantization.   

3.1. The process of watermark embedding 

The resolution of a video V is    , and the size of a watermark B is    . 

To make full use of the relevance and redundancy among the frames of a video, K frames of a 

grayscale video are grouped as a 3-order tensor. The size of tensor            is      . 

The core tensor             and 3 factor matrices   ，  ，   are obtained through Tucker 

decomposition with HOSVD. The process of watermark embedding is as follows. 

(1) Arnold Scrambling. In order to eliminate spatial correlation among the binary watermark 
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pixels, B becomes 𝐵  through Arnold transformation. It can be defined by the following equation: 

[ 
  

      
  
     

   
 
         ] (11)  

where       is the coordinate of the original watermark pixel,         is the transformed 

coordinate of       with Arnold, and m is the width of the matrix. In the experiment, a=1 and b=1. 

The Arnold transformation is performed for t times on the original watermark, and t is saved as a key 

for watermark extraction. 

(2) Tucker decomposition with HOSVD. Tucker decomposition is performed for each 

           to obtain the core tensor   . 

[         
     

     
 ] (12)  

where           is the original video tensor，       ，       ，        are factor 

matrices. 

 (3) Quantification and modification of the core tensor. Parity quantization is used to embed 

watermark into the core tensor. For each tensor   ，          is the maximum value of the core 

tensor   ，and is donated as   . 

a. Quantify the maximum value    of each core tensor, denoted as          
  

 
 , where Q is 

the quantization intensity, and the value of Q is discussed below. 

b. The maximum value of each core tensor    is modified to embed watermark. 

[  
   

                                         𝐵 
        

                                        𝐵 
         

 ] (13)  

(4) Reconstruction of the watermarked video. The watermarked video   
  is reconstructed by 

inverse Tucker decomposition with the modified core tensor   
 . 

[  
    

             ] (14)  

3.2. The process of extracting watermark 

Watermark extraction is the inverse process of watermark embedding. The specific steps of 

watermark extraction are as follows. 

(1) Tucker decomposition is performed on each watermarked video tensor   
  to obtain the 

core tensor   
 . 

[  
    

     
      

      
  ] (15)  

(2) The extracted watermark is determined according to the maximum value of the core tensor 

  
 . 

a. Quantify the maximum value   
  of each core tensor   

 , denoted as   
        

  
 

 
 . 

b. Determine the extracted information according to the parity of   
 . 𝐵 

  is 1 when   
  is even; 

𝐵 
  is 0 when   

  is odd. 

(3) Perform inverse Arnold transformation on 𝐵  to obtain the original watermark B. 
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4. Experiment results 

4.1. Metrics 

The follow metrics are used to measure the robustness and imperceptibility of our video 

watermark algorithm based on tensor decomposition. The imperceptibility of the watermark is 

evaluated with Peak Signal to Noise Ration (PSNR) and Mean Square Error (MSE). 

[    
 

  
                    

   
 
   ] (16)  

where M and N are the height and width of a single-frame image, I and   are the original video 

frame and watermarked video frame. The smaller the MSE value, the smaller the difference between 

the single-frame watermark image and the original image is. PSNR is calculated by MSE as follow: 

[             
    

   
 ] (17)  

A smaller PSNR means that the distortion of the watermarked frame is more serious. In addition, the 

bit error rate (BER) and normalized correlation coefficient (NC) are used to evaluate the robustness 

of the watermark. The equations are as follows: 

[    
                   

   
 
   

   
] (18)  

[   
                   

   
 
   

             
   

 
                 

   
 
   

] (19)  

where m is the size of the watermark, B and B' are the original watermark and extracted watermark, 

respectively. The robustness of watermark increases as NC increases. 

4.2.  Experiment parameters 

The size of the test video is 352 × 640 and there are 2268 frames in total. The size of the 

watermark is 18 × 18. A bit of watermark is embedded into a group of K frames. The size of the 

tensor is 352 × 640 × K, K being 7 in our experiment. The number of scrambling t is 15. The 

relationship between quantization strength Q and watermark BER is shown in Figure 5. BER 

decreases as Q increases. The watermark is correctly extracted when       . Q is set to 2000 in 

order to ensure the robustness of the algorithm and video quality. The PSNR of the first 100 frames 

of a video when Q = 2000 is shown in Figure 6. The PSNR of the watermarked video is over 40dB. 

The examples of our algorithm are shown in Figure 7.  

javascript:;
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Figure 5. The relationship between quantization strength Q and BER. 

 

Figure 6. The PSNR of the first 100 frames of the video. 

    

(a)                                 (b) 

                               

(c)                             (d) 

Figure 7. (a) original video, (b) watermarked video, (c) original watermark, (d) extracted watermark. 
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4.3. Robustness test 

Different attacks are used to testify the robustness of our watermark algorithm, including frame 

swapping, zooming, cropping, filtering, noising, and black-border filling. Our tensor-based 

watermark algorithm is robust against frame attacks, zooming, rotation, cropping in the experiments. 

The NC of the extracted watermark through the frames swapping in a group is shown in Table 1. The 

NC of the extracted watermark remains high even if about 50% frames in a group are swapped. The 

modified maximum value of the core tensor has uniform effect on each frame, because every element in 

the core tensor takes part in the mode product of the factor matrices by inverse Tucker decomposition. 

Table 1. Results of frame swapping attack. 

Number of  

frames replaced 

Extracted watermark NC 

 

1  
 

 

1 

 

2  
 

 

1 

 

3  
 

 

1 

 

4  

 

0.8055 

The relation between the video’s zooming and NC of the extracted watermark is shown in 

Figure 8. Watermark is extracted irrespective of a video being zoomed in or out as long as the video 

is restored at the same resolution. The NC of the extracted watermark is as high as 0.8098 even when 

the video is zoom out to 0.1 of its original size.  

 

Figure 8. The relationship between zooming and NC. 
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Watermark is extracted correctly when black-border is filled around a borderless video because 

the core tensor represents the main energy of a video and the energy from these zero-valued pixels in 

a video is tiny. The result is shown in Figure 9. 

 

   

(a)                   (b) 

Figure 9. (a) The watermarked video filled with black-border (b) Extracted watermark. 

The watermark is also extracted correctly as long as the direction of the video remains 

unchanged. The relationship between the rotation angle and the maximum value of the core tensor is 

shown in Figure 10. The maximum value of the core tensor changes periodically as the rotation 

angle changes. The watermark is extracted correctly from the watermarked video after rotation 

correction [25,26]. Some experiment results for rotation attack are shown in Table 2.  

 

 

Figure 10. The relationship between the rotation angle and the maximum value of the 

core tensor. 
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Table 2. Results for rotation attack. 

Rotation 

angle 

Rotated video 

 

Corrected video 

 

Extracted 

watermark 

NC 

 

 

10
0
 

  

 

 

 

 

 

 

 

1 

 

 

 

 

45
0
 

  

 

 

 

 

 

 

 

1 

 

 

 

60
0
 

  

 

 

 

 
 

 

 

 

 

1 

 

 

The experiment results of black-border video by our algorithm are shown in Table 3. Watermark 

is extracted correctly irrespective of the cropping being in the up or down, left or right side when the 

cropped part is included in a black-boarder because the contribution on the maximum value of the 

core tensor from black-border (0-value pixels) is very small. The watermark extraction of filtering 

and noise attacks is shown in Table 4. 

5. Conclusions 

A grayscale video is represented as a 3-order tensor in order to make full use of the relevance 

and redundancy among the frames of a video. The core tensor is obtained by Tucker decomposition, 

and the embedding and extraction of the video watermark is achieved using parity quantization of the 

maximum value of the core tensor. Watermark information is uniformly distributed across the frames 

of a video because of the reversibility and stability of Tucker decomposition, so that the video quality 

and the imperceptibility of watermark are guaranteed. It is robust against various video attacks, 

especially frame attacks. In our algorithm, only grayscale videos are used, color video watermarking 

method based on the tensor domain will be studied in the future. 
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Table 3. Results for cropping attack on black-border video. 

Cropping 

attack 

Attacked  

video 

Extracted 

watermark 

NC 

 

 

No attack 

 

 

 

 

 

 

 

 

1 

 

 

Cut 45 rows  

at the top 

 

 

 

 

 

 

 

 

1 

 

 

Cut 45 rows  

on the left 

 

 

 

 

 

 

 

1 

Table 4. Results for other attacks. 

Attack type Extracted watermark NC 

 

Median filtering (   )  

 

 

0.9587 

 

Mean filtering (   )  

 

 

0.9973 

   

Gaussian noise           

 

 

0.8675 

 

Salt and pepper noise         

 

 

0.9973 

 

Poisson noise  

 

0.9783 
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