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Abstract: The mechanisms of brucellosis transmission are diverse and complex, especially the
role of young animals in the spread of brucellosis has not been well studied. In this article, a new
deterministic system that incorporates various stages of susceptible individuals and time delay of
infection is proposed. Under general biological assumptions, the qualitative properties and stability
of the system are studied, the results illustrate that the global dynamics of equilibrium points depend
on the basic reproduction number R0: If R0 ≤ 1, animal brucellosis will eventually die out; and if
R0 > 1, animal brucellosis is persistent and eventually tends to the endemic steady state. These results
suggest that distributed time delay is harmless for the dynamics of the spread of brucellosis when R0

is greater than one or less than or equal to one. Finally, periodic phenomena are found by numerical
analysis if the assumptions are not true.
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1. Introduction

Brucellosis, a zoonotic disease, is a natural epidemic disease that is not only prevalent among
livestock and humans but also widely spread in wild animals [1, 2]. There are human and animal
brucellosis in most countries of the world, and high-risk areas of epidemics are mainly distributed in
developing countries, such as Syria, Jordan, Zambia, Mongolia [3–6]. It has brought huge losses to
the livestock industry worldwide and serious health problems to livestock-related practitioners, there
are hundreds of thousands of new cases reported annually [6–8]. Infected domestic and wild animals
and their excreta are the main source of infection, it is contact and pathogen infection which are the
main modes of brucellosis transmission [9]. Human brucellosis is rarely transmitted to susceptible
animals, and there is no infection between people reported [10, 11]. Therefore, it is the eradication of
animal brucellosis that is the only way to solving human health problem, and understanding the
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mechanisms and risk factors of the spread of brucellosis is one of the first problems that must be
solved.

Brucellosis is transmitted to susceptible individuals mainly by contact with infectious individuals
or by sucking pathogens from the environment [8]. In animals, the transmission of brucellosis mainly
occurs between sexually mature animals, young animals may also be infected, but generally do not have
any clinical manifestations and serological tests are usually non-positive, and the infection between
young animals is so little as to be almost invisible [12]. In other words, sexually mature animals are
very susceptible to brucellosis, latent infections may be found in young animals, but they are generally
resistant [9]. It is important that many infected animals have a longer incubation period and that these
animals remain serologically non-positive during this period. That is to say, latent animals may not be
infectious and it is almost impossible to be found through detection, which is an important risk factor in
the elimination of brucellosis [9]. Therefore, the impact of these mechanisms on brucellosis is worthy
to be studied using mathematical models.

Statistical methods such as descriptive statistics, correlation analysis and time series analysis have
been widely used for quantitative assessment of risk management measures for brucellosis, among
which is very worthy of concern about the study of bison, elk and livestock brucellosis (see [13–
17]). Theoretical studies on the impacts of the transmission mechanisms of brucellosis and applied
studies on the assessments of risk management measures have also been studied using the kinetic model
(see [18–22]). Especially in recent years, many kinetic models with indirect transmission have been
established to analyze brucellosis transmission (see [23–27]). Although there have been many studies
on brucellosis, there are still many transmission mechanisms and risk factors that are not considered in
existing models. For example, infected individuals may have no infectivity in the early stage, during
which time is different; and animals that are not sexually mature are hardly infected with direct and
indirect modes [9]. Therefore, in the present work, a multi-stage dynamic model with distributed time
delay is proposed involving the above risk factors and general nonlinear incidences. The existence and
uniqueness of the endemic equilibrium is analyzed, and the local and global asymptotic stability of
equilibria is proved.

The rest of this manuscript is constructed as follows. The dynamic model with distributed time
delay and some preliminary results are given in Section 2. In Section 3, the content of research is the
global dynamics of the disease-free equilibrium. The global stability of the equilibrium of persistent
infection are analyzed in Section 4. In Section 5, the stability results are further explained by numerical
simulation. A summary and further discussion is proposed in Section 6.

2. The model and preliminary results

According to the transmission mechanisms of animal brucellosis, we classify animal population
into three compartments: The young susceptible compartment S 1(t), the adult susceptible compartment
S 2(t) (sexually mature), the infected compartment I(t). Similar to the definition in literature [25], B(t)
can be defined as the concentration or number of pathogens in the environment. Some explanations
and assumptions about the kinetic model are listed as follows. (I) Since brucellosis can cause abortion
and significantly reduce the survival rate of young animals, we suppose that infected animals have no
birth rate. (II) The supplementary rate of young susceptible animal population S 1(t) is mainly derived
from birth and import, it is assumed that the supplementary rate is A + bS 2(t). (III) Usually, there
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are two different stages for infected animals, which are no infection force in the early stage and are
infectious carriers when infected animals begin to shed brucella. Therefore, we make use of a delay
τ to describe the time from a susceptible individual to a infectious individual, and since the length
of this time is varied, thus the delay τ is a distributed parameter in the interval [0, h], where h is the
maximum value of the delay. As a result, the susceptible class S 2(t) is reduced due to infection at the
rate S 2g(B) + S 2

∫ h

0
ρ(τ) f (I(t − τ))e−(µ2+c)τdτ. (IV) Since the infected animal sheds the pathogen after

the time τ, then the pathogen shedding rate of the infected animal is
∫ h

0
ρ(τ)h(I(t−τ))e−(µ2+c)τdτ. (V) In

animal breeding, only the basic ewes breed newborns, and adult animals are widely used for slaughter
or trade, then the birth rate b of adult animals is assumed to be less than the elimination rate µ2 of adult
animals. Therefore, the modelling for animal brucellosis is given through the following distributed
time-delay system:

dS 1
dt = A + bS 2 − µ1S 1 − σ1S 1,

dS 2
dt = σ1S 1 − S 2g(B) − S 2

∫ h

0
ρ(τ) f (I(t − τ))e−(µ2+c)τdτ − µ2S 2,

dI
dt = S 2

∫ h

0
ρ(τ) f (I(t − τ))e−(µ2+c)τdτ + S 2g(B) − (µ2 + c)I,

dB
dt =

∫ h

0
ρ(τ)h(I(t − τ))e−(µ2+c)τdτ − dB.

(2.1)

Here, b is the birth rate of adult animals. µ1 and µ2 are the elimination rates of young and adult animals,
respectively. σ1 is the transfer rate from young susceptible individuals to sexually mature individuals.
The culling rate is defined by c and d is the decay rate of the pathogen. f (I) and g(B) are contact and
indirect infection rates, respectively. ρ(τ) is a distributed function, it is non-negative, continuous and∫ h

0
ρ(τ)dτ = 1.
The initial conditions for system (2.1) are given as follows:{

S 1(x) = φ1(x), S 2(x) = φ2(x), I(x) = φ3(x), B(x) = φ4(x),
x ∈ [−h, 0], h > 0, φ = (φ1, φ2, φ3, φ4) ∈ C+ ⊂ C.

(2.2)

Here, C denotes the Banach space C([−h, 0],<4) of continuous functions mapping the interval
[−h, 0] into <4 with the sup-norm ‖φ‖ = supx∈[−h,0] |φi(x)|, i = 1, 2, 3, 4 for φ ∈ C. The nonnegative
cone of C is defined as C+ = C([−h, 0],<4

+).
In order to make epidemiological significance for system (2.1), f , g and h are assumed to be second-

order continuous differentiable functions and satisfy the following hypotheses:

(H1) f (0) = g(0) = h(0) = 0 and f (I), g(B), h(I) > 0 for I, B > 0;
(H2) f ′(I), g′(B) > 0 and f ′′(I), g′′(B) ≤ 0 for B, I ≥ 0;
(H3) h′(I) > 0 and h′′(I) ≤ 0 for I ≥ 0.

The function f may be βI p or saturation incidences k ln(1 + λI
k ) and βIp

1+kIp with constants β, p, λ, k > 0
[28, 29]. The pathogen infection rate g may be λB

1+T B or η(1 − e−αB) with constants λ, η, α > 0 and
T ≥ 0 [30]. The function h may be kI with constants k > 0 [31].

It is easy to verify that the system (2.1) always has a disease-free equilibrium E0 = (S 0
1, S

0
2, 0, 0),

where
S 0

1 =
Aµ2

µ2(µ1 + σ1) − bσ1
, S 0

2 =
Aσ1

µ2(µ1 + σ1) − bσ1
.
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The reproduction number of sytem (2.1) is given by the following expression:

R0 =
nS 0

2 fI(0)
µ2 + c

+
nS 0

2gB(0)hI(0)
d(µ2 + c)

= R01 + R02. (2.3)

where n =
∫ h

0
ρ(τ)e−(µ2+c)τdτ. e−(µ2+c)τ denotes the probability of survival from a newly infected

susceptible individual to an infectious individual. n is the total survival rate of infected individuals.
fI(0) is the infection rate by an infectious individual. gB(0) is the infection rate of brucella. 1

µ2+c is the
average life span of infected individual. hI (0)

d represents the total number of brucella shed by infectious
individuals. Therefore, based on the explanation in the literature [26], R0 relies on direct and indirect
infection and can be divided into two parts R01 and R02.

In the next section, we establish that the solution of system (2.1) is non-negative and bounded and
analyze the uniqueness of the equilibrium point of persistent infection. The following qualitative results
indicate the nonnegativity and boundedness of the solution of system (2.1) with initial conditions (2.2).

Theorem 2.1. (S 1(t), S 2(t), I(t), B(t)) is the solution of system (2.1) with the initial conditions (2.2),
then S 1(t), S 2(t), I(t), B(t) are nonnegative and ultimately bounded.

Proof. Since (Ṡ 1(t) + Ṡ 2(t)) = A > 0 for t ∈ [0,+∞) when S 1(t) = S 2(t) = 0, it implies that S 1(t) +

S 2(t) ≥ 0 for all t ∈ [0,+∞). Therefore, if S 1(t) = 0, then S 2(t) ≥ 0 and Ṡ 1(t) = A + bS 2 > 0, so that
S 1(t) ≥ 0. We denote

a1(t) =

∫ h

0
ρ(τ) f (I(t − τ))e−(µ2+c)τdτ + g(B) + µ2,

a2(t) =S 2(t)(
∫ h

0
ρ(τ) f (I(t − τ))e−(µ2+c)τdτ + g(B)),

and

a3(t) =

∫ h

0
ρ(τ)h(I(t − τ))e−(µ2+c)τdτ.

From the last three equations in (2.1), it can conclude that

S 2(t) =S 2(0)e−
∫ t

0 a1(η)dη + σ1

∫ t

0
e−

∫ t
η

a1(ξ)dξS 1(η)dη ≥ 0,

I(t) =I(0)e−(µ2+c)t +

∫ t

0
e−(µ2+c)(t−η)a2(η)dη ≥ 0,

and

B(t) = B(0)e−dt +

∫ t

0
e−d(t−η)a3(η)dη ≥ 0

for all t ≥ 0. Thus, S 1(t), S 2(t), I(t), B(t) ≥ 0 for t ≥ 0.
We now analyze the boundedness of the solution of system (2.1). In fact,

(Ṡ 1(t) + Ṡ 2(t) + İ(t)) ≤ A − µ1S 1 − (µ2 − b)S 2 − (µ2 + c)I

≤ A − µ(S 1(t) + S 2(t) + I(t)),

where µ = min{µ1, µ2 − b}.
Hence, lim supt→∞(S 1(t)+S 2(t)+ I(t)) ≤ A

µ
, it implies that lim supt→∞ I(t) ≤ A

µ
and lim supt→∞ B(t) ≤

n
d h( A

µ
). Therefore, S 1(t), S 2(t), I(t), B(t) are ultimately bounded. �
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Since the solution of system (2.1) is nonnegative and ultimately bounded, the set

Ω = {(S 1(·), S 2(·), I(·), B(·)) ∈ C+ : ‖S 1 + S 2 + I‖ ≤
A
µ
, ‖B‖ ≤

n
d

h(
A
µ

)},

is positively invariant for system (2.1).
In order to analyze the uniqueness of the positive solution of system (2.1), the following lemma is

given:

Lemma 2.1. Assume that conditions (H1)− (H3) are satisfied, the functions f (I)
I , h(I)

I , g(B)
B and g(h(I))

I are
monotonic decreasing for I, B > 0.

Proof. Since f ′′(I) ≤ 0, it shows that f ′(I) is monotonic decreasing, it follows that

f (I)
I

=
f (I) − f (0)

I − 0
= f ′(ξ1) ≥ f ′(I), ξ1 ∈ (0, I),

and

(
f (I)
I

)′ =
f ′(I)I − f (I)

I2 ≤ 0.

That is to say, f (I)
I is a monotonically decreasing function. On the basis of the above method, it can

show that h(I)
I and g(B)

B are also monotonic decreasing. Noting that

g(h(I))
I

=
g(h(I)) − g(h(0))

h(I) − h(0)
h(I)

I
=g′(h(ξ2))h′(ξ3)
≥g′(h(I))h′(I), ξ2, ξ3 ∈ (0, I),

It can deduce that

(
g(h(I))

I
)′ =

g′(h(I))h′(I)I − g(h(I))
I2 ≤ 0.

Therefore, g(h(I))
I is also monotonic decreasing. �

For system (2.1), the endemic equilibrium E∗ = (S ∗1, S
∗
2, I
∗, B∗) can be derived from the following

algebraic equations: 
A + bS 2 = µ1S 1 + σ1S 1,

σ1S 1 = S 2(n f (I) + g(B)) + µ2S 2,

S 2(n f (I) + g(B)) = (µ2 + c)I,
nh(I) = dB.

(2.4)

By direct calculation, it can be written as
S 1 = A+bS 2

µ1+σ1
,

m(S 2) = S 2(n f (I) + g(B)),
S 2(n f (I) + g(B)) = (µ2 + c)I,
B = H(I).

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3111–3129.



3116

where m(S 2) =
Aσ1−(µ2(µ1+σ1)−bσ1)S 2

µ1+σ1
and H(I) = n

d h(I).
Let us define

F1(S 2, I) ,m(S 2) − S 2(n f (I) + g(H(I))),
F2(S 2, I) ,S 2(n f (I) + g(H(I))) − (µ2 + c)I.

Similar to the method of analysis in literature [26], using Lemma 2.1, the following result can be
summarized:

Theorem 2.2. Assume that conditions (H1) − (H3) hold. Then there is a unique positive solution
E∗ = (S ∗1, S

∗
2, I
∗, B∗) of system (2.1) if and only if R0 > 1.

3. Stability of the disease-free equilibrium

In this section, we show that the global stability of the equilibrium point E0 of system (2.1) is
independent of the initial value. The following conclusions are first obtained.

Lemma 3.1. Assume that conditions (H1) − (H3) hold. The disease-free equilibrium E0 is locally
asymptotically stable if R0 ≤ 1 and is unstable if R0 > 1.

Proof. The characteristic equation at E0 is∣∣∣∣∣∣∣∣∣∣∣∣∣
λ + µ1 + σ1 −b 0 0
−σ1 λ + µ2 S 0

2 fI(0)Γ(λ) S 0
2gB(0)

0 0 λ + µ2 + c − Γ(λ)S 0
2 fI(0) −S 0

2gB(0)
0 0 −hI(0)Γ(λ) λ + d

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.1)

where

Γ(λ) =

∫ h

0
ρ(τ)e−(µ2+c+λ)τdτ.

It follows from (3.1) that

(λ + µ1 + σ1)(λ + µ2)((λ + d)(λ + µ2 + c − Γ(λ)S 0
2 fI(0))

− Γ(λ)S 0
2gB(0)hI(0))

=bσ1((λ + d)(λ + µ2 + c − Γ(λ)S 0
2 fI(0))

− Γ(λ)S 0
2gB(0)hI(0)).

That is,
(λ + µ1 + σ1)(λ + µ2)(λ + d)(λ + µ2 + c) − bσ1(λ + d)(λ + µ2 + c)

= ((λ + µ1 + σ1)(λ + µ2) − bσ1)((λ + d)Γ(λ)S 0
2 fI(0) + Γ(λ)S 0

2gB(0)hI(0)).

It follows that

H1(λ)((λ + d)(λ + µ2 + c) − (λ + d)Γ(λ)S 0
2 fI(0) − Γ(λ)S 0

2gB(0)hI(0)) = 0,
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where H1(λ) = (λ + µ1 + σ1)(λ + µ2) − bσ1. Since µ1 + σ1 + µ2 > 0 and µ2(µ1 + σ1) − bσ1 > 0, then
H1(λ) consists of two roots which are negative real parts. Therefore, we only analyze the distribution
of the roots of the following equation:

H2(λ) = (λ + d)(λ + µ2 + c) − (λ + d)Γ(λ)S 0
2 fI(0) − Γ(λ)S 0

2gB(0)hI(0) = 0. (3.2)

Assume now that R0 > 1, then

H2(0) = d(µ2 + c) − dnS 0
2 fI(0) − nS 0

2gB(0)hI(0)) < 0, H2(+∞) = +∞.

Hence H2(λ) has at least one positive root in [0,+∞), then E0 is unstable if R0 > 1.
From (3.2), we have

(λ + d)(λ + µ2 + c) =Γ(λ)(λS 0
2 fI(0) + dS 0

2 fI(0) + S 0
2gB(0)hI(0))

=
(µ2 + c)F(λ)

n
(λR01 + dR0),

or

(λ + d)(
λ

µ2 + c
+ 1) =

R0F(λ)
n

(λ
R01

R0
+ d). (3.3)

Next, considering the case R0 ≤ 1. If λ = x + yi is a solution of (3.3), one shows that x < 0. Otherwise,
x ≥ 0 implies

|λ + d| >
∣∣∣∣∣λR01

R0
+ d

∣∣∣∣∣ , ∣∣∣∣∣ λ

µ2 + c
+ 1

∣∣∣∣∣ > 1,
∣∣∣∣∣R0F(λ)

n

∣∣∣∣∣ ≤ 1,

and thus ∣∣∣∣∣(λ + d)(
λ

µ2 + c
+ 1)

∣∣∣∣∣ > ∣∣∣∣∣R0F(λ)
n

(λ
R01

R0
+ d)

∣∣∣∣∣ ,
this is a contradiction to (3.3). Therefore, all roots of Eq (3.3) have no zero and positive real parts when
R0 ≤ 1, this shows that E0 is locally asymptotically stable. �

Theorem 3.1. Assume that conditions (H1) − (H3) are established. If R0 ≤ 1, the disease-free
equilibrium E0 = (S 0

1, S
0
2, 0, 0) of system (2.1) is globally asymptotically stable.

Proof. Since the functions f (I)
I , g(B)

B and h(I)
I are decreasing, then we have

nS 2 f (I)
(µ2 + c)I

≤ lim
I→0+

nS 0
2 f (I)

(µ2 + c)I
=

nS 0
2 fI(0)

µ2 + c
, b1,

S 2g(B)
dB

≤ lim
B→0+

S 0
2g(B)
dB

=
S 0

2gB(0)
d

, b2,

nh(I)
(µ2 + c)I

≤ lim
I→0+

nh(I)
(µ2 + c)I

=
nhI(0)
µ2 + c

.

Define

J =

(
1 0

−
nhI (0)
µ2+c 1

)
, (a1, a2) = (b1, b2)J−1.
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We find a1 = R0 and define a Lyapunov functional L as follows:

L(t) = L1(t) + L2(t) + L3(t),

where

L1 =R0(S 1 − S 0
1 − S 0

1 ln
S 1

S 0
1

+ S 2 − S 0
2 − S 0

2 ln
S 2

S 0
2

+ I) + a2B,

L2 =R0S 0
2

∫ h

0
Ψ(τ) f (I(t − τ))dτ,

L3 =a2

∫ h

0
Ψ(τ)h(I(t − τ))dτ,

and

Ψ(τ) =

∫ h

τ

ϕ(s)ds, ϕ(s) = ρ(s)e−(µ2+c)s.

Then the derivative of L1 along the positive solutions of system (2.1) is

dL1

dt
=R0(1 −

S 0
1

S 1
)
dS 1

dt
+ R0(1 −

S 0
2

S 2
)
dS 2

dt
+ R0

dI
dt

+ a2
dB
dt

=R0(2A + bS 0
2 + σ1S 0

1 − µ1S 1 − (µ2 − b)S 2 − S 0
1

A
S 1
− bS 0

1
S 2

S 1
− σ1S 0

2
S 1

S 2
)

+ R0(S 0
2g(B) + S 0

2

∫ h

0
ϕ(τ) f (I(t − τ))dτ − (µ2 + c)I)

+ a2(
∫ h

0
ϕ(τ)h(I(t − τ))dτ − dB).

(3.4)

Calculating the derivative of L2(t) along the solutions of system (2.1), one obtains

dL2

dt
=R0S 0

2

∫ h

0
Ψ(τ)

d f (I(t − τ))
dt

dτ

= − R0S 0
2

∫ h

0
Ψ(τ)

d f (I(t − τ))
dτ

dτ

= − R0S 0
2(Ψ(τ) f (I(t − τ)))|h0 + R0S 0

2

∫ h

0

dΨ(τ)
dτ

f (I(t − τ))dτ

=R0S 0
2n f (I(t)) − R0S 0

2

∫ h

0
ϕ(τ) f (I(t − τ))dτ.

(3.5)

Similar to the above-used method, it can obtain that

dL3

dt
= a2nh(I(t)) − a2

∫ h

0
ϕ(τ)h(I(t − τ))dτ. (3.6)
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Combining the Eqs (3.4), (3.5) and (3.6), it follows that
dL
dt

=
dL1

dt
+

dL2

dt
+

dL3

dt

=R0µ1S 0
1(2 −

S 1

S 0
1

−
S 0

1

S 1
) + R0bS 0

2(2 −
S 1S 0

2

S 0
1S 2
−

S 0
1S 2

S 1S 0
2

)

+ R0(µ2 − b)S 0
2(3 −

S 2

S 0
2

−
S 1S 0

2

S 0
1S 2
−

S 0
1

S 1
)

+ R0(
nS 0

2 f (I)
(µ2 + c)I

,
S 0

2g(B)
dB

)((µ2 + c)I, dB)T

− (R0, a2)
(

1 0
−

nh(I)
(µ2+c)I 1

)
((µ2 + c)I, dB)T

≤R0(
nS 0

2 fI(0)
(µ2 + c)

,
S 0

2gB(0)
d

)((µ2 + c)I, dB)T

− (R0, a2)
(

1 0
−

nhI (0)
µ2+c 1

)
((µ2 + c)I, dB)T

=(R0 − 1)(b1, b2)((µ2 + c)I, dB)T

≤0.

Similar to the analysis of Theorem 1 in the literature [32], it follows from Lemma 3.1 that the disease-
free equilibrium E0 is globally asymptotically stable by LaSalle’s Invariance Principle [33]. �

4. Stability of the endemic equilibrium

According to Lemma 3.1, the disease-free steady state solution E0 is unstable when R0 > 1. Using
Theorem 4.2 in [34], the uniform permanence of system (2.1) can be proven, the process is ignored
here. In this following section, by constructing a Lyapunov functional, the global stability of the
equilibrium of persistent infection is proved. We first analyze its local stability.

Lemma 4.1. Assume that conditions (H1) − (H3) are ture, If R0 > 1, the endemic equilibrium E∗ of
system (2.1) exists and is locally asymptotically stable.

Proof. For system (2.1), the characteristic equation at E∗ is∣∣∣∣∣∣∣∣∣∣∣∣∣
λ + µ1 + σ1 −b 0 0
−σ1 H3(λ) Γ(λ)S ∗2 fI(I∗) S ∗2gB(B∗)

0 −n f (I∗) − g(B∗) H4(λ) −S ∗2gB(B∗)
0 0 −Γ(λ)hI(I∗) λ + d

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where H3(λ) = λ + n f (I∗) + g(B∗) + µ2, H4(λ) = λ + µ2 + c − Γ(λ)S ∗2 fI(I∗). By simple calculation, one
obtains

(λ + d)(λ + µ2 + c)Φ1(λ)
=Φ2(λ)Γ(λ)((λ + d)S ∗2 fI(I∗) + hI(I∗)S ∗2gB(B∗))

=Φ2(λ)
Γ(λ)

n
Λn(λ

S ∗2 fI(I∗)
Λ

+ d),
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or

(λ + d)(
λ

µ2 + c
+ 1)Φ1(λ) = Φ2(λ)

Γ(λ)
n

Λn
µ2 + c

(λ
S ∗2 fI(I∗)

Λ
+ d), (4.1)

where

Φ1(λ) =(λ + µ1 + σ1)(λ + µ2 + n f (I∗) + g(B∗)) − bσ1,

Φ2(λ) =(λ + µ1 + σ1)(λ + µ2) − bσ1,

Λ =S ∗2 fI(I∗) +
1
d

S ∗2hI(I∗)gB(B∗)

Noting that from Lemma 1

Λn
µ2 + c

=
S ∗2 fI(I∗)n + 1

d S ∗2hI(I∗)gB(B∗)n
µ2 + c

≤
S ∗2( f (I∗)n

I∗ + n
d

h(I∗)
I∗

g(B∗)
B∗ )

µ2 + c

=
S ∗2( f (I∗)n + g(B∗))

I∗(µ2 + c)
=1.

Assume λ = x + yi is a solution of (4.1). If x ≥ 0, we then have

|λ + d| >

∣∣∣∣∣∣λS ∗2 fI(I∗)
Λ

+ d

∣∣∣∣∣∣ ,
∣∣∣∣∣ λ

µ2 + c
+ 1

∣∣∣∣∣ > 1,
∣∣∣∣∣F(λ)

n

∣∣∣∣∣ ≤ 1,

and

∣∣∣∣∣Φ1(λ)
Φ2(λ)

∣∣∣∣∣ =

∣∣∣∣∣ (λ + µ1 + σ1)(λ + µ2 + n f (I∗) + g(B∗)) − bσ1

(λ + µ1 + σ1)(λ + µ2) − bσ1

∣∣∣∣∣
=

∣∣∣∣∣∣∣λ + µ2 + n f (I∗) + g(B∗) − bσ1
λ+µ1+σ1

λ + µ2 −
bσ1

λ+µ1+σ1

∣∣∣∣∣∣∣
=

∣∣∣∣∣M1 + n f (I∗) + g(B∗) + M2i
M1 + M2i

∣∣∣∣∣
>1,

where M1 = x + µ2 −
bσ1(x+µ1+σ1)
(x+µ1+σ1)2+y2 > 0, M2 = y +

bσ1y
(x+µ1+σ1)2+y2 . So it concludes that∣∣∣∣∣(λ + d)(

λ

µ2 + c
+ 1)Φ1(λ)

∣∣∣∣∣ >
∣∣∣∣∣∣Φ2(λ)

F(λ)
n

Λn
µ2 + c

(λ
S ∗2 fI(I∗)

Λ
+ d)

∣∣∣∣∣∣ ,
which is a contradiction to (4.1). Therefore, the Eq (4.1) can not have any roots with a nonnegative
real part, this implies that E∗ is locally asymptotically stable if R0 > 1. �

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3111–3129.



3121

Theorem 4.1. Assume that conditions (H1) − (H3) hold. If R0 > 1, the endemic equilibrium E∗ =

(S ∗1, S
∗
2, I
∗, B∗) of system (2.1) is globally asymptotically stable.

Proof. Define

L1 =S 1 − S ∗1 − S ∗1 ln
S 1

S ∗1
+ S 2 − S ∗2 − S ∗2 ln

S 2

S ∗2

+ I − I∗ − I∗ ln
I
I∗

+
S ∗2g(B∗)
nh(I∗)

(B − B∗ − B∗ ln
B
B∗

).

Finding the time derivative of L1 along the positive solutions of system (2.1) gives

dL1

dt
=(1 −

S ∗1
S 1

)
dS 1

dt
+ (1 −

S ∗2
S 2

)
dS 2

dt
+ (1 −

I∗

I
)
dI
dt

+
S ∗2g(B∗)
nh(I∗)

(1 −
B∗

B
)
dB
dt

=2A + bS ∗2 + σ1S ∗1 − µ1S 1 − (µ2 − b)S 2 − S ∗1
A
S 1
− bS ∗1

S 2

S 1
− σ1S ∗2

S 1

S 2

+ S ∗2g(B) + S ∗2

∫ h

0
ϕ(τ) f (I(t − τ))dτ − (µ2 + c)I

−
I∗

I
S 2g(B) −

I∗

I
S 2

∫ h

0
ϕ(τ) f (I(t − τ))dτ

+
S ∗2g(B∗)
nh(I∗)

(
∫ h

0
ϕ(τ)h(I(t − τ))dτ − dB + dB∗)

−
S ∗2g(B∗)
nh(I∗)

B∗

B

∫ h

0
ϕ(τ)h(I(t − τ))dτ.

By the Eq (2.4), we get

dL1

dt
=µ1S ∗1(2 −

S 1

S ∗1
−

S ∗1
S 1

) + (µ2 − b)S ∗2(3 −
S 2

S ∗2
−

S 1S ∗2
S ∗1S 2

−
S ∗1
S 1

)

+ bS ∗2(2 −
S 1S ∗2
S ∗1S 2

−
S ∗1S 2

S 1S ∗2
) + nS ∗2 f (I∗)(3 −

S ∗1
S 1
−

S 1S ∗2
S 2S ∗1

−
I
I∗

)

+ S ∗2g(B∗)(3 +
g(B)
g(B∗)

−
S ∗1
S 1
−

S 1S ∗2
S 2S ∗1

−
I
I∗
−

S 2g(B)I∗

S ∗2g(B∗)I
)

+ S ∗2

∫ h

0
ϕ(τ) f (I(t − τ))dτ −

I∗

I
S 2

∫ h

0
ϕ(τ) f (I(t − τ))dτ

+ S ∗2g(B∗)(
h(I)
h(I∗)

−
B
B∗
−

B∗h(I)
Bh(I∗)

+ 1)

+
S ∗2g(B∗)
nh(I∗)

(
∫ h

0
ϕ(τ)h(I(t − τ))dτ − nh(I) +

B∗

B
nh(I))

−
S ∗2g(B∗)
nh(I∗)

B∗

B

∫ h

0
ϕ(τ)h(I(t − τ))dτ.

(4.2)
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Since the function ν(x) = 1 − x + ln x is nonpositive for x > 0 and ν(x) = 0 if and only if x = 1, so we
define

L2 = −S ∗2 f (I∗)
∫ h

0
Ψ(τ)ν(

f (I(t − τ))
f (I∗)

)dτ.

A direct calculation shows that

dL2

dt
= − S ∗2 f (I∗)

∫ h

0
Ψ(τ)

d
dt
ν(

f (I(t − τ))
f (I∗)

)dτ

=S ∗2 f (I∗)
∫ h

0
Ψ(τ)

d
dτ
ν(

f (I(t − τ))
f (I∗)

)dτ

=S ∗2 f (I∗)(Ψ(τ)ν(
f (I(t − τ))

f (I∗)
) |h0 +

∫ h

0
ϕ(τ)ν(

f (I(t − τ))
f (I∗)

)dτ)

= − S ∗2 f (I∗)
∫ h

0
ϕ(τ)ν(

f (I(t))
f (I∗)

)dτ + S ∗2 f (I∗)
∫ h

0
ϕ(τ)ν(

f (I(t − τ))
f (I∗)

)dτ

=S ∗2 f (I∗)
∫ h

0
ϕ(τ)(

f (I)
f (I∗)

−
f (I(t − τ))

f (I∗)
+ ln

f (I(t − τ))
f (I)

)dτ

=nS ∗2 f (I∗)
f (I)
f (I∗)

+ S ∗2 f (I∗)
∫ h

0
ϕ(τ)(−

f (I(t − τ))
f (I∗)

+ ln
f (I(t − τ))

f (I)
)dτ.

(4.3)

Define

L3 = −
S ∗2g(B∗)

n

∫ h

0
Ψ(τ)ν(

h(I(t − τ))
h(I∗)

)dτ.

Calculating the time derivative of L3(t), one obtains

dL3

dt
= −

S ∗2g(B∗)
n

∫ h

0
Ψ(τ)

d
dt
ν(

h(I(t − τ))
h(I∗)

)dτ

=
S ∗2g(B∗)

n

∫ h

0
Ψ(τ)

d
dτ
ν(

h(I(t − τ))
h(I∗)

)dτ

=
S ∗2g(B∗)

n

∫ h

0
ϕ(τ)(

h(I)
h(I∗)

−
h(I(t − τ))

h(I∗)
+ ln

h(I(t − τ))
h(I)

)dτ

=S ∗2g(B∗)
h(I)
h(I∗)

+
S ∗2g(B∗)

n

∫ h

0
ϕ(τ)(−

h(I(t − τ))
h(I∗)

+ ln
h(I(t − τ))

h(I)
)dτ.

(4.4)

For system (2.1), the following Lyapunov functional is considered:

L = L1 + L2 + L3.
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From (4.2), (4.3) and (4.4), we can get

dL
dt

=µ1S ∗1(2 −
S 1

S ∗1
−

S ∗1
S 1

) + (µ2 − b)S ∗2(3 −
S 2

S ∗2
−

S 1S ∗2
S ∗1S 2

−
S ∗1
S 1

)

+ bS ∗2(2 −
S 1S ∗2
S ∗1S 2

−
S ∗1S 2

S 1S ∗2
)

+ nS ∗2 f (I∗)(3 +
f (I)
f (I∗)

−
S ∗1
S 1
−

S 1S ∗2
S 2S ∗1

−
I
I∗
−

S 2 f (I)I∗

S ∗2 f (I∗)I
)

+ S ∗2g(B∗)(3 +
g(B)
g(B∗)

−
S ∗1
S 1
−

S 1S ∗2
S 2S ∗1

−
I
I∗
−

S 2g(B)I∗

S ∗2g(B∗)I
)

+ S ∗2g(B∗)(
h(I)
h(I∗)

−
B
B∗
−

B∗h(I)
Bh(I∗)

+ 1)

+ S ∗2 f (I∗)
∫ h

0
ϕ(τ)F (τ)dτ +

S ∗2g(B∗)
n

∫ h

0
ϕ(τ)H(τ)dτ,

(4.5)

where ∫ h

0
ϕ(τ)F (τ)dτ =

∫ h

0
ϕ(τ)(

S 2 f (I)I∗

S ∗2 f (I∗)I
−

S 2I∗ f (I(t − τ))
S ∗2 f (I∗)I

+ ln
f (I(t − τ))

f (I)
)dτ

=

∫ h

0
ϕ(τ)(ν(

S 2I∗ f (I(t − τ))
S ∗2 f (I∗)I

) − ν(
S 2 f (I)I∗

S ∗2 f (I∗)I
))dτ

=

∫ h

0
ϕ(τ)ν(

S 2I∗ f (I(t − τ))
S ∗2 f (I∗)I

)dτ − nν(
S 2 f (I)I∗

S ∗2 f (I∗)I
),

(4.6)

and

∫ h

0
ϕ(τ)H(τ)dτ =

∫ h

0
ϕ(τ)(

h(I)B∗

h(I∗)B
−

B∗h(I(t − τ))
h(I∗)B

+ ln
h(I(t − τ))

h(I)
)dτ

=

∫ h

0
ϕ(τ)ν(

B∗h(I(t − τ))
h(I∗)B

)dτ − nν(
h(I)B∗

h(I∗)B
).

(4.7)

it follows from (4.5), (4.6) and (4.7) that

dL
dt

=µ1S ∗1(2 −
S 1

S ∗1
−

S ∗1
S 1

) + (µ2 − b)S ∗2(3 −
S 2

S ∗2
−

S 1S ∗2
S ∗1S 2

−
S ∗1
S 1

)

+ bS ∗2(2 −
S 1S ∗2
S ∗1S 2

−
S ∗1S 2

S 1S ∗2
) + nS ∗2 f (I∗)(

f (I)
f (I∗)

− 1)(1 −
f (I∗)I
f (I)I∗

)

+ nS ∗2 f (I∗)(ν(
S ∗1
S 1

) + ν(
S 1S ∗2
S ∗1S 2

) + ν(
S 2 f (I)I∗

S ∗2 f (I∗)I
) + ν(

f (I∗)I
f (I)I∗

))

+ S ∗2g(B∗)((
g(B)
g(B∗)

− 1)(1 −
g(B∗)B
g(B)B∗

) + (
h(I)
h(I∗)

− 1)(1 −
h(I∗)I
h(I)I∗

))

+ S ∗2g(B∗)(ν(
S ∗1
S 1

) + ν(
S 1S ∗2
S ∗1S 2

) + ν(
S 2g(B)I∗

S ∗2g(B∗)I
) + ν(

g(B∗)B
g(B)B∗

))
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+ S ∗2g(B∗)(ν(
h(I)B∗

h(I∗)B
) + ν(

h(I∗)I
h(I)I∗

))

+ S ∗2 f (I∗)(
∫ h

0
ϕ(τ)ν(

S 2I∗ f (I(t − τ))
S ∗2 f (I∗)I

)dτ − nν(
S 2 f (I)I∗

S ∗2 f (I∗)I
))

+
S ∗2g(B∗)

n
(
∫ h

0
ϕ(τ)ν(

B∗h(I(t − τ))
h(I∗)B

)dτ − nν(
h(I)B∗

h(I∗)B
))

≤µ1S ∗1(2 −
S 1

S ∗1
−

S ∗1
S 1

) + (µ2 − b)S ∗2(3 −
S 2

S ∗2
−

S 1S ∗2
S ∗1S 2

−
S ∗1
S 1

)

+ bS ∗2(2 −
S 1S ∗2
S ∗1S 2

−
S ∗1S 2

S 1S ∗2
) + nS ∗2 f (I∗)(

f (I)
f (I∗)

− 1)(1 −
f (I∗)I
f (I)I∗

)

+ S ∗2g(B∗)((
g(B)
g(B∗)

− 1)(1 −
g(B∗)B
g(B)B∗

) + (
h(I)
h(I∗)

− 1)(1 −
h(I∗)I
h(I)I∗

))

By Lemma 2.1, it can conclude that

dL
dt

=
dL1

dt
+

dL2

dt
+

dL3

dt
≤ 0.

The equality dL
dt = 0 suggests that S ∗1

S 1
= 1, S 1S ∗2

S ∗1S 2
= 1, f (I)

f (I∗) = 1 and g(B)
g(B∗) = 1, it implies that E∗ is the

maximum invariant set of system (2.1) in the set { dL
dt = 0}. Using Lemma 4.1, the endemic steady state

E∗ is globally asymptotically stable. �

5. Numerical analysis

By choosing a specific kernel function and some infection functions, system (2.1) can be evolved
into different dynamic models with time delays. In this section, some such examples are used to further
illustrate theoretical results.

Example: Consider the kernel function ρ(τ) = δ(τ − τ0), where δ is the Dirac delta function. Then
system (2.1) can be rewritten as

dS 1
dt = A + bS 2 − µ1S 1 − σ1S 1,

dS 2
dt = σ1S 1 − αS 2B − βS 2 f (I(t − τ0))e−(µ2+c)τ0 − µ2S 2,

dI
dt = αS 2B + βS 2 f (I(t − τ0))e−(µ2+c)τ0 − (µ2 + c)I,
dB
dt = kI(t − τ0)e−(µ2+c)τ0 − dB.

(5.1)

Where A, b, µ1, µ2, σ1, α, β, c, k and d > 0, g(B) = αB and h(I) = kI. If f (I) = βI, it is easy to verify
that f (I), g(B) and h(I) satisfy the assumptions (H1) − (H3). Therefore, the basic reproduction number
of system (5.1) can be defined as

R0 =
βS 0

2e−(µ2+c)τ0

µ2 + c
+

kαS 0
2e−(µ2+c)τ0

d(µ2 + c)
.

In this case, if R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable and the endemic
equilibrium is also globally asymptotically stable if R0 > 1 (see Figures 1 and 2). As is shown in Figure
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Figure 1. The time series diagrams of system (5.1) illustrate the effect of the initial values. The values of the parameters
are A = 160, b = 0.04, σ1 = 0.2, µ1 = 0.01, β = 2.1 × 10−5, α = 8.158 × 10−6, µ2 = 0.05, τ0 = 1, k = 2, d = 4. Figure 1a
illustrates the time series diagrams when R0 = 0.6463 (c = 0.3); Figure 1b shows the time series diagrams when
R0 = 1(c = 0.2).

2, initial values and time delays can not change dynamic properties of system (2.1) when R0 is greater
than one or less than or equal to one. However, from Figure 2b, it is easy to find that time delay τ0 has
a significant impact on the positive equilibrium of system (5.1).

If f (I) = βI2 [28], then f (I) does not satisfy hypothesis (H2), that is, f (I)
I is a monotonically

increasing function. From Figure 3, it is easy to see that the system (5.1) appears periodic oscillation
behavior under certain conditions.

6. Discussions

In this article, a general S 1S 2IB dynamics model with distributed time delay for animal brucellosis
is formulated. Under the assumptions of general biological significance, the non-negative and
boundedness of the solution of system (2.1) is first proved. And then the global dynamics of the
steady-state solution of system (2.1) are analyzed by constructing Lyapunov functional, it is found
that the dynamic properties of equilibria depend on the basic reproduction number R0: If R0 ≤ 1,
animal brucellosis will eventually die out regardless of the initial value; and if R0 > 1, the spread of
animal brucellosis is persistent and it eventually reaches the endemic steady state. These results imply
that distributed time delay does not change the dynamic properties of system (2.1) when R0 is greater
than one or less than or equal to one. Finally, similar to numerical methods in [35, 36], the stability
results and other dynamic behaviors are further illustrated through numerical simulation, it turns out
that the system experiences periodic oscillations if the assumption (H2) is not satisfied. In other
words, the system (2.1) may exhibit more complex dynamic behaviors if the function f

I ,
g
B or h

I is
monotonically increasing. In these cases, the impact of distributed time delay on other dynamical
behaviors of system (2.1) is not completely clear, then we leave these for future work.
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Figure 2. The time series diagrams of system (5.1) illustrate the effect of the initial values and the latency delay τ0. The
values of the parameters are A = 160, b = 0.04, σ1 = 0.2, µ1 = 0.01, β = 2.1 × 10−5, α = 8.158 × 10−6, µ2 = 0.05, c = 0.1,
k = 2, d = 4. Figure 2a illustrates the time series diagrams when R0 = 1.8420 (τ0 = 1); Figure 2b shows the time series
diagrams when R0 = 1.8420(τ0 = 1), 1.5854(τ0 = 2) and 1.3646(τ0 = 3).
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Figure 3. The time series diagrams and phase diagrams of system (5.1) illustrate the effect of the incidence rate f (I) with
the initial value (2000, 5000, 2000, 10). The values of the parameters are A = 330, b = 0.04, σ1 = 0.2,
µ1 = 0.01, β = 1 × 10−9, α = 8.158 × 10−6, µ2 = 0.05, c = 0.02, k = 2, d = 4, τ0 = 1.
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