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Abstract: The convolutional neural networks (CNN) applied in remote sensing scene classification
have two common problems. One is that these models have large number of parameters, which
causes over-fitting easily. The other is that the network is not deep enough, thus more abstract
semantic information cannot be extracted. To solve these two problems, we propose a simple and
efficient full convolutional network based on DenseNet for remote sensing scene classification. We
construct a small number of convolutional kernels to generate a large number of reusable feature
maps by dense connections, which makes the network deeper, but does not increase the number of
parameters significantly. Our network is so deep that it has more than 100 layers. However, it has
only about 7 million parameters, which is far less than the number of VGG’s parameters. Then we
incorporate an adaptive average 3D pooling operation in our network. This operation fixes feature
maps of size 7 x 7 from the last DenseBlock to 1 x 1 and decreases the number of channels from
1024 to 512, thus the whole network can accept input images with different sizes. Furthermore, we
design the convolutional layer instead of the fully connected layer that is used as a classifier usually,
so that the output features of the network can be classified without flattening operation, which
simplifies the classification operation. Finally, a good model is trained by exploiting pre-trained
weights and data augmentation technology. Compared with several state-of-the-art algorithms, our
algorithm improves classification performance significantly on UCM dataset, AID dataset,
OPTIMAL-31 dataset and NWPU-RESISC45 dataset.
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1. Introduction

Remote sensing images has been applied to a broad range of fields such as land use
classification [1,2], geographic image retrieval [3,4] and remote sensing scene classification. Remote
sensing scene classification is an important work, which can provide some decision-making basis for
the follow-up work of urban planning and environmental monitoring. Remote sensing scene
classification divides remote sensing images into various categories such as forests, cities and rivers
according to the semantic information of remote sensing images. Remote sensing images we focus
on are obtained by aerial photography. These remote sensing images have a high spatial resolution,
highly complex geometric structures and spatial patterns. However, there is high similarity between
categories of remote sensing while images in the same scene category may have great differences.
This makes it difficult to classify remote sensing scenes.

Multimedia information processing and communication are popular in our daily lives, and
security and privacy protection techniques are becoming more and more important [5]. Remote
sensing images are almost saved in the digital form, therefore they are possible to be tampered with.
It should be noted that for some remote sensing scene images, modifying a small number of pixels
can affect the classification results greatly, which may cause some risks. This has become another
challenge in the classification of remote sensing scenes. Because of these challenges mentioned
above, the classification models should be supposed to extract the semantic information from the
image very well to achieve the better robustness.

Researchers pay more attention to the design of handcrafted features that are used for remote
sensing scene classification before the development of deep learning. Those low-level features
designed by the human is hard to represent semantic information of remote sensing scenes. The
classification accuracy is unsatisfactory in the methods using artificial features. With the
development of deep learning, deep learning has been applied to many research field [6-9]. The
convolution neural network (CNN), as the most popular technology of deep learning, is introduced to
remote sensing scene classification naturally. In general, the neural networks can be trained very well
with a large amount of training data while they are often over-fitting and poor at generalization with
a small amount of training data. To avoid or alleviate this situation, on the one hand, data
enhancement technology can be used to expand the training data [10,11], on the other hand, a
specially designed network also can make the training more efficient [12].

Some neural network architectures are applied to remote sensing scene classification, such as
CaffeNet, GoogleNet, and VGGNet. Although many methods based on those networks improve
classification accuracy significantly, they still have a bottle-neck. For these networks, we
observe that:

1) These networks that are trained with small amounts of data have a large number of
parameters. Note that this often results in over-fitting in convolutional neural networks.

2) These networks are shallow. Because of the complexity of remote sensing images, to better
classify remote sensing scenes, classification network is supposed to extract high-level semantic
features of images well. It is worth noting that deeper networks often can extract more abstract
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semantic information.

In view of the above observations, we propose a deeper network with fewer parameters to
improve the classification accuracy of remote sensing scene. Based on the DenseNet, we built a
network with deeper layers but fewer parameters than those networks mentioned above. Table 1
shows the comparison of parameters and layers of different networks. To increase the diversity of
training data, we use data augmentation technology on training dataset, such as brightness, color,
contrast, sharpness and rotation when training the network. All of the parameters of those
augmentation transformations are generated randomly. In addition, we utilize pre-training parameters
trained on ImageNet [13], which can accelerate training and overcome over-fitting. Moreover, we fix
the length of the final feature vector that is used for classification by an adaptive average 3D pooling
operation. Thus, the network can accept images of various sizes. To avoid the flattening operation
and make the network operation more concise, we design a convolutional layer instead of fully
connected layer to classify the features. Unlike many methods that use Support Vector Machines
(SVM) as a classifier, we use the softmax as the probability mapping function, so our network is an
end-to-end process without additional training on SVM.

Table 1. Comparison of different network parameters and layers.

Network Parameters (millions)  Convolution layers Fully connected layers
CaffeNet 61.1 5 3
GoogleNet 6.7 22 1
VGG16 138.3 13 3
VGG19 143.6 16 3
ours 7.5 121 0

2. Related works

The methods of remote sensing scene classification are mainly based on three aspects at present:
low-level visual features, middle-level visual features and high-level visual features [14].

Low-level visual features are used in many tasks, such as object tracking [15]. There are some
frequently-used low-level visual features in the field of classification of remote sensing scenes, such
as spectral feature, texture feature and structure feature. Those methods based on low-level visual
features either extract feature vector from these low-level visual features or use a combination of
feature vectors extracted from different low-level visual features to describe remote sensing
images [16—19]. This means that such methods are based on the premise that remote sensing images
can be described by a feature vector or a combination of different kinds of feature vectors. For some
images whose scene are simple, one kind of feature can be used as a descriptor of remote sensing
images [16,20]. Unlike using only one kind of feature, literatures [17-19] show that the
combinations of different kind of features can improve the results. Specifically, [17] combine six
different kinds of feature to form a multiple-feature representation, which describes the scene better.
However, low-level visual features are only applicable to simple scenarios that have no complex
structure. For complex scenarios, their expressive ability is limited [21].

To overcome the limitations of low-level visual features, many methods based on middle-level
visual features are proposed. The main idea of such methods is to encode the extracted features such
as SIFT, LBP and color histograms. Then further extract the more discriminant feature representation.
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Bag of Word (BoVW) model [22] and its related variants [23—27] are typical algorithms based on the
middle-level visual features. The BoVW regards an image as a collection of visual words, and to
construct new features that are used for image classification with the frequency of visual words.
Specific steps are as follows: it first extracts SIFT features from all images, next constructs a
dictionary using a clustering algorithm, and then counts the occurrence frequency of each word of
the dictionary in the image. The features used as a descriptor of an image for classification is
composed of these occurrence frequencies of each word of the dictionary. The features obtained by
such methods are a further abstraction of low-level visual features, lacking flexibility and
adaptability for different scenarios [14].

The third category of methods are based on high-level visual features. Such methods achieve
the best accuracy comparing with the above two kinds methods, even far than algorithms based on
low-level visual features [28-35]. As mentioned above, neither low-level visual features nor
middle-level visual features can represent remote sensing images well and flexibly, which means that
the features obtained by these two methods lack abstract semantic information. As we all know, CNN
can extract abstract semantic information from images. Thus, those features extracted by CNN are
made to be a good descriptor of remote sensing images. In addition, CNN can learn how to extract
the high-level semantic information of an image by itself, which is very flexible and avoids complex
design of artificial features.

At present, CNN models used to the classification of remote sensing scene mainly include
CaffeNet, GoogleNet and VGGNet [33,36-39]. Usually, these networks are shallow with no more
than 30 layers, and the number of their parameters is large, such as VGGI16 that has about 138
million parameters. Chaib et al. [37] use a VGGNet to extract the features from remote sensing
images, then the features from different layers are transformed by discriminant correlation analysis
(DCA), the transformed features are fused to construct a new feature that is classified by SVM that is
used as a classifier in other fields [40]. The main idea of literature [39] is also features fusion.
Different from [37], Yu et al. [39] proposed two schemes. One is that using the original RGB
network and the mapped LBP coded network extracts the features from RGB images and LBP
feature maps respectively. The features from different network are fused by concatenation layer, and
then the obtained features are classified after being processed by the fully connected layers. The
steps of the other one are similar. The difference is that a saliency coded network is used instead of
mapped LBP coded network. Wang Q et al. [38] introduced the attention mechanism into the
classification of remote sensing scene by constructing a recurrent attention structure with recurrent
neural networks (RNN). Different from the above methods, Cheng G et al. [36] focus on the loss
function, and propose a new loss function by applying metric learning to CNN features. By
combining proposed metric learning loss with cross-entropy loss, features extracted from the same
scene class are as close as possible, while features extracted from different categories are as far
as possible.

3. Method description
As mentioned above, the CNN model generally used in remote sensing scene classification have
huge number of parameters, or the depth of network layer is too shallow, which is easy to cause

over-fitting of the model and inadequate feature extraction ability of the model. Aiming at the
problem of network applied in remote sensing scene classification, we apply the DenseNet [41] to
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our architecture and construct a full convolution network for remote sensing scene classification.
Based on cross-layer connectivity, our full convolutional network is a deep network architecture with
only a few parameters. In addition, we introduce an adaptive average 3D pooling operation, which
fixes the sizes of the output feature maps from 7 x 7 to 1 x 1 and decrease the number of channels
from 1024 to 512. Our method can accept images that are different sizes. Furthermore, our network
exploits a convolutional layer instead of full connection layer as a classification layer. Thus, features
can be classified without flattening, which makes the network simpler and more efficient.

3.1. The main idea of DenseNet

In 2017, Huang et al. [41] proposed DenseNet derived from [42]. In general, the network
structures are progressively hierarchical. In such a network structure, the feature maps from the
(i —1) th layer are the input of the ith layer. Experiments [42] have shown that the input of the ith
layer can be not only the output of the (i—1)th layer, but also the (i—2)th layer, or the (i—n)th
layer (n less than the number of layers). This may lead to a more generalizable network. The basic
idea of DenseNet is that each layer in the network is directly connected to the front layers. The
connection strategy in DenseNet is shown in Figure 1. It is worth noting that in order to ensure that
the feature maps can be concatenated, the sizes of feature maps need to be consistent. This means
that the outputs of the convolutional layer are of the same size as the input.

‘ Concatenate

Bn-Relu-Conv

Figure 1. Densely concatenated convolution. The input of each layer comes from the
output of all previous layers, and the final output of the network fuses all feature maps
produced by front layers.

The input of each layer is the output of all front layers in the densely concatenated convolutions:
X, =H,([Xy, X},.... X, ] (1)

H, represents the /th layer, X, represents the output of the /th layer. In DenseNet, Batch

Normalizing (BN) [43] is used to normalize the input of layer, which reduces the absolute
difference between data and considers the relative difference more. The BN algorithm is described
as the Algorithm 1.
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Algorithm 1. Batch Normalizing Transform
Input: Values of x over a batch: B={x, , };

Parameters to be learned: y, [
Output: {y = BN, ,(x,)}

1 m
1 —— ) X
(1) 2,

1 m
(2) 623 (_;Z('xi _/UB)Z
i=1

Xi —Hp
oo, +e

4) ¥, <y x+B=BN, 4(x)

(3) x «

The more details about BN you can get from [43]. In order to increase the nonlinearity of
network, ReLU is used as the activation function, which is described as:

X x>0
ReLU(x) = 0 £<0 )

Compared with other networks, the network composed of Densenet has the following advantages:

1) Fewer parameters. The input of current layer of the network is composed of the feature maps
from front layers, which results in the continuous accumulation of the number of feature maps. Thus,
many reusable feature maps can be learned with very few convolutional kernels.

2) Strong ability to prevent over-fitting. Short paths are created from early to late layers because
of the dense connection. Each layer receives additional supervision from loss function, which greatly
reduces the gradient disappearance. Therefore, dense connection has a very good ability to resist
over-fitting, which makes it especially suitable for applications where training data is relatively scarce.

3) Deeper layers. The network can be designed very deep by the dense connection, which only
have a few parameters. For example, a network with 96 convolution layers can be designed while it
only has 5.34 million parameters.

Experiments on ImageNet [13] demonstrate the efficiency of the dense connection [41].
Therefore, densely concatenated convolution can extract high-level features of remote sensing
images. Based on this idea, we construct a full convolution network based on DenseNet [41] for
remote sensing scene classification.

3.2. Our network architecture

Our full convolutional network based on DenseNet is shown in Figure 2. In the whole network,
it is divided into an initial layer, three transition layers and four densely connected blocks
(DenseBlock). After the last DenseBlock, we exploit an adaptive average 3D pooling operation to fix
number and size of feature maps and then classify them by a convolution with kernel size of 1 x 1.
We describe our architecture in detail in session 3.3.

As shown in Figure 2, the whole network architecture does not strictly follow the rule of dense
connection, it mainly consists of densely connected blocks instead. The reason for this is that the
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whole network has several down-sampling operations on feature maps, which results in the
inconsistency of sizes between feature maps in different stages, so that feature maps with different
sizes cannot be spliced in the dimension of channel. Moreover, concatenation operation requires
feature maps to be kept in memory. With the increase of network layers, feature maps kept in
memory are superimposed, which causes huge memory consumption. If every layer of the network
strictly follows the dense connection theory, the network will consume many resources, which makes

the network stop working.
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Figure 2. Our full convolutional network for remote sensing scene classification. In our
network, each densely connected block (DenseBlock) consists of several Tuple
Operations (TO). Each TO is composed of Batch Normalizing (BN), ReLu, Conv(1 x 1)
and Conv(3 x 3). Conv(1 x 1) represents a convolutional operation with kernel size of
1 x 1 while Conv(3 x 3) represents a convolutional operation with kernel size of 3 x 3.
DenseBlockl has 6 TOs, DenseBlock2 has 12 TOs, DenseBlock3 has 24 TOs and

DenseBlock4 has 16 TOs.
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3.3. Architecture detail

In this section, we detail the various parts of our network architecture.

Initial layer. We first extract 64 features using 64 convolutional kernels with kernel size of 7 x 7.
We set the convolutional stride as 2, which reduces the sizes of the feature maps and reduces the
computational complexity of subsequent operations. After the convolution, the operations of BN,
Relu and MaxPool are performed in turn. For example, when the size of the input image is 224 x 224,
the size of the image after padding is 230 x 230 and convolution kernels of size 7 x 7 are used for
convolution operation, then we will get feature maps of size 112 x 112. Subsequently, these feature
maps will go through the operations of BN, Relu and MaxPool in turn. Finally, the obtained feature
maps are size of 56 x 56. The generated feature maps are used as input of the subsequent module of
the network.

Densely connected block. Our full convolutional network mainly consists of densely connected
blocks (DenseBlock). Every DenseBlock acts as one stage for extracting features and consists of
several Tuple Operations (TO). As shown in the Figure 2, a TO is composed of Batch Normalizing
(BN), ReLU, Conv(1 x 1) and Conv(3 % 3). In particular, in all densely connected blocks, the stride
of Conv(l % 1) is 1 and the number of the convolutional kernels is 128. Moreover, the stride of
Conv(3 x 3) is 1 and the number of convolutional kernels is 32. To ensure the same size of the output
and input, the padding of Conv(3 x 3) is set to 1. It is worth mentioning that the dense connection
operations are strictly enforced between every TO in DenseBlock. The structure of dense connection
is shown as Figure 1.

Transition layer. It is observed that, this layer consists of BN, Relu, Conv(1 % 1) and AvgPool.
Feature maps pass through these operations in turn. After a DenseBlock, the output of each layer in
this DenseBlock is kept in memory, resulting in a large number of feature maps. Note that if the
number of these feature maps does not decrease, the network will be difficult to deepen and may stop
working due to too much computation. Therefore we reduce the number of the feature maps to half
by using a convolutional layer with a convolution kernel size of 1 x 1 after a DenseBlock, which can
not only reduce the number of feature maps but also increase the depth and improves fitting ability of
the network.

Adaptive average 3D pooling. After 3 transition layers and 4 densely connected blocks, the
obtained feature map size is 1/32 of the original image, and the number of feature maps is 1024. To
further reduce the computational consumption, we need to reduce the number and size of the feature
map. Through the adaptive average 3D pooling operation, the number of feature maps is reduced to
512 and the size becomes 1 % 1 without increasing the network parameters. As shown in Figure 2. In
addition, this operation ensures that the size of output feature maps is 1 % 1 and the number is 512,
which provides a fixed size feature map for the later convolutional classifier and makes the network
accept images with different sizes. As shown in Figure 3.

Convolution classifier. After adaptive average 3D pooling, a 512-dim feature representation is
obtained. Then we exploit a 1 %X 1 convolution to classify the 512-dim features and get the final
category feature representation. Finally, we exploit the softmax function to perform the
probability mapping.

Softmax function. This function maps the final category feature representation into a probability
for every class. The function is defined as:
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exp(X.,)

n

Y exp(X) (3)

P(c|v)=

X.ev, X, represents the c, number of vector v that comes from convolution classifier.
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Figure 3. Our network can accept images of different sizes. After extracting the features
from input images of sizes 3 x 224 x 224, 3 x 280 x 280, 3 x 300 x 300 by previous
layers, the obtained feature map sizes are 1024 x 7 x 7, 1024 x 8 x §, 1024 x 9 x 9
respectively. The sizes of the feature maps will be 512 x 1 x 1 after the adaptive average
3D pooling operation. Adaptive average 3D pooling operation produces a fixed size
feature map for the later convolution classifier.

3.4. Loss function

In many classification tasks, the loss function is designed as:
1 n
L(x:0)=J(6) =~ log(P(c | h,(x) @)
i=1

In equation (4), h, is defined as mapping function of the network with parameters g,
P(c|hy(x,)) indicates the probability of real category for the ith sample, and » is the number of

samples used for one epoch. In order to prevent over-fitting, we normalize the network parameters
by L2-norm.

L2-norm(6) = ZLAZ 62 5)

(4 i

In equation (5), n, represents the number of parameters € of the network. Our ultimate loss

function with L2-norm becomes:
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1 n 1 n
L(x;0)=J(0) === log(P(c| hy(x )+ 7—23 6] (6)
i=1 (4 i
In equation (6), A is defined as weight decay rate. In our experiment, we set 4 to5x107*.

3.5. Parameter optimization strategy

There are many algorithms that can be used to optimize the parameters of neural network, such
as genetic algorithm [44] and gradient descent algorithm. It is worth noting that the gradient descent
algorithm, the most commonly used algorithm in deep learning, is used to optimize the parameters of
the network in our experiments. For gradient descent algorithm, there are various optimizers can be
selected, such as Adam and SGD. According to our experience, SGD usually takes much more time
to train, but the results are more reliable in the case of a good initialization and learning rate
scheduling scheme. Because we use pre-training parameters, which satisfies the condition having a
good initialization, so we use SGD as the optimization strategy for training network. For general
SGD, the parameters € of the network are updated as follows:

0=0-nV ,J (0) (7)
In equation (7), the gradient V,J(8) is defined as:

2J(6)  OL(x,0)
00 o0 ®)

V,J(0)=

In equation (7), n 1is defined as the learning rate. One disadvantage of this type of SGD is that

its update is very unstable because its update direction is completely dependent on the current batch.
A simple way to solve this problem is to introduce the momentum. Momentum simulates the inertia
of an object when it is moving, that is, it retains the direction of the previous update to a certain
extent when updating, and uses the gradient of the current batch to fine tune the final update
direction. In this way, stability can be increased to a certain extent, so that the learning is faster, and
there is a certain ability to get rid of the local optimum. For SGD with momentum, the parameters €
of the network are updated as follows:

V'i<—mxv'+V,J(0) 9)

9(—9—7]\/' (10)

In equation (8) and (9), m and v' denote momentum and velocity respectively. In our
experiment, we set m to 0.9.

4. Evaluation
4.1. Evaluation indicators

We adopt confusion matrix and overall classification accuracy, which are widely used in
classification tasks to evaluate the effectiveness of our algorithm.
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4.1.1. Confusion matrix

In the confusion matrix, each row represents the actual category, and each column represents the
predicted category. The number of classes correctly classified and the number of classes
misclassified can be clearly seen by the confusion matrix.

4.1.2. Overall accuracy

Overall accuracy is the ratio of the number of models correctly predicted on all test sets to the
total number of datasets. The overall accuracy can generally characterize the classification
accuracy of model.

~ TP+ TN
TP+ FN + FP+TN (I

TP represents true samples that are correctly classified by the model. FN represents positive
samples that are misclassified by the model. FP represents negative samples that are misclassified
by the model. TN represents negative samples that are correctly classified by the model.

4.2. Evaluation dataset

In order to verify the effectiveness of our algorithm, we have done a lot of experiments. We
experiment on four data sets: UC Merced Land Use Dataset [22], Aerial Image Dataset [14],
OPTIMAL-31 Dataset [38] and NWPU-RESISC45 [45] Dataset. These datasets contain a lot of
images and cover a lot of categories. In addition, images of these datasets are pretty complex and
have some similarities among different scenes, which make these datasets challenging. Some
pictures of these datasets are shown in Figure 4.

4.2.1. UC Merced Land-Use Dataset [22]

UC Merced Land-Use Dataset (UCM) is a scene classification dataset containing 21 categories.
This dataset includes agricultural, golf course, medium density residential, airplane, baseball
diamond, beach, buildings, chaparral, storage tanks, dense residential, overpass, freeway, harbor,
intersection, mobile home park, parking lot, river, runway, forest, sparse residential, and tennis
courts. There are 100 RGB color images of the size 256 x 256 and 30 cm spatial resolution for
each category.

4.2.2. Aerial Image Dataset [14]

Aerial Image Dataset (AID) includes bare land, dense residential, baseball field, bridge, center,
church, railway station, commercial, viaduct, desert, storage tanks, farmland, forest, industrial,
meadow, medium residential, beach, mountain, park, parking, playground, pond, port, resort, river,
school, square, stadium, sparse residential and airport. This data set has 30 categories and 10000
images in all. Pixel resolution of each picture is 600 x 600.

Mathematical Biosciences and Engineering Volume 6, Issue 5, 3345-3367.
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4.2.3. OPTIMAL-31 Dataset

A remote sensing scene classification dataset named OPTIMAL-31 constructed by Qi Wang et al [38].
The dataset consists of 31 classes, each of which consists of 60 images with 256 x 256 pixels. It has
1860 pictures in total. The categories of the whole dataset are playground, airplane, airport,
crossroads, runway ,basketball court, bridge, parking lot, lake, bushes, church, beach, mountain,
round farmland, business district, roundabout, dense houses, desert, forest, freeway, golf field, harbor,
factory, island, meadow, medium houses, mobile house area, overpass, railway, square farmland, and
baseball field. The whole dataset contains many categories, but the number of each category is small,
so the dataset is more challenging.

AID

mountain
p £

UcM

agricultural beach

OPTIMAL-31

lake island - railway church . chaparral bridge

harbor ship overpass wetland stadium

Figure 4. Some samples of AID, UCM, OPTIMAL-31, NWPU-RESISC45 datasets.
From these samples, we can see that remote sensing scene image scene is complex and
contains a lot of interference information, so remote sensing scene classification is a
challenging task.

4.2.4. NWPU-RESISC45 Dataset [45]

The NWPU-RESISC45 dataset covers 45 scene classes, and each category has 700 images. The
45 scene classes include chaparral, airplane, airport, baseball, diamond, golf course, basketball court,
beach, freeway, bridge, church, circular farmland, cloud, commercial area, rectangular farmland,
river, dense residential, roundabout, desert, forest, palace, ground track field, harbor, sparse
residential, industrial area, thermal power station, intersection, sea ice, island, lake, meadow, medium
residential, mobile home park, storage tank, mountain, overpass, parking lot, railway, railway station,
runway, ship, snowberg, stadium, tennis court, terrace and wetland.
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5. Experiments

In order to evaluate the effectiveness of our network, we train and test our method on UCM,
AID, OPTIMAL-31 and NWPU-RESISC45. Each dataset is divided into two parts in our
experiments, one for training and the other for testing. We design seven experiments in all to
evaluate our network. The ratios of training and testing on each data set are as shown in Table 2. In
each experiment, we randomly generate training set and testing set to ensure the validity of the
experiment. Note that the training set is only used for training, while the testing set is only used
for testing.

Table 2. The setting of training and testing scales on each data.

Dataset Train Test
UCM 80% 20%
50% 50%
AID 20% 80%
50% 50%
NWPU-RESISC45 10% 90%
20% 80%
OPTIMAL-31 80% 20%

5.1. The hyper parameter setting and the environment in experiments

In our experiments, we set train epoch to 400, each epoch will train all images of a training set.
The batch size of each epoch is set to 80. After each two epochs, we will evaluate our network on the
testing set once. To reduce memory usage, we resize the images used for training to the size of 224 x
224. Ones more, we initialize our network with pre-trained parameters trained on the ImageNet.
Further, we use data augmentation technology to train a better model. All experiments are performed
on a GPU server. The configurations of server are as follow: CPU Intel (R) Xeon (R) E5-2670 v3,
128 GB of memory, GeForce GTX TITAN X, 12GB of display memory. The experimental
framework is pytorch0.4.1.

5.2. Reports of confusion matrixes

The following four obfuscation matrices are obtained by testing our network on AID, UCM,
OPTIMAL and NWPU-RESISC45, respectively.

From Figure 5-8, we can see that most images can be correctly classified in our experiments.
Especially in UCM dataset, only two images are misclassified. Among these experiments, the overall
accuracy of NWPU-RESISC is the worst, only 94.98%. This is because there are many categories in the
dataset while samples for training are few. For the case of misclassification, there are three main reasons.

1) The appearance is similar. The appearance of the two images shown in Figure 9(a) is very similar.

2) Texture is similar. As shown in Figure 9(b), two images are divided by roads, which causes a
similar texture structure.

3) One category may contain information of other categories. As shown in Figure 9(c), there is a
lake-like area in the wetland, it is disturbed when wetland image is classified.
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Figure 5. The confusion matrix with AID, 50% of dataset for training and 50% of the

dataset for testing. The overall accuracy is 97.44%.
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the dataset for testing. The overall accuracy is 99.50%.
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Figure 9. The cases of misclassification. In our experiment, the palace is misclassified into
church easily, rectangular farmland is misclassified into terrace and wetland is misclassified.

5.3. Reports of experimental comparisons

To evaluate the performance of our algorithm, we compare it with some algorithms in recent
years. From Table 3 to 6, we report the comparison results on UCM, AID, OPTIMAL-31 and

NWPU-RESISC45 respectively.

Mathematical Biosciences and Engineering

Volume 6, Issue 5, 3345-3367.



3361

From the Table 3—6, we can get the following conclusions.

1) CNN regard as an advanced feature extractor is suitable for classification of remote sensing
scenes, and it has achieved a good accuracy. As shown in Table 3, with 80% of dataset for training,
the accuracy of ARCNet-VGG16 [38] is 99.12 £ 0.40, while our algorithm achieves 99.50 £ 0.25,
which improves by about 0.38. It is worth noting that the accuracy of those methods based on CNN
are very close to 100% in many datasets. This fully demonstrates the efficiency of convolutional
neural networks.

2) In contrast to various algorithms, our algorithm gets a state-of-art recognition rate. As shown
in Table 3, we are 0.88 and 0.38 higher than the best algorithms at the training ratios 50% and 80%
respectively. As shown in Table 4, we are 1.28 and 0.3 higher than the best algorithm at the training
ratios 20% and 50% respectively. As shown in Table 5, we are 2.71 higher than the best algorithm at
the training ratio 80%. As shown in Table 6, we are 3.68 and 3.06 higher than the best algorithm at
the training ratios 10% and 20% respectively. This fully demonstrates the superiority of our
algorithm and the excellent ability to extract features by dense connections.

3) For CNN, the more data used for training, the better results for test. The results are reported
in Table 3 show that whether it is our method or other deep learning models, the training ratio used is
different, and the accuracy of the test is different. It is worth noting that as the training ratio increases,
the test accuracy is also improved.

Table 3. Overall accuracies and standard deviations (%) of different feature fusion
methods on the UCM dataset.

Method Training Ratios (%)
50% 80%

MS-CLBP + FV [46] 88.76 £ 0.76 93.00 +1.20
GoogLeNet [14] 92.70 £ 0.60 94.31 +0.89
CaffeNet [14] 93.98 +0.67 95.02 £ 0.81
VGG-VD-16 [14] 94.14 £ 0.69 95.21+1.20
SaIM3LBPCLM [47] 94.21+0.75 95.75+0.80
TEX-TS-Net(feature fusion model) [39] 97.55+0.46 98.40 = 0.76
SAL-TS-Net(feature fusion model) [39] 97.79 £ 0.56 98.90 + 0.95
ARCNet-VGG16 [38] 96.81 £0.14 99.12 +£0.40
ours 98.67 £0.42 99.50 +£ 0.25

Table 4. Overall accuracies and standard deviations (%) of different feature fusion
methods on the AID dataset.

Method Training Ratios (%)
20% 50%

CaffeNet [14] 86.86 +0.47 89.53 £0.31
VGG-VD-16 [14] 86.59 £ 0.29 89.64 +0.36
GoogLeNet [14] 83.44 £ 0.40 86.39 + 0.55
ARCNet-VGG16 [38] 88.75 £ 0.40 93.10 £ 0.55
D-CNN with GoogLeNet [36] 88.79+0.10 96.22 +0.10
D-CNN with VGGNet-16 [36] 90.82 +0.16 96.89 +£0.10
TEX-TS-Net(feature fusion model) [39] 93.31+0.11 95.17+0.21
SAL-TS-Net(feature fusion model) [39] 94.09 + 0.34 95.99 +0.35
ours 95.37+0.32 97.194+0.23
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Table 5. Overall accuracies and standard deviations (%) of different feature fusion
methods on the OPTIMAL-31 dataset.

Method Training Ratios (%)
80%
Fine-tuning AlexNet [38] 81.22+0.19
Fine-tuning GoogLeNet [38] 82.57+0.12
Fine-tuning VGGNet16 [38] 87.45 £ 0.45
VGG-VD-16 [14] 89.12 £ 0.35
ARCNet-Alexnet [38] 85.75 +0.35
ARCNet-ResNet34 [38] 91.28 £ 0.45
ARCNet-VGGNetl6 [38] 92.70 + 0.35
ours 95.41 +0.61

Table 6. Overall accuracies and standard deviations (%) of different feature fusion
methods on the NWPU-RESISC45 dataset.

Method Training Ratios (%)
10% 20%

TEX-TS-Net(feature fusion model) [39] 84.77+0.24 86.36 = 0.19
SAL-TS-Net(feature fusion model) [39] 85.02 +£0.25 87.01 £0.19
D-CNN with AlexNet [36] 85.56 +£0.20 87.24+0.12
D-CNN with GoogLeNet [36] 86.89 £ 0.10 90.49 +£0.15
D-CNN with VGGNet-16 [36] 89.22 +0.50 91.89+0.22
ours 92.90+0.17 94.95 + 0.04

5.4. Experimental skills

Literature [33] shows that making full use of the pre-training model can improve the
classification accuracy of the network. In our work, one of the keys to improve the classification
accuracy of our network is to initialize network with the pre-training parameters trained on
ImageNet [13]. In our experiments, the parameters of the whole network (except the parameters of
the convolution classifier) are trained on ImageNet first, and then are further fine-tuned on the
remote sensing dataset. The other key point for our network to classify remote sensing images well is
using data augmentation technology. As we all know, big data is the key to the success of deep
learning. However, in the field of remote sensing, the number of images in the dataset is often small,
because the images are difficult to obtain, and it is time-consuming to manually mark the
corresponding scene categories. To solve this problem, data augmentation technology is introduced.
In our experiments, we performed color transformation, brightness transformation, contrast
transformation, and sharpness transformation on images. Besides those transformations, we rotated
the image at random angles. The effect of data augmentation is shown in Figure 11. To demonstrate
the effectiveness of pre-training models and data augmentation technique, we conduct experiments
on various datasets. The report is shown in Figure 10. Note that when the network does not be
initialized with pre-training parameters and does not use the data augmentation technology the
classification accuracy of the network is very poor. But the accuracy will be greatly improved when
using the pre-training parameters and the data augmentation technology. Thus, using pre-training
parameters and data augmentation techniques is effective for classification and may lead to improved
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classification accuracy.
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Figure 10. The experimental results of whether to use the pre-training parameters and
data augmentation technology on dataset. PMN DEN denotes that pre-training
parameters and data augmentation technique are not both used. PMN_DEY denotes that
pre-training parameters is not used but a data augmentation technique is used.
PMY DEN denotes that pre-training parameters is used but a data augmentation
technique is not used. PMY DEY denotes that pre-training parameters and data
augmentation technique are both used. The datasets are split as follows: For OPTIMAL,
80% of dataset are treated as training set, while 20% are treated as testing set. For AID
50% of dataset are treated as training set, while the 50% are treated as testing set. For
NWPU-RESISC45, 10% of dataset are treated as training set, while the 90% are treated
as testing set. For UCM, 80% of dataset are treated as training set, while the 20% are
treated as testing set.

original picture

brightness color contrast rotate sharpness
B D E

Figure 11. The category of the original picture is a forest. The pictures A, B, C, D and E
obtained are changed by brightness, color, contrast, rotate and sharpness, respectively.

6. Conclusion

In this paper, we exploit the advantages of densely concatenated convolution to propose a full
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convolutional network for remote sensing scene classification. Our network is deep, but the
parameters are few. As shown in Figure 2, these TOs directly contribute to network depth. The
numbers of convolutional kernels of Conv(3 % 3) and Conv(l x 1) are 32 and 128 respectively in
DenseBlock, which produces few parameters, this is the reason that our network has few parameters.
We use an adaptive average 3D pooling operation to down-sample the feature maps of the network
output. The number of channel decrease to 512, which reduces the calculated consumption for the
latter operations. And the size of the feature map is fixed, so that network can accept images with
different sizes.

The experiment results on the several common datasets show that our fully convolutional
network gets a state-of-art recognition rate.
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