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Abstract: Transforming growth factor beta1 (TGF-β1) and matrix metalloproteinase-9 

(MMP-9) have been associated with migration and invasion in hepatocellular carcinoma 

(HCC). Recent studies have suggested a positive feedback loop between TGF-β1 and MMP-9 

mediated by the PI3K signaling pathway that confers acquired invasion and metastasis in 

HCC via induction of the epithelial-mesenchymal transition (EMT), which grows into 

invasive carcinoma. But the potential molecular mechanism of this loop on HCC has not been 

clarified yet. Therefore, this study is designed to explore the association between the two 

entities and their key determinants such as NFκB, TIMP-1, and hepatic stellate cells (HSCs). 

Hence, a qualitative modeling framework is implemented that predict the role of biological 

regulatory network (BRN) during recovery and HCC metastasis. Qualitative modeling 

predicts discrete trajectories, stable states, and cycles that highlight the paths leading to 

disease recovery and homeostasis, respectively. The deadlock stable state (1, 1, 1, 1, 1) 

predicts high expression of all the entities in the BRN, resulting in the progression of HCC. 

The qualitative model predicts 30 cycles representing significant paths leading to recovery 
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and homeostasis and amongst these the most significant discrete cycle was selected based on 

the highest betweenness centralities of the discrete states. We further verified our model with 

network modeling and simulation analysis based on petri net modeling approach. The BRN 

dynamics were analyzed over time. The results implied that over the course of disease 

condition or homeostasis, the biological entities are activated in a variable manner. Taken 

together, our findings suggest that the TGF-β1 and the MMP-9 feedback loop is critical in 

tumor progression, as it may aid in the development of treatment strategies that are designed 

to target both TGF-β and MMP-9. 

Keywords: TGF-β1; MMP-9; HCC; qualitative modeling; petri nets 

 

1. Introduction 

Hepatocellular carcinoma (HCC), is the most frequently occurring form of primary liver 

cancer and the main reason for tumor-related deaths globally [1]. Despite advances in 

technology for screening, diagnosis, and treatment, there is still a significant rise in the rate of 

incidence and mortality worldwide. Rapidly growing HCC cells that provide a site for early 

vascular invasion, tend to be unaffected by currently available chemotherapeutic options [2]. 

This leads to an increased incidence of recurrence and metastasis post-surgery and results in 

poor prognoses [3]. Over the previous decade, several studies have significantly increased our 

understanding of the pathogenesis of HCC, but the exact molecular mechanism involved in 

the metastasis of HCC is still ambiguous. 

There exist a plethora of signaling pathways which regulate the system to maintain a 

homeostatic condition. These regulations are highly significant in preventing the cells from 

metastasis. Once these regulations are disturbed, there is a chance that the system might move 

towards a pathogenic state. Thus, there is an imminent need to explore the critical molecular 

regulatory mechanisms in the key signaling pathways involved in HCC metastasis which will 

help in the identification of new therapeutic targets. TGF-β and PI3K/AKT pathways are the 

key signaling pathways that have been identified during the progression of HCC. The 

misregulation of the TGFβ signaling pathway may result in tumor development. According to 

the recent studies, matrix metalloproteinases (MMPs) like MMP-2, MMP-1, MMP-9, and 

MMP-8 along with transforming growth factor beta1 (TGF-β1) actively contribute to HCC 

progression. They play a significant role as the major key players in metastatic and invasive 

tumor cells [4]. MMPs or matrix metalloproteinases are a group of proteolytic enzymes that 

are responsible for the collective degradation of the components of proteins found in the 

basement membranes and extracellular matrix (ECM). Several studies indicate that the over-

expression of MMP- 2, 1, 7, 9 and 14 lead to invasion as well as metastasis of HCC through 
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the induction of epithelial to mesenchymal transition (EMT) [5–7]. It has been implied that 

enhanced expression of MMP-9 is highly anticipated in invasive HCC cells as compared to 

non-invasive cells. Moreover, during HCC, the upregulation of MMP-9 has been associated 

with metastasis, tumor recurrence and invasion [5]. Previous reports indicate that it may act 

as a tumor promoter or as an anti-cancer agent in highly rare situations [6]. This was 

observed from studies performed on MMP-9 knockdown mice models where the tumor 

incidence was significantly decreased [7]. In addition, overexpression of MMP-9 also 

correlates to tumor progression and reduced survival rate of HCC affected individuals [11,12]. 

Nevertheless, the importance of MMP-9 in HCC progression still needs to be clarified.  

TGF-β1 or transforming growth factor beta1 is a widely known cytokine that mediates 

cellular processes like apoptosis, cell differentiation, and homeostasis. It acts as a driver of 

tumor progression by inducing EMT and is involved in the activation of several MMPs, 

including MMP-9 [13,14]. During breast cancer, TGF-β1 promotes metastasis by 

upregulating the expression of MMP-9 [10]. Likewise, MMP-9, 2, and 14, can induce the 

biological activity of TGF-β1 via cleavage of latent TGF-β-binding protein-1 [11]. 

Furthermore, MMP-9 is involved in HCC cell invasion and EMT induced by autophagy 

through the stimulation of TGF-β/Smad3 signaling [12]. A constant relationship between 

TGF-β1 and MMP-9 has been established through numerous in vitro studies. Moreover, it has 

been implied that genetically targeted TGF-β1 could alter expression intensities of MMP-9 

and MMP-2 in HCC infected cells [13]. Despite the evidence, the molecular mechanisms of 

positive feedback loop between TGF-β1 and MMP-9 on HCC still remain ambiguous.  

The latent TGF-β1 ligand is activated by either a surface-bound or soluble MMP-9 

(Figure 1). The activated TGF-β1 ligand adheres to the cell surface type II receptor (TβRII) 

which is activated by autophosphorylation and recruits the type I receptor (TβRI). TβRI is 

then activated by phosphorylation. This heterotetrameric complex then stimulates the 

association of the intracellular signal mediators. TGF-β1 stimulates phosphatidylinositol 3-

kinase (PI3K) via phosphorylating Akt, a downstream effector. The PI3K/Akt pathway exists 

as a non-Smad pathway that is known to contribute to EMT prompted by TGF-β [14]. In case 

of head and neck cancer, stimulation of PI3K/Akt intensifies the expression of MMP-9, 

leading to degradation of  E-cadherin, hence promoting invasion and passage of cells [15]. 

MMP-9 production is enhanced by stimulated transcriptional activity (mediated by Akt/PKB) 

of nuclear factor-kappa B.  
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Figure 1. Literature-based interaction network of TGF-β signaling in HCC. TGF-

β binds to its receptor and initiates the PI3K/AKT signaling pathway leading to 

the activation of NFkB, which then initiates the transcriptional activity of MMP-9. 

Once MMP-9 is activated, it proteolytically activates latent TGF-β ligand. 

It is well established that HCC progression is caused by the progression of liver fibrosis 

i.e., deposition of ECM proteins. Henceforth, hepatic stellate cells (HSCs) along with EMT 

reportedly play a part in HCC progression and metastasis [16]. Also, TGF-β1 stimulates 

fibrogenesis through induction of the HSCs, thus stimulating HCC progression [17]. Also, 

MMPs are responsible for regulating the remodeling of ECM, hence they are critical in HCC 

progression. It has been previously testified that TGF-β1, MMP-8, 2 and 9 can trigger EMT 

in HCC cells and lead to pathogenesis [16]. These studies reveal that MMP-9 and TGF-β1 

can induce progression of HCC by triggering the activation of HSCs and/or EMT.  
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1.1. Computational modeling 

Modulation of gene expression determines the overall dynamics of each cell and this 

is a complex process [18]. Computational and mathematical approaches in systems 

biology expedite to observe dynamics of a biological system where entities like RNA, 

DNA, proteins, enzymes and other biological molecules are involved [19]. The qualitative 

modeling framework is amongst the most recognized methods to study the dynamics of 

gene expression [25,26] by constructing BRNs (biological regulatory networks). Systems 

in biology are usually modeled using partial or ordinary differential equations, which 

depend on time derivatives of expression levels, along with kinetic rates of entities. The 

system is represented in a detailed manner by using quantitative models, which requires 

data which is either specific or too difficult to find. Hence, qualitative models (BRN, petri 

net) are preferred to understand the complex dynamics of the biological systems. 

Construction of the BRN requires qualitative thresholds and logical parameters, which 

can be easily adjusted according to the system dynamics and biological observations.  

1.2. Our contribution 

In this study, we examined the prospective interplay between TGF-β1 and MMP-9 in 

HCC progression and homeostasis. A BRN was constructed comprising significant 

entities encompassing TGF-β1 signaling to determine the inhibition and activation 

relationships. Different parameters of the model are generated from prior experimental 

knowledge by using the model checking technique. The parameters are then rendered into 

a qualitative model to analyze the significant system behaviors, such as, cycles, stable 

states, and paths that lead to recovery and pathogenesis. Therefore, extensive analysis of 

the resulting model is performed to find these paths. This was followed by a prediction of 

cycles that symbolize the condition of homeostasis in the overall system, along with 

deadlock states that reveal the over-expression of the entities, from where the system 

can’t move towards recovery. The results of our study highlight the reciprocal and 

persistent activation of TGF-β1 and MMP-9 as salient contributors in pathogenesis. 

Finally, we convert the model into a continuous petri net (PN) to study the evolution of 

proteins and their relative expression levels based on time. Together, our findings suggest 

that the TGF-β1 and the MMP-9 feedback loop is critical in tumor progression and 

targeting these mediators may represent a novel therapeutic strategy to make progress in 

the treatment of cancer. 
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2. Materials and method 

A biological system is comprised of numerous elements that are tightly regulated 

through signaling networks in which the expression level of an entity may either trigger or 

inhibit the synthesis rate of additional entities or itself. Generally, conventional models (such 

as ODE and PDE models) are used to represent the entities in a biological system through 

differential equations that implicate time derivatives for the estimation of various quantities 

like levels of concentrations, the rate of reactions and temperatures. These models are 

continuous in nature and rely on specific kinetic values, which are typically not available for 

all the entities in the network and have been assumed. Hence, the modeling approaches based 

on graph theory make use of linear methods to observe the behaviors exhibited by biological 

systems. The methods employed in the current study are divided into consequent sub-sections 

presented in Figure 2. 

 

Figure 2. Methodology flow diagram of the study. 
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2.1. Qualitative modeling framework  

In the 70s, a method of qualitative modeling framework was put forward by Rene` 

Thomas based on Boolean logic to model BRNs [26,27]. The framework comprises various 

qualitative parameters and thresholds with discrete variables, having only two levels of 

expression (0 or 1) that can be used to analyze the dynamics of a biological regulatory 

network. This approach makes use of interaction graphs to imply the basic topology of a 

BRN. 

2.2. Definitions: 

Definition 1 (directed graph): ―A directed graph is an ordered pair D (V,E), where: 

I. V is the set of all nodes and 

II. E V   V is the set of ordered pairs called edges or arcs‖ 

An edge e.g. (a,b) is directed from an entity or node ―a‖ to ―b‖, where ―a‖ is the tail and 

―b‖ is the head of that respective edge. In a directed graph, D
-
(x) and D

+
(x) denote the set of 

predecessors and successors of a specific node xϵV, respectively‖. 

Definition 2 (biological regulatory network): ―A BRN is a labeled directed graph D (V, 

E), where V is a set of nodes which represents biological entities and E   V    V is a set of all 

possible edges, which represent the interaction between entities‖. 

I. ―Each edge can be labeled with a pair of variables (σ, ψ), where σ represents the 

qualitative threshold levels and is a positive integer and ψ is ―+‖ or ―–‖ representing the type 

of interaction, which can either be ―activation‖ or ―inhibition‖, respectively‖. 

II. ―Each node e.g. ―a‖ has a limit (la), in its threshold level, which is equal to its out-degree 

(the total number of outgoing edges from ―a‖). This relation can be presented by  bϵD
+
(a) 

and σabϵ{1,2,3,…..,ra} where ra ≤ la which means that the threshold levels of entity ―a‖ can be 

set within a range ―1‖ to ―total number of outgoing edges‖ and because it has only one 

outgoing edge towards predecessor ―b‖ so the threshold level which can be set for it can only 

be ―1‖ ‖. 

III.  ―Each entity, e.g. ―a‖, has its abstract expression in the set Za = {0, 1 ,2,….,ra}‖. 

Definition 3 (states): ―The state of a BRN is a tuple sϵM, where M in terms of entity ―a‖ 

is:  

M= ᴨaϵVZa 

The qualitative states are represented by vector (Mv)aϵV, where v denotes the level of 

expression of an entity like ―a‖. According to this definition, M is the Cartesian product of 

the sets of abstract expressions of all entities. A qualitative state represents a configuration of 

all the elements of a BRN at any instant of time. The number of activators of a variable at a 
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given level of expression is represented by its set of resources (see the definition of resources 

given below)‖. 

Definition 4 (resources). ―The set of resources Rva of a variable aϵV at a level v is 

defined as Rva = {bϵD
¯
(a)| vb≥ σba and ψba = +) or (vb< σba and ψba = -)}. The dynamic 

behaviors of BRN depend on logical parameters. The set of these logical parameters is 

defined as K (D) = {Ka (Rva) ϵ Za aϵV}.  

The parameter Ka(Rva ) (at a level v of a) gives the information about the evolution 

of a. There are three cases: 1) if va > Ka(Rva ) then va increases by one unit 2) if 

va>Ka(Rva) then va decreases by one unit and 3) if c = Ka(Rva ) then va cannot evolve from 

its current level. It is convenient to describe the evolution from one level to another by an 

evolution operator ― ‖ [68], which is defined in terms of entity ―a‖ as follows: 

va      (   )  

{
 
 

 
  a         a     a (   ) 

 a         a    a (   )  

 a              a    a (   ) 

}
 
 

 
 

 

Where va and Ka(   )      

Definition 5 (state graph): ―Let D be the BRN and va represents the expression level 

of an entity e.g. ―a‖ in a state sϵM. Then the state graph of the BRN will be the directed 

graph G = (S, T), where S is set of states and T S S represents a relation between states, 

called the transition relation, such that s→s’ϵT if and only if:  

I Ǝ a unique aϵV such that          and     =      Ka(Rva) and 

II  bϵV\{a}     =    ‖ 

2.3. Inference of parameters through model checking 

Computation tree logic (CTL) formulae are formed using various state and path 

quantifiers. State quantifiers represent the state which holds a property, wherein the path 

quantifier defines a path from the present state, where a property holds [22].  

Following are the descriptions of the path and state quantifiers: 

 : This quantifier is read as ―For all paths‖. This state quantifier enforces that all paths 

initiating from the present state must be holding the given property. 

 : This is read as ―There exists a path‖. It specifies that a minimum of one path starting 

from the present state must be holding the given characteristic.  

 : This state quantifier is read as ―globally‖, which specifies that in a path initiating 

from a current state, all the states, must hold the given property, including the current state. 

 : This quantifier is read as ―Next‖. It enforces that the state which is the immediate 

successor of the present state must be holding the given property. 
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 : This is a state quantifier which specifies that in a path initiating from a current state, 

that state or at least one of the future states must hold the given property. This is known as the 

―Future Quantifier‖.  

SMBioNet [23] is software for estimating parameters by employing the approach of 

Bernot et al. [24]. The BRN based on Rene Thomas formalism, where CTL formulae and the 

set of interactions in the form of activation and inhibition are provided to this software. 

Furthermore, it computes the probable sets of parameters which are further confirmed by a 

model checking software, NuSMV [25]. NuSMV employs the Snoussi and observability 

constraints to select the parameter combinations according to the CTL formula. The 

combinations are further validated to select the models which best suits the behaviors 

exhibited by our BRN. 

Definition 6 (betweenness centrality): ―For a state graph R = (S,T) of an interaction 

graph G = (V; E), let x, y and z be the distinct qualitative states in ℛ, and let      be the total 

number of trajectories from state x to state y, and let      be the total number of trajectories 

from qualitative state y to x, passing through a state z. Let Ox represents the set of all ordered 

pairs, (y, x) such that x, y, and z are all distinct. Then, the betweenness centrality of the 

qualitative state z can be computed from the following equation:‖ 

  ( )   ∑
     ( )

    
(   )  

 

2.4. Construction and analysis of BRN: 

A BRN is constructed based on the Boolean logic formalism established by Rene Thomas to 

model the interplay between TGF-β1 and MMP-9 in hepatocellular carcinoma using the GINSIM 

version 2.4 [26] (available at http://ginsim.org/downloads) and GENOTECH tools [27] 

(https://github.com/DrJamilAhmad/GENOTECH/blob/master/GenoTechE.jar). The BRN 

comprises a set of nodes that represent the biological entities, connected by edges that are 

directed from one node/vertex to another [24]. The edges represent positive and negative 

interactions amongst the entities. Positive interactions (illustrated by + 1) depict activation, while 

negative interactions (illustrated by -1) depict inhibition. Experimental knowledge is encrypted in 

a model checker (SMbioNET) to assign logical parameters to each entity. Furthermore, the BRN 

is simulated as a state graph to identify the important trajectories, cycles (homeostasis) and steady 

states (disease progression). The network analysis is performed in Cytoscape, to identify various 

paths leading to a pathogenic state or the state of homeostasis. 

 

 

 

https://github.com/DrJamilAhmad/GENOTECH/blob/master/GenoTechE.jar
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2.5. Conversion of BRN to petri net (PN) model 

A PN is a directed bipartite graph where places (illustrated by circles) and transitions 

(illustrated by squares) denote entities of a pathway and the processes amongst them, respectively. 

Moreover, the transition and places are connected by directed arcs to allow the flow of tokens in 

the pathway. By firing transitions, the source can affect the number of tokens consigned to the 

target, called the token-count. Therefore, this enables the signals to circulate through the directed 

protein interactions in a cellular pathway. 

For the analysis of signaling networks, PN has emerged as a reliable tool. This approach 

allows the user to vary inputs, to create a flow of signal through the network based on 

connectivity of the network, eliminating the need for kinetic parameters. So we employed this 

approach by converting our BRN to a continuous PN to study the system behavior in a 

continuous and timed manner.  

Formally, continuous PNs formalism is defined as follows: 

Definition 7 (continuous petri nets): ―A continuous petri net is a quintuple CPN = (P, T, f, v, 

m0), where: 

P, T is finite, non-empty, disjoint sets. P is the set of continuous places. T is the set of 

continuous transitions.‖ 

―f: ((P × T) ∪ (T × P)) → R0 + defines the set of directed arcs, weighted by non-negative 

integer values‖ 

―v: T→H is a function, which assigns a firing rate function ht to each transition t, whereby H: 

= ∪t  T {ht | ht : R|•t|→R +} is the set of all firing rate functions, v(t) = ht for all transitions t   T, 

and |•t| represents the cardinality of the preplaces of transition t (reaction’s precursor)‖  

―m0: P→R0 + gives the initial marking.‖ 

We use the tool GINsim [26] to export a standard PN file which can be imported in 

SNOOPY [28] for further analysis.  

3. Results  

3.1. Pathway abstraction and BRN model construction based on prior knowledge 

A detailed literature review was carried out to identify pathways and entities that are critical 

in inducing the feedback loop between TGF-β1 and MMP-9. The extended pathway shown in 

Figure 1 was further reduced to a BRN (Figure 3) such that the impact of interactions amongst all 

the entities was significantly highlighted. This particular method of abstraction is explained in 

detail by Naldi et al 2009 and Saadatpour et al [35,36]. The reduced BRN comprises many well-

characterized regulatory motifs that give rise to a particular functionality of the system. The BRN 

is constructed with five nodes representing the entities: TGF-β1, MMP-9, NFκB, TIMP-1 and 
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HSC. The integers, + 1 and -1 are labeled with directed edges to represent activation (illustrated 

with a straight line) and inhibition (illustrated with a red dashed line) induced by the cellular and 

non-cellular components. The BRN highlights a positive feedback loop between TGF-β1 and 

MMP-9 through reciprocal activation. This loop exerts certain changes that direct the system 

to move away from its state of equilibrium, causing instability and eventually leading towards 

the state of disease i.e., HCC. A positive feedback loop consists of an even set of positive 

elements [31]. Whereas, a negative feedback loop is composed of an odd set of negative 

interactions, for instance, the interaction found between timp-1 and HSC tend to move towards 

either homeostasis or an interrupted behavior. Analysis of these motifs may provide significant 

insights into the probable dynamics of a system. The presence of TIMP-1 negatively regulates the 

expression of MMP-9, while its production is positively regulated by HSCs. Nonetheless, the 

dynamic behavior of a complex system, that comprises both negative and positive feedback loops, 

can be rendered with an appropriate set of parameters. 

 

Figure 3. Biological regulatory network (BRN) abstracted from the interaction 

network of TGF-β signaling in HCC. The integers -1 and + 1 are represented with 

the directed arrows to depict activation (+ 1 with an arrow straight line) and 

inhibition (-1 with dashed line). 

3.2. Parameter inference and selection via model checking 

The constructed BRN has 5 entities: TGF-β1, MMP-9, NFκB, TIMP-1 and HSC 

(Figure 3). Each of these five entities comprises several discrete parameters that show the 

level of each attribute implicated in the model.  



3296 

Mathematical Biosciences and Engineering                                                          Volume 16, Issue 5, 3285–3310. 

SMBioNet (selection of models of biological networks) [23] has been applied to 

compute parameters according to known qualitative observations in the form of 

computational tree logic (CTL) formulae (Table 1).  

Table 1. CTL formulation based on experimental observations. 

experimental observations references CTL formula 

Expression of TGF-β is 

often increased in HCC 

[32]  

 

 

(                          

         )

 (  (   (           

               

         ))) 

Overexpression of MMP-9 

has been correlated to the 

invasiveness and metastasis 

of HCC 

[33] 

TGF-β1 and MMP-9 can 

promote the progression of 

HCC via stimulating HSCs 

[39] 

NF-κB is a key transcription 

factor in the regulation of 

MMP9 expression 

[34] 

Overexpression of TIMP-1 

have been associated with 

invasion and metastasis in 

hepatocellular carcinoma 

[35] 

It takes BRN as inputs and selects the models which verify these formulae. The formula 

was thoughtfully derived from biological observations indicating an increase in expression 

from an initial state with the help of state and path quantifiers. The CTL formula is based on 

the fact that the enhanced expression of TGF-β1, MMP-9, and TIMP-1 is often associated 

with invasiveness and metastasis of [13,32,35]. TGF-β1 and MMP-9 are known to promote 

the progression of HCC via stimulating HSCs and NF-κB is a key transcription factor in the 

regulation of MMP-9 expression [35]. Hence, the CTL formula encodes these observations 

that during HCC pathogenesis all the entities are upregulated due to dysregulation of the 

tightly regulated elements in the network (i.e., TGF-β1 = 1, MMP-9 = 1, TIMP-1 = 1). The 

analysis from SMBioNet resulted in four sets of parameters in the form of models which 

satisfied the CTL formula’s properties (Table 2). 
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Table 2. Logical parameters generated from SMbioNET. 

model 1 model 2 model 3 model 4 

K_TGF = 0 K_TGF = 0 K_TGF = 0 # K_TGF = 0 

# K_TGF + MMP = 1 # K_TGF + MMP = 1 # K_TGF + MMP = 1 # K_TGF + MMP = 1 

# K_NFKB = 0 # K_NFKB = 0 # K_NFKB = 0 # K_NFKB = 0 

# K_NFKB + TGF = 1 # K_NFKB + TGF = 1 # K_NFKB + TGF = 1 # K_NFKB + TGF = 1 

# K_HSC = 0 # K_HSC = 0 # K_HSC = 0 # K_HSC = 0 

# K_HSC + TGF = 1 # K_HSC + TGF = 1 # K_HSC + TGF = 1 # K_HSC + TGF = 1 

# K_HSC + TIMP = 0 # K_HSC + TIMP = 0 # K_HSC + TIMP = 0 # K_HSC + TIMP = 0 

# K_HSC + TGF + TIMP = 1 # K_HSC + TGF + TIMP = 1 # K_HSC + TGF + TIMP = 1 # K_HSC + TGF + TIMP = 1 

# K_TIMP = 0 # K_TIMP = 0 # K_TIMP = 0 # K_TIMP = 0 

# K_TIMP + HSC = 1 # K_TIMP + HSC = 1 # K_TIMP + HSC = 1 # K_TIMP + HSC = 1 

# K_TIMP + NFKB = 0 # K_TIMP + NFKB = 0 # K_TIMP + NFKB = 0 # K_TIMP + NFKB = 0 

# K_TIMP + HSC + NFKB = 1 # K_TIMP + HSC + NFKB = 1 # K_TIMP + HSC + NFKB = 1 # K_TIMP+HSC + NFKB = 1 

# K_MMP = 0 # K_MMP = 0 # K_MMP = 0 # K_MMP = 0 

# K_MMP + HSC = 0 # K_MMP + HSC = 0 # K_MMP + HSC = 0 # K_MMP + HSC = 0 

# K_MMP + NFKB = 0 # K_MMP + NFKB = 0 # K_MMP + NFKB = 0 # K_MMP + NFKB = 0 

# K_MMP + TGF = 0 # K_MMP + TGF = 0 # K_MMP + TGF = 0 # K_MMP + TGF = 0 

# K_MMP + TIMP = 1  # K_MMP + TIMP = 1 # K_MMP + TIMP = 1 # K_MMP + TIMP = 1 

# K_MMP + HSC + NFKB = 0 # K_MMP + HSC + NFKB = 1 # K_MMP + HSC + NFKB = 0 # K_MMP + HSC + NFKB = 1 

# K_MMP + NFKB + TGF = 0 # K_MMP + NFKB + TGF = 0 # K_MMP + NFKB + TGF = 1 # K_MMP + NFKB + TGF = 1 

# K_MMP + NFKB + TIMP = 1 # K_MMP + NFKB + TIMP = 1 # K_MMP + NFKB + TIMP = 1 # K_MMP  + NFKB + TIMP = 1 

# K_MMP + HSC + TGF = 1 # K_MMP + HSC + TGF = 1 # K_MMP + HSC + TGF = 1 # K_MMP + HSC + TGF = 1 

# K_MMP + TGF + TIMP = 1 # K_MMP + TGF + TIMP = 1 # K_MMP + TGF + TIMP = 1 # K_MMP + TGF + TIMP = 1 

# K_MMP + HSC + TIMP = 1 # K_MMP + HSC + TIMP = 1 # K_MMP + HSC + TIMP = 1 # K_MMP + HSC + TIMP = 1 

#K_MMP + HSC + NFKB + TIMP = 1 #K_MMP + HSC + NFKB + TIMP = 1 #K_MMP + HSC + NFKB + TIMP = 1 
#K_MMP + HSC + NFKB + 

TIMP = 1 

#K_MMP + HSC + NFKB + TGF = 1 #K_MMP + HSC + NFKB + TGF = 1 #K_MMP + HSC + NFKB + TGF = 1 
#K_MMP + HSC + NFKB + 

TGF = 1 

#K_MMP + HSC + TGF + TIMP = 1 #K_MMP + HSC + TGF + TIMP = 1 #K_MMP + HSC + TGF + TIMP = 1 
#K_MMP + HSC + TGF + TIMP 

= 1 

#K_MMP + NFKB + TGF + TIMP = 1 #K_MMP + NFKB + TGF + TIMP = 1 #K_MMP + NFKB + TGF + TIMP = 1 
#K_MMP + NFKB + TGF + 

TIMP = 1 

#K_MMP + HSC + NFKB + TGF + 

TIMP = 1 

#K_MMP + HSC + NFKB + TGF + 

TIMP = 1 

#K_MMP + HSC + NFKB + TGF + 

TIMP = 1 

#K_MMP + HSC + NFKB + 

TGF + TIMP = 1 
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Amongst these, the fourth set was selected. The fourth model was selected based on 

prior knowledge from the literature that in the presence of its activators, MMP-9 is 

upregulated as the HSCs frequently secrete the protein along with TGF-β and NFκB that too 

are responsible for the activation of MMP-9. In qualitative modeling, these selected 

parameters aid in observing the system dynamics in the form of cycles, stable states (SS) and 

paths. The selected parameters are presented in Table 3. 

3.3. Analysis of the state graph: Insights into pathogenic and recovery states 

A state graph of the BRN was simulated from the selected parameters (Table 3) using 

the GINsim software [26]. The logical set of parameters of the four models, which satisfied 

the CTL properties, were analyzed using the state graph (as shown in Figure 4, starting from 

M1 to M4). In this representation, a logical variable associated with each pertinent element of 

the system where ―0‖ represents the normal to down-regulation of an entity, whereas ―1‖ 

represents up-regulation of an entity. Following model selection, the simulated state graph 

consists of 32 nodes and 80 edges which were rendered using Cytoscape [36] (available at 

http://www.cytoscape.org/) (Figure 4) and the states were sorted on the basis of betweenness 

centrality. The state graph represents all possible transitions in the form of states that denote 

relative expressions of all entities at a specific time. The order of the qualitative states is 

TGF-β1, NFκB, MMP-9, HSC, and TIMP-1. The deadlock state (1, 1, 1, 1, 1) shows up-

regulation of the all the entities. The model also generates several cycles, computed by 

GENOTECH software, which reveals normal system behavior categorized by down-

regulation of TGF-β1 and MMP-9, with a normal expression of other entities. The state of the 

system, in a state graph, is denoted by a vector that includes the level of expression of all the 

entities. The analysis revealed that the system can either lead to a disease state or a recovery state. 

The recovery state is denoted as (TGF-β1 = 0, NFκB = 0, MMP9 = 0, HSC = 0, TIMP1 = 0), 

where all the entities exhibit low expression. On the contrary, the pathogenic state is 

indicated by high expressions of TGF-β1 and MMP-9 that induce the overexpression of the 

other entities leading to a deadlock. Under normal circumstances, biological systems 

maintain homeostasis where the system remains in a cycle. Hence, a desired qualitative 

model should demonstrate a closed path showing homeostasis along with trajectories that 

lead to pathogenesis. It is also revealed through our analysis that there is one significant state 

which results in either a deadlock state or can lead to recovery. This state (TGF-β1 = 1, NFκB = 0, 

MMP9 = 1, HSC = 0, TIMP1 = 1) as shown in Figure 4 highlights that TGF-β1 and MMP-9 

exhibit high expression levels, but they seem to be regulated by the expression TIMP-1, 

which is an inhibitor of MMP-9. As soon as TIMP-1 is down-regulated, both the entities 

overexpress each other resulting in the overexpression of NF-kappaB. The expression of 

MMP-9 is further upregulated by the high expression level of NF-kappaB. Also, NF-κB is  

http://www.cytoscape.org/
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Table 3. Selected logical parameters generated through SMBioNet. 

Parameter Resources Range of Values Selected Parameters 

KTGF {} 0 0 

KTGF {MMP} 1 1 

KNFΚB {} 0 0 

KNFΚB {TGF} 1 1 

KHSC {} 0 0 

KHSC {TGF} 0,1 1 

KHSC {TIMP} 0,1 0 

KHSC {TGF, TIMP} 0,1 1 

KTIMP {} 0 0 

KTIMP {HSC} 0,1 1 

KTIMP {NFκB} 0,1 0 

KTIMP {HSC, NFκB} 0,1 1 

KMMP {} 0 0 

KMMP {HSC} 0,1 0 

KMMP {NFκB} 0,1 0 

KMMP {TGF} 0,1 0 

KMMP {TIMP} 0,1 1 

KMMP {HSC, NFκB} 0,1 1 

KMMP {NFκB, TGF} 0,1 1 

KMMP {NFκB, TIMP} 0,1 1 

KMMP {HSC, TGF} 0,1 1 

KMMP {TGF, TIMP} 0,1 1 

KMMP {HSC, TIMP} 0,1 1 

KMMP {HSC, NFκB, TIMP} 0,1 1 

KMMP {HSC, NFκB, TGF} 0,1 1 

KMMP {HSC, TGF, TIMP} 0,1 1 

KMMP {NFκB, TGF, TIMP} 0,1 1 

KMMP {HSC, NFκB, TGF, TIMP} 0,1 1 
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known to augment the invasive ability of tumor cells [37]. This indicates that the system 

moves toward HCC pathogenesis. On the other hand, if TGF-β1 or MMP-9’s expression is 

down-regulated the system may move towards the state of recovery, indicating the fact that 

inactivation of MMP-9 is crucial to recovering from the disease. Since MMPs play a key role 

in stimulating tumor metastasis and angiogenesis [38], it is confirmed by our results that 

agents required for down-regulating the expression levels may prove useful in handling HCC 

treatment outcome. 

3.4. Selection and analysis of the most probable homeostatic cycles  

It is significant to identify the most apparent biological cycle since homeostasis is 

represented by cycles. Our model generated 30 cycles of varying lengths and one of them was 

selected on the basis of betweenness centrality rendered in the Cytoscape tool [36]. Betweenness 

centrality is defined as ―the number of shortest paths that go through a node among all shortest 

paths between all possible pairs of nodes‖ [39]. All states were sorted based on their measure of 

betweenness centrality as presented in Figure 5, where nodes with a larger diameter and darker 

color signify states with high betweenness centrality. Amongst all the cycles, the cycle with 

highest betweenness centrality was as follows: (0, 0, 1, 0, 1) → (1, 0, 1, 0, 1) → (1, 0, 0, 0, 1) → 

(1, 0, 0, 0, 0) → (1, 0, 0, 1, 0) → (1, 1, 0, 1, 0) → (1, 1, 0, 1, 1) → (0, 1, 0, 1, 1) → (0, 1, 1, 1, 1) 

→ (0, 0, 1, 1, 1) → (0, 0, 1, 0, 1).  

The cycle initiates at the point where the expression of MMP-9 is tightly regulated by its 

inhibitor (TIMP-1). In the following state, the expression profile of TGF-β1 shifts from 

down-regulation to up-regulation. As soon as this state is met, MMP-9 is downregulated in 

the next state of the cycle, preventing activation of the loop and signaling the system to 

remain in a regulated cycle. The cycle also reveals that down-regulation of either TGF-β1 or 

MMP-9 is essential for homeostasis. Any deviation from this cycle would head towards a 

pathogenic stable state i.e., (1, 1, 1, 1, 1). 

3.5. Conversion of BRN to continuous petri nets 

It is very challenging to find defined kinetic parameters for each reaction; hence we 

depend upon the PN model so that we are not restricted to certain values and expressions. 

The signaling pathways in biology have evolved to an extent where the network connectivity 

has an alleviating effect on the systems’ entities and their associated interactions. Hence, the 

PN analysis results in an easy interpretation of the simulations run to predict the biological 

systems behavior under variable stimuli, be it internal or external.  

 



3301 

Mathematical Biosciences and Engineering                                                          Volume 16, Issue 5, 3285–3310. 

 

Figure 4. Network analysis. Overview of the model selection and state transition 

graph. M1-M4 represents the models generated from SMBioNet. M4 was selected 

and rendered in Cytoscape. The pathogenic and recovery trajectories were then 

analyzed from the network. 
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Figure 5. This figure represents the state transition graph with a cycle 

highlighting the case of homeostasis. Each node in the graph represents a unique 

state of the system characterized by qualitative expression of genes in the 

following order: (TGF-β, NFκB, MMP-9, HSC, TIMP-1). The graph is rendered 

based on betweenness centrality, where larger nodes and dark colors represent 

high betweenness. 

The BRN modeled in GINSIM was exported into a standard petri nets (PN) format 

where the places and transitions were discrete in nature. Since the biological entities tend to 

be continuous in nature, the standard petri net was then converted into a continuous petri net 

using SNOOPY tool (version 2) (Figure 6). Modelling with PN involves the use of 

simulations to study the changes in relative expression levels of biological entities i.e., 

genes/proteins over time. There are two places for each network entity in the converted PN, 

i.e., active and inactive state. The activated states are represented by a prime place, and the 

inactivated state is shown by a complementary state. Furthermore, the related transitions are 

labeled as ―p‖ and ―n‖ to represent the activating and inactivating signals, respectively. The 

transitions are created by GINsim to model the parameters generated in SMBioNet. This aids 

in analyzing the BRN dynamics over time. Over the course of disease or homeostasis, the 

biological entities are activated in a variable manner. Hence, the need to include inactivated 

places for proteins is significant so to understand the inhibition signals that are received 

intracellularly. The resulting PN in our study is simulated on the basis of mass action kinetics 

for continuous transitions, where the presence of tokens is represented by the markings in the 

places.  
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3.6. Analysis of the continuous evolution of key entities 

Simulation makes obvious the time-based changes of the concentration of molecules and 

thus enables to graphically represent their paths and check the refined properties of the 

system [40]. Figure 7 shows the simulation results in the case of recovery where MMP-9 and 

TGF-β decline towards the state where the system maintains homeostasis leading to the 

downregulation of all the other entities (i.e., HSCs, NFκB, and TIMP-1). It reveals that the 

downregulation of MMP-9 results in lowering the expression of TGF-β1. Furthermore, NFκB 

also declines towards homeostasis mediating the downregulation of TIMP-1 to recover from 

the pathogenic state. 

 

Figure 6. Continuous petri nets model illustration. A circle     ⃝ represents a place 

which depicts proteins, enzymes, and cellular components. A square □ represents 

a continuous transition which depicts all cellular processes. A directed arc 

connects a place with a transition and vice versa. ―p‖ presents positive regulation, 

―n‖ represents negative regulation. 

In contrast, Figure 8 depicts a clear picture of how all the entities are increasing towards 

the disease state and then becomes constant as it reaches a pathogenic stable state. It is 

observed that the overexpression of NFκB results in an increase in MMP-9 that may enhance 

invasion and progression. Moreover, high expression of MMP-9 and TGF-β1 can induce 
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progression of HCC via induction of HSCs. Also, the relative expression level of MMP-9 is 

higher than that of TIMP-1 in the simulation result. It can be clearly seen in Figure 8 how the 

overexpression of MMP-9 leads to the activation and upregulation of TGF-β confirming our 

hypothesis where the reciprocal activation of both entities is considered as the potential 

molecular mechanism in accelerating the progression of HCC. 

 

Figure 7. Expression evolution of key entities during recovery. The x-axis shows 

time units while the y-axis represents relative expression levels of the entities. 

 

Figure 8. Expression evolution of key entities leading to pathogenesis. 
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The proposed premise has been suggested in a recent study where the idea has been put 

forward for further analysis [13]. The role of TGF-β1 has been highlighted in HCC by means of 

two mechanisms: First, as a paracrine or autocrine growth factor through an intrinsic activity and, 

second, by stimulating microenvironment changes by an extrinsic activity [41]. In various 

experimental models, inhibitors of TGF-β1 have revealed to hinder the progression and growth of 

HCC by modulating EMT. TGF-β inhibitors arise as a novel therapeutic approach, which targets 

the cancer growth and its microenvironment. As TGF-β is present at almost every stage of 

tumorigenesis, blocking it may have a more powerful effect than agents that block specific 

processes during the pathogenesis of HCC, such as neo-angiogenesis [42]. TGF-β inhibition is 

directed against the most central pathological processes which lead to chronic liver disease and 

consequently to HCC. Over-expression of MMP-9 in tumor progression via cell invasion has 

been correlated with invasion and metastasis. Inhibitors for suppressing the expression of MMP-9 

have been revealed through recent studies [43–45]. Taken together, therapies targeting both 

mediators may lead to medical breakthroughs in the treatment of cancer. 

4. Discussion 

A consistent relationship between TGF-β1 and MMP-9 has been well-established in studies 

carried out on various fibroblasts and cancer cells [13]. The high expression of MMP-9 has been 

associated to invasion and metastasis in multiple tumors because of its capacity to remodel the 

tissues via the ECM, along with its ability to cause angiogenesis and degradation of the basement 

membrane [46,47]. In HCC, increased mRNA and protein levels of MMP-9 have been associated 

with highly invasive cancer cells [5]. Moreover, TGF-β1 has proven to be an independent 

biomarker to indicate survival in HCC [48]. By directly activating various signaling pathways 

and transcription factors, TGF-β1 can upregulate the expression of MMP-9, leading to an 

increased proliferation in various tumor cells [16]. Similarly, the link between the two key players 

was demonstrated in some studies, that MMP-9 increases the TGF-β1 bioactivity by 

proteolytically cleaving the latent peptide of TGF-β1. Finally, this relationship between MMP-9 

and TGF-β1 forms a potential regulatory feedback loop correlated with fibrogenesis and HCC via 

the activation of hepatic stellate cells (HSCs) [16]. Therefore, it is significant to identify the 

mechanism of the positive interplay in the TGFβ1-associated BRN that plays a key role in 

triggering the signaling pathway that leads to pathogenesis.  

Formal modeling approaches are extensively applicable because of their computational 

capacity of testing exhaustively. These approaches are being used successfully over a few years 

for the purpose of modeling and validation of intricate systems in biology [49]. Boolean logic 

formalism is a well-established method for modeling a qualitative BRN that decrypts the 

dynamics of the qualitative model in the form of a directed graph. A qualitative state is 

represented by a node, whereas the edges demonstrate the interactions between the  
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nodes [21,50,51]. The qualitative model of the TGFβ1-associated BRN was simulated as a state 

graph, which resulted in cycles and a deadlock stable state. The most apparent biological cycle 

was selected on the basis of betweenness centrality that shows the expression profile TGF-β1 and 

MMP-9 is tightly regulated by TIMP-1, which controls the up-regulation and down-regulation of 

both the entities throughout the cycle, so only one of the key players exhibits expression in a 

given state. On the other hand, the down-regulation of TIMP-1 results in the overexpression of 

the TGF-β1 and MMP-9 via reciprocal activation. This tends to lead the system towards a 

deadlock stable state (1, 1, 1, 1, 1).  

To maintain homeostasis, the expression profiles of genes go through numerous levels (such 

as low or high) during the regulatory mechanisms. The regulation and activation of the TGF-β1 

and MMPs is found to be perturbed in tumor tissues and has been associated with increased 

progression of the tumor [52,53]. It has been suggested that when the MMPs activate latent TGF-

β1, they can mediate metastasis and invasion in the stroma by exhibiting intense tumor-

promoting effects [54]. The deadlock state generated by our model exhibits this behavior, where 

MMP-9 and TGF-β1 are found to be overexpressed. In recent studies, activated TGF-β1 has been 

demonstrated to mediate the critical balance of the remodeling of extracellular matrix by 

modulating the expression level of TIMPs and MMPs which is demonstrated in the qualitative 

cycle [54]. The simulation from the continuous petri net (PN) model was also consistent with the 

finding that the reciprocal activation of both the major entities (i.e., TGF-β1 and MMP-9) is 

considered as the potential molecular mechanism in accelerating the progression of HCC. It also 

suggests that TGF-β inhibitors may be used as a novel therapeutic approach, which targets the 

cancer growth and its microenvironment. As TGF-β1 is present at almost every stage of 

tumorigenesis, blocking it may have a more powerful effect than agents that block specific 

processes during the pathogenesis of HCC, such as neo-angiogenesis [42]. Inhibitors for 

suppressing the expression of MMP-9 have been revealed through recent studies [43–45]. Taken 

together, further wet-lab based experiments are required to explore the roles of TGF-β1, MMP-9, 

and TIMP-1 to target the key players in the tumor microenvironment. 

5. Conclusion 

The impact of reciprocal activation of TGF-β1 and MMP-9 in HCC has been elucidated in 

prior experiments. However, the precise molecular mechanism behind this interplay has not been 

established yet. In this study, we employed a robust computational technique to analyze the loop 

between TGF-β and MMP-9, which triggers invasion and metastasis in HCC. We found that both 

entities must be expressed in a regulated manner and that the inactivation of MMP-9 may aid in 

restoring the system in a recovery state and preserve homeostasis. Moreover, when MMP-9 

forms a positive regulatory loop with TGF-β1, the system approaches a point from where 

recovery is beyond the bounds of possibility i.e., the deadlock stable state. These findings propose 
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that this loop serves as a significant mediator of EMT resulting in HCC growth and development. 

Taken together, these findings may aid in the development of treatment strategies that are 

designed to target both TGF-β and MMP-9. Our constructed model could aid in further 

understanding of the dynamics of the disease by adding and exploring other entities 

(genes/proteins/cells) involved in HCC. Furthermore, the model can be extended with necessary 

perturbations and interventions to observe the effect of the entities on expression patterns. 
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