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Abstract: To explore the impact of the periodic evolution in habitats on the prevention and control of
the infectious disease, we consider a diffusive SIS epidemic model in a heterogeneous and periodically
evolving domain. By assuming that the evolving domain is uniform and isotropic, the epidemic model
in a evolving domain is converted to the reaction diffusion problem in a fixed domain. The basic
reproduction number, which depends on the evolving rate of the domain and spatial heterogeneity, is
defined. The driving mechanism of the model is obtained by using the principal eigenvalue and the
upper and lower solutions method, and a biological explanation of the impact of regional evolution
on disease is given. Our theoretical results and numerical simulations show that small evolving rate
benefits the control of the infectious disease.
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1. Introduction

It has been recognized that environmental heterogeneity and individual motility are significant fac-
tors that can affect the dynamics of infectious diseases. To investigate the roles of diffusion and spatial
heterogeneity on disease dynamics, Allen et al. [1] proposed a frequency-dependent SIS reaction dif-
fusion model  S t − dS ∆S = −

β(x)S I
S +I + γ(x)I, x ∈ Ω, t > 0,

It − dI∆I =
β(x)S I

S +I − γ(x)I, x ∈ Ω, t > 0,
(1.1)

where S (x, t) and I(x, t) denote the numbers of susceptible and infected individuals at location x and
time t, respectively. dS and dI are the diffusion rates of the susceptible and infected individuals. β(x)
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and γ(x) are positive bounded Hölder continuous functions on Ω that represent the spatially dependent
rates of contact transmission and disease recovery at x, respectively. They obtained the explicit formula
of the basic reproduction number R0 and characterized whether or not the domain is high (low) risk.
They also showed that in high-risk domains (R0 > 1) the disease-free equilibrium is always unstable,
and there is a unique endemic equilibrium, while in low-risk domains (R0 < 1), the disease-free equi-
librium is stable if and only if the infected individuals have mobility above a threshold value (see [1]
for more details). Recently, Li etc. [16] considered a SIS epidemic reaction-diffusion model governed
by a mass action infection mechanism and linear birth-death growth. They studied the stability of the
disease-free equilibrium, uniform persistence property in terms of the basic reproduction number and
investigated the asymptotic profile of endemic equilibria in a heterogeneous environment when the
movement rate of the susceptible and infected populations is small. Their results showed that factors
such as infection mechanism, variation of total population, and population movement play vital but
subtle roles in the transmission dynamics of diseases.

Considering an environment with the hostile boundary for the survival of population, such as ex-
tremely cold or hot temperature, the lack of resource, and so on, Huang, Han and Liu [12] modified
the model (1.1) under the null Dirichlet boundary condition,

S̄ t − dS ∆S̄ = −β(x) f (S̄ , Ī)Ī + γ(x)Ī + Λ(x), x ∈ Ω, t > 0,

Īt − dI∆Ī = β(x) f (S̄ , Ī)Ī − γ(x)Ī, x ∈ Ω, t > 0,

S̄ (x, t) = Ī(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.2)

where f (S̄ , Ī) = S̄
S̄ +Ī , β(x), γ(x) and Λ(x) is positive and continuous on Ω and ∂Ω is C2 smooth. They

showed that the disease dies out when R0 < 1 and persists if R0 > 1.
When ecological phenomena are described by mathematical models, reaction diffusion systems

are usually considered and the domains involved are fixed. However, the changing of domain plays
a significance role in the survival of species and the transmission of disease, related problems attract
much attention. One of them is the problem with free boundary, which is caused by behaviors of species
themselves. In [8], Du and Lin proposed the logistic reaction diffusion model, and gave an spreading-
vanishing dichotomy, that is, the population either successfully expends to the entire new environment,
or eventually becomes extinct, see also some recent work ( [10, 14, 15, 23–25, 29]) for the spreading
of species and ( [9, 17]) for the transmission of disease. Another problem with regional change is that
with evolving domain ( [2–6,13]), which is possibly caused by environment and climate. For example,
according to monitoring meteorological satellites, Poyang lake in China covered an area of 1407 square
kilometers on October 22, 2013, compared with 2022 square kilometers on August 7, its water area
in summer is significantly larger than that in winter, the same is true of Dongting lake in China. In
addition, in a biological context, the movement of cells is typically modelled as a diffusion-like process.
For example, in the urodele amphibian axolotl [19] the pronephric duct extends caudally from the level
of somite 7 to the cloaca. This is controlled by migratory cells at the advancing tip of the duct. Over
the approximately 20 h this takes to complete, the length of the path in which duct-tip migration takes
place increases from about 0.9 to 1.4 mm (lengths estimated from [19]). For infectious diseases, there
are similar phenomenons. For example, lakes which habitat infected fishes are periodically evolving.
The area infected with Japanese encephalitis (JE) is also periodically evolving. In fact, JE is an acute
infectious disease caused by JE virus and transmitted by mosquitoes. Culex is the major vector of JE,
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and its survival, development and reproduction are influenced heavily by temperature and precipitation.
JE virus in mosquitoes lost ability of infection under a temperature below 20oC. In winter temperatures
are low and mosquitoes are inactive, there is less JE infection. When warm days come, the area infected
with JE expands gradually.

As in [2, 22], let Ω(t) ⊂ Rn be a simply connected bounded shifting domain at time t ≥ 0 with its
changing boundary ∂Ω(t). What calls for special attention is that we considered x ∈ Ω(t) ⊂ Rn with
n ≤ 2 in this paper. For n = 1, the evolving interval [0, x(t)] can be regarded as a simplified form
of a lake, 0 represents the top of the water column and x(t) is the average depth of the lake, see [11].
Certainly, a lake is actually 3-dimensional and its water area Ω(t) ⊂ R3. For n = 2, the evolving domain
Ω(t) can be used to describe the area infected with Japanese encephalitis and the temperature of the
area is above 20oC. For any point

x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Ω(t),

we assume that S̄ (x(t), t) and Ī(x(t), t) are the density of susceptible and infected species at position
x(t) and time t ≥ 0. By Reynolds transport theorem ( [21]), we have

∂S̄
∂t + ∇S̄ · a + S̄ (∇ · a) = d∆S̄ + f1(S̄ , Ī, t) in Ω(t),
∂Ī
∂t + ∇Ī · a + Ī(∇ · a) = d∆Ī + f2(S̄ , Ī, t) in Ω(t),

(1.3)

where f1(S̄ , Ī, t) = −β(x) f (S̄ , Ī)Ī + γ(x)Ī + Λ(x), f2(S̄ , Ī, t) = β(x) f (S̄ , Ī)Ī − γ(x)Ī and a = ẋ(t), ∇S̄ · a
and ∇Ī · a are called advection terms while (∇ · a)S̄ and (∇ · a)Ī are called dilution terms. In order to
circumvent the difficulty induced by the evolving domain, we have to modify equations in (1.3). Let
y1, y2, . . . , yn be fixed cartesian coordinates in a fixed domain Ω(0) such that

x1(t) = x̂1(y1, y2, . . . , yn, t),

x2(t) = x̂2(y1, y2, . . . , yn, t),

. . .

xn(t) = x̂n(y1, y2, . . . , yn, t).

Then (S̄ , Ī) is mapped into the new vector (S , I) defined as

S̄ (x1(t), x2(t), . . . , xn(t), t) = S (y1, y2, . . . , yn, t),

Ī(x1(t), x2(t), . . . , xn(t), t) = I(y1, y2, . . . , yn, t).
(1.4)

Thus equations (1.3) can be translated to another form which are defined on the fixed domain Ω(0)
with respect to y = (y1, y2, . . . , yn). However, the new equations are still very complicated. To further
simplify the model equations (1.3), we assume that domain evolution is uniform and isotropic. That
is, the evolution of the domain takes place at the same proportion in all directions as time elapses.
Mathematically, x(t) = (x1(t), x2(t), . . . , xn(t)) can be described as follows:

(x1(t), x2(t), . . . , xn(t)) = ρ(t)(y1, y2, . . . , yn), y ∈ Ω(0), (1.5)
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where the positive continuous function ρ(t) is called evolving rate subject to ρ(0) = 1. Furthermore,
if ρ(t) = ρ(t + T ) for some T > 0, the domain is periodically evolving, which has been discussed
in [13, 20]. If ρ̇(t) ≥ 0, the domain is then called growing one ( [21, 22]), and if ρ̇(t) ≤ 0, the domain is
shrinking, see ( [27]) and references therein. Using (1.5) yields

S t = S̄ t + ∇S̄ · a, It = Īt + ∇Ī · a,

a = ẋ(t) = ρ̇(t)(y1, y2, . . . , yn) =
ρ̇(t)
ρ(t)

(x1, x2, . . . , xn),

∇ · a =
nρ̇(t)
ρ(t)

, ∆S̄ =
1

ρ2(t)
∆S , ∆Ī =

1
ρ2(t)

∆I.

Then (1.3) becomes

S t =
dS

ρ2(t)
∆S −

nρ̇(t)
ρ(t)

S + f1(S , I, t), y ∈ Ω(0), t > 0,

It =
dI

ρ2(t)
∆I −

nρ̇(t)
ρ(t)

I + f2(S , I, t), y ∈ Ω(0), t > 0.
(1.6)

Now we transform the SIS epidemic model on the periodically evolving domain Ω(t) into the fol-
lowing problem in a fixed domain Ω(0):

S t −
dS
ρ2(t)∆S = −β(ρ(t)y) f (S , I)I + γ(ρ(t)y)I + Λ(ρ(t)y) − nρ̇(t)

ρ(t) S , y ∈ Ω(0), t > 0,

It −
dI
ρ2(t)∆I = β(ρ(t)y) f (S , I)I − γ(ρ(t)y)I − nρ̇(t)

ρ(t) I, y ∈ Ω(0), t > 0,

S (y, t) = I(y, t) = 0, y ∈ ∂Ω(0), t > 0,

(1.7)

with the initial condition

S (y, 0) = S 0(y) > 0, I(y, 0) = I0(y) ≥ 0, I0(y) . 0, y ∈ Ω(0), (1.8)

for later application, we also consider problem (1.7) with the periodic condition

S (y, 0) = S (y,T ), I(y, 0) = I(y,T ), y ∈ Ω(0), (1.9)

where f (S , I) is monotonically decreasing with respect to I and increasing with respect to S and
lim
I→0

f (S , I) = 1, see for example, f (S , I) = S
S +I for the standard incidence rate β(x)S I

S +I in [12].
The remaining work is organized as follows. In Section 2, we focus on the existence and uniqueness

of disease-free equilibrium (DFE). We define the basic reproduction number and analyze the stability
of DFE in Section 3. The paper ends with some simulations and epidemiological explanations for our
analytical findings.

2. The existence and uniqueness of DFE

We first present the existence and uniqueness of the disease-free equilibrium (S ∗(y, t), 0). When
I = 0, (1.7), (1.9) becomes the following problem

S t −
dS
ρ2(t)∆S = Λ(ρ(t)y) − nρ̇(t)

ρ(t) S , y ∈ Ω(0), t > 0.

S (y, t) = 0, y ∈ ∂Ω(0), t > 0.

S (y, 0) = S (y,T ), y ∈ Ω(0).

(2.1)
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Let u(y, t) = en ln ρ(t)S (y, t), then problem (2.1) turns to
ut −

dS
ρ2(t)∆u = en ln ρ(t)Λ(ρ(t)y), y ∈ Ω(0), t > 0.

u(y, t) = 0, y ∈ ∂Ω(0), t > 0.

u(y, 0) = u(y,T ), y ∈ Ω(0).

(2.2)

In order to find the positive solution of problem (2.2), we define the upper solution u = MW(y) and the
lower solution u = εW(y), where W(y) satisfies the following equations −∆W = 1, y ∈ Ω.

W(y) = 0, y ∈ ∂Ω.
(2.3)

Since en ln ρ(t)Λ(ρ(t)y) is bounded function, then we can choose sufficiently large M and small ε such
that

dS

ρ2(t)
M ≥ en ln ρ(t)Λ(ρ(t)y),

dS

ρ2(t)
ε ≤ en ln ρ(t)Λ(ρ(t)y) for y ∈ Ω(0), t ∈ [0,T ],

which implies

ut −
dS

ρ2(t)
∆u ≥ en ln ρ(t)Λ(ρ(t)y), ut −

dS

ρ2(t)
∆u ≤ en ln ρ(t)Λ(ρ(t)y),

we easily see that u and u are the ordered upper and lower solution of problem (2.2). As a result,
we conclude that there exists an u∗(y, t) ∈ [u, u] satisfying problem (2.2). So problem (2.1) admits a
positive solution S ∗(y, t).

To illustrate the uniqueness of the solution, let S 1 and S 2 be two solutions. Set

Λ = {h ∈ [0, 1], hS 1 ≤ S 2 in Ω(0) × [0,T ]}.

Clearly Λ contains a neighbourhood of 0. We claim that 1 ∈ Λ. Suppose not, then

h0 = sup Λ < 1.

Therefore
(S 2 − h0S 1)t − ∆(S 2 − h0S 1) = f (S 2, t) − h0 f (S 1, t).

Recalling that f (S , t) + K∗S = Λ(ρ(t)y) + (K∗− nρ̇(t)
ρ(t) )S is increasing on [0, max S 2] for K∗ = n max

[0,T ]

ρ̇(t)
ρ(t) .

Then
(S 2 − h0S 1)t − ∆(S 2 − h0S 1) + K∗(S 2 − h0S 1)

= f (S 2, t) − h0 f (S 1, t) + K∗S 2 − h0K∗S 1

≥ f (h0S 1, t) − h0 f (S 1, t) ≥ 0

for y ∈ Ω(0), t > 0. On the other hand, for y ∈ ∂Ω(0), t > 0, S 2(y, t) − h0S 1(y, t) = 0. Using the strong
maximum principle we have assertions as follows.

(i) S 2 − h0S 1 ≥ 0(. 0), using the strong maximum principle gives S 2 − h0S 1 > 0 in Ω(0) × [0,T ]
with ∂

∂S (S 2−h0S 1) < 0 on ∂Ω(0)× [0,T ]. Then, clearly there is some ε > 0 such that S 2−h0S 1 ≥ εS 1.
Thus h0 + ε ∈ Λ, which contradicts the maximality of h0.

(ii) S 2 − h0S 1 ≡ 0 in Ω(0) × [0,T ]. This case is also impossible since we would have the equation
f (S 2, t) = h0 f (S 1, t), but f (S 2, t) = f (h0S 1, t) > h0 f (S 1, t).

Therefore, problem (2.1) admits only a positive periodic solution.
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3. The basic reproduction number

First, we define the basic reproduction number (R0), and investigate its properties and implications
for the reaction-diffusion system (1.7). Usually, the basic reproduction number is used as threshold
for the transmission mechanism of the disease. Biologically, R0 is the expected number of secondary
infections due to an infected individual over its infection period [7]. We know that for epidemic mod-
els described by spatially-independent systems, R0 can be obtained by the second generation matrix
method [26].

First, a routine computation gives rise to the corresponding linearized system of problem (1.7) about
the disease free equilibrium (S ∗(y, t), 0), wt − D(t)∆w = A(t)w − B(t)w, y ∈ Ω(0), t > 0,

w(y, t) = 0, y ∈ ∂Ω(0), t > 0,
(3.1)

with the same periodic condition (1.9), where

w =

(
u
v

)
, D(t) =

 dS
ρ2(t) 0
0 dI

ρ2(t)

 ,
A(t) =

(
0 γ(ρ(t)y)
0 β(ρ(t)y)

)
, B(t) =

 nρ̇(t)
ρ(t) β(ρ(t)y)
0 γ(ρ(t)y) +

nρ̇(t)
ρ(t)

 .
Let V(t, s) be the evolution operator of the problem wt − D(t)∆w = −B(t)w, y ∈ Ω(0), t > 0,

w(y, t) = 0, y ∈ ∂Ω(0), t > 0,
(3.2)

By the standard semigroup theory, it is easily seen that there exist positive constants K and c0 such that

‖V(t, s)‖ ≤ Ke−c0(t−s), ∀t ≥ s, t, s ∈ R.

Let CT be the ordered Banach space consisting of all T− periodic and continuous function from R
to C(Ω(0),R) with the maximum norm ‖ · ‖ and the positive cone C+

T := {ξ ∈ CT : ξ(t)y ≥ 0,∀ t ∈
R, y ∈ Ω(0)}. The notation ξ(y, t) := ξ(t)y will be adopted for any given ξ ∈ CT . After supposing that
η = (ξ, ζ) ∈ CT × CT is the density distribution of w at the spatial locaton y ∈ Ω(0) and time s, we
introduce the linear operator as in [28], which may be called as the next infection operator

L(η)(t) :=
∫ ∞

0
V(t, t − s)A(·, t − s)η(·, t − s)ds.

It is easily seen that L is positive, continuous and compact on CT × CT . We define the spectral radius
of L

R0 = r(L)

as the basic reproduction number for periodic system (1.7),(1.9). Besides, we have the following
results.
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Lemma 3.1. (i) R0 = µ0, where µ0 is the principle eigenvalue of the following periodic-parabolic
eigenvalue problem

ϕt −
dS
ρ2(t)∆ϕ = −β(ρ(t)y)φ +

γ(ρ(t)y)
µ

φ − nρ̇(t)
ρ(t) ϕ, y ∈ Ω(0), t > 0.

φt −
dI
ρ2(t)∆φ =

β(ρ(t)y)
µ

φ − γ(ρ(t)y)φ − nρ̇(t)
ρ(t) φ, y ∈ Ω(0), t > 0.

ϕ(y, t) = φ(y, t) = 0, y ∈ ∂Ω(0), t > 0.

ϕ(y, 0) = ϕ(y,T ), φ(y, 0) = φ(y,T ), y ∈ Ω(0).

(3.3)

(ii) sign(1 − R0) = signλ0, where λ0 is the principal eigenvalue of the following reaction-diffusion
problem 

ϕt −
dS
ρ2(t)∆ϕ = −β(ρ(t)y)φ + γ(ρ(t)y)φ − nρ̇(t)

ρ(t) ϕ + λϕ, y ∈ Ω(0), t > 0.

φt −
dI
ρ2(t)∆φ = β(ρ(t)y)φ − γ(ρ(t)y)φ − nρ̇(t)

ρ(t) φ + λφ, y ∈ Ω(0), t > 0.

ϕ(y, t) = φ(y, t) = 0, y ∈ ∂Ω(0), t > 0.

ϕ(y, 0) = ϕ(y,T ), φ(y, 0) = φ(y,T ), y ∈ Ω(0).

(3.4)

Particularly, assume that the coefficients in problem (1.7) are all positive constant, that is β(ρ(t)y) ≡
β∗ and γ(ρ(t)y) ≡ γ∗, then

R0 =

∫ T

0
β∗dt∫ T

0
( dI
ρ2(t)λ

∗ + γ∗)dt
, (3.5)

where λ∗ is the principal eigenvalue of the following problem

 −∆ψ = λ∗ψ, y ∈ Ω(0),

ψ = 0, y ∈ ∂Ω(0).
(3.6)

It is easy to see that R0 is decreasing with respect to ρ−2 (:= 1
T

∫ T

0
1

ρ2(t)dt).

Theorem 3.2. The following statements are valid:
(i) If R0 < 1, then the disease-free equilibrium (S ∗(y, t), 0) is globally asymptotically stable for

system (1.7), (1.8), that is to say, for any nonnegative solutions to problem (1.7),(1.8), we can deduce
that lim

t→∞
I(y, t) = 0 for y ∈ Ω(0) and lim

m→+∞
S (y, t + mT ) = S ∗(y, t) for (y, t) ∈ Ω(0) × [0,T ].

(ii) If R0 > 1, then there exists ε0 > 0 such that any positive solution of system (1.7),(1.8) satisfies
lim sup

t→∞
‖(S (y, t), I(y, t)) − (S ∗(y, t), 0)‖ ≥ ε0.

Proof: (i) It follows from Lemma 3.1 that problem (3.3) admits an eigen-pair (R0;ϕ, φ) such that
ψ(y, t), φ(y, t) > 0 for (y, t) ∈ Ω(0)×[0,T ]. Letting Ī(y, t) = Me−λtφ(y, t),where 0 < λ ≤ β(ρ(t)y)( 1

R0
−1)
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for (y, t) ∈ Ω(0) × [0,T ]. Recalling that 0 ≤ f (S , I) ≤ 1, we then have

Īt −
dI
ρ2(t)∆Ī − β(ρ(t)y) f (S , Ī)Ī + γ(ρ(t)y)Ī +

nρ̇(t)
ρ(t) Ī,

≥ Īt −
dI
ρ2(t)∆Ī − β(ρ(t)y)Ī + γ(ρ(t)y)Ī +

nρ̇(t)
ρ(t) Ī,

= Me−λtφt − λMe−λtφ − Me−λt dI
ρ2(t)∆φ − β(ρ(t)y)Me−λtφ

+γ(ρ(t)y)Me−λtφ +
nρ̇(t)
ρ(t) Me−λtφ,

= Ī{−λ +
β(ρ(t)y)
R0
− β(ρ(t)y)},

≥ 0,

therefore Ī is the upper solution of the following problem
It −

dI
ρ2(t)∆I = β(ρ(t)y) f (S , I)I − γ(ρ(t)y)I − nρ̇(t)

ρ(t) I, y ∈ Ω(0), t > 0,

I(y, t) = 0, y ∈ ∂Ω(0), t > 0,

I(y, 0) = I0(y) ≥ 0, I0(y) . 0, y ∈ Ω(0)

(3.7)

if M is large enough. Since lim
t→+∞

Ī(y, t) = 0, then lim
t→+∞

I(y, t) = 0 uniformly for y ∈ Ω(0).

The above limit implies that for any ε > 0, there exists Tε > 0 such that 0 ≤ I(y, t) ≤ ε for y ∈ Ω(0)
and t > Tε, we then have

−M∗ε + Λ(ρ(t)y) −
nρ̇(t)
ρ(t)

S ≤ S t −
dS

ρ2(t)
∆S ≤ M∗ε + Λ(ρ(t)y) −

nρ̇(t)
ρ(t)

S ,

where M∗ = max
(y,t)∈Ω(0)×[0,T ]

{β(ρ(t)y) + γ(ρ(t)y)}. Assume that S ε and S
ε

are solutions of the following

problems 
S t −

dS
ρ2(t)∆S = M∗ε + Λ(ρ(t)y) − nρ̇(t)

ρ(t) S , y ∈ Ω(0), t > 0,

S (y, t) = 0, y ∈ ∂Ω(0), t > 0,

S (y, 0) = S 0(y) > 0, y ∈ Ω(0),

(3.8)

and 
S t −

dS
ρ2(t)∆S = −M∗ε + Λ(ρ(t)y) − nρ̇(t)

ρ(t) S , y ∈ Ω(0), t > 0,

S (y, t) = 0, y ∈ ∂Ω(0), t > 0,

S (y, 0) = S 0(y) > 0, y ∈ Ω(0).

(3.9)

We can deduce that S ε and S
ε

are the upper and lower solution of problem (1.7), (1.8), respectively.
So the solution (S (y, t), I(y, t)) of problem (1.7), (1.8) satisfies S

ε
≤ S (y, t) ≤ S ε in Ω(0)× [0,+∞). Let

S
(m)
ε and S (m)

ε
be the maximal and minimal sequences obtained from the following problem with initial
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iterations S
(0)
ε = S ε and S (0)

ε
= S

ε
,

(S
(m)
ε )t −

dS
ρ2(t)∆S

(m)
ε + K1S

(m)
ε = g1(S

(m−1)
ε ), y ∈ Ω(0), t > 0,

(S (m)
ε

)t −
dS
ρ2(t)∆S (m)

ε
+ K2S (m)

ε
= g2(S (m−1)

ε
), y ∈ Ω(0), t > 0,

S
(m)
ε (y, t) = S (m)

ε
(y, t) = 0, y ∈ ∂Ω(0), t > 0,

S
(m)
ε (y, 0) = S

(m−1)
ε (y,T ), S (m)

ε
(y, 0) = S (m−1)

ε
(y,T ), y ∈ Ω(0),

(3.10)

where m = 1, 2, · · · and

g1(S ) = M∗ε + Λ(ρ(t)y) −
nρ̇(t)
ρ(t)

S + K1S , K1 = sup
t∈[0,+∞]

{
nρ̇(t)
ρ(t)
},

g2(S ) = −M∗ε + Λ(ρ(t)y) −
nρ̇(t)
ρ(t)

S + K2S , K2 = K1 + M∗.

According to Lemma 3.1 in [18], it follows that the sequences S
(m)
ε and S (m)

ε
admit the monotone

property
S
ε
≤ S (m−1)

ε
≤ S (m)

ε
≤ S

(m)
ε ≤ S

(m−1)
ε ≤ S ε

and the limits exist,
lim

m→∞
S

(m)
ε = S

∗

ε, lim
m→∞

S (m)
ε

= S ∗
ε
,

which means that
S
ε
≤ S (m−1)

ε
≤ S (m)

ε
≤ S ∗

ε
≤ S

∗

ε ≤ S
(m)
ε ≤ S

(m−1)
ε ≤ S ε.

Recalling that
S
ε
(y, t) ≤ S (y, t) ≤ S ε(y, t) in Ω(0) × [0,+∞) (3.11)

and letting S m(y, t) = S (y, t + mT ) yields

S
ε
(y, t + T ) ≤ S 1(y, t) ≤ S ε(y, t + T ) in Ω(0) × [0,+∞).

Considering the system (1.7) with the initial condition S 0(y) = S 1(y, 0), since by the initial condition
in (3.10) for m = 1,

S
(1)
ε (y, 0) = S

(0)
ε (y,T ) = S ε(y,T )

and
S (1)
ε

(y, 0) = S (0)
ε

(y,T ) = S
ε
(y,T ),

we see that
S (1)
ε

(y, 0) ≤ S 1(y, 0) ≤ S
(1)
ε (y, 0) in Ω(0),

and using comparison principle gives that

S (1)
ε

(y, t) ≤ S 1(y, t) ≤ S
(1)
ε (y, t) in Ω(0) × [0,+∞).

Assume, by induction, that

S (m−1)
ε

(y, t) ≤ S m−1(y, t) ≤ S
(m−1)
ε (y, t) in Ω(0) × [0,+∞).
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we can deduce by the comparison principle that

S (m)
ε

(y, t) ≤ S m(y, t) ≤ S
(m)
ε (y, t) in Ω(0) × [0,+∞).

and therefore, for (y, t) ∈ Ω(0) × [0,+∞),

lim inf
m→∞

S (m)
ε

(y, t) ≤ lim inf
m→∞

S m(y, t) ≤ lim sup
m→∞

S m(y, t) ≤ lim sup
m→∞

S
(m)
ε (y, t).

On the other hand, for (y, t) ∈ Ω(0) × [0,+∞),

lim
m→∞

S (m)
ε

(y, t) = S ∗
ε
(y, t) and lim

m→∞
S

(m)
ε (y, t) = S

∗

ε(y, t),

where S ∗
ε
(y, t) satisfies

S t −
dS
ρ2(t)∆S = −M∗ε + Λ(ρ(t)y) − nρ̇(t)

ρ(t) S , y ∈ Ω(0), t > 0.

S (y, t) = 0, y ∈ ∂Ω(0), t > 0.

S (y, 0) = S (y,T ), y ∈ Ω(0)

(3.12)

and S
∗

ε(y, t) satisfies
S t −

dS
ρ2(t)∆S = M∗ε + Λ(ρ(t)y) − nρ̇(t)

ρ(t) S , y ∈ Ω(0), t > 0.

S (y, t) = 0, y ∈ ∂Ω(0), t > 0.

S (y, 0) = S (y,T ), y ∈ Ω(0).

(3.13)

Due to the uniqueness of the solution to problem (2.1), we have

lim
ε→0+

S
∗

ε(y, t) = lim
ε→0+

S ∗
ε
(y, t) = S ∗(y, t)

and then
lim

m→∞
S (y, t + mT ) = S ∗(y, t) for Ω(0) × [0,+∞).

(ii) Since lim
I→0

f (S , I) = 1, take δ0 = 1
2 (1 − 1

R0
) > 0, there exists ε0 > 0 such that

1 − δ0 ≤ f (S , I) ≤ 1

if 0 ≤ I(y, t) ≤ ε0.
Assume, for the sake of contradiction, that there exists a positive solution (S , I) of problem (1.7),

(1.8) such that
lim sup

t→∞
‖(S (y, t), I(y, t)) − (S ∗(y, t), 0)‖ < ε0/2. (3.14)

For the above given ε0, there exists Tε0 such that

0 ≤ I(y, t) ≤ ε0 for (y, t) ∈ Ω(0) × [Tε0 ,∞).
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Then we have
It −

dI
ρ2(t)∆I = β(ρ(t)y) f (S , I)I − γ(ρ(t)y)I − nρ̇(t)

ρ(t) I,

≥ β(ρ(t)y)(1 − δ0)I − γ(ρ(t)y)I − nρ̇(t)
ρ(t) I

(3.15)

for y ∈ Ω(0), t ≥ Tε0 . We now choose a sufficiently small number η > 0 such that

I(y,Tε0) ≥ ηφ(y,Tε0), (3.16)

where φ(y, t) > 0 for (y, t) ∈ Ω(0) × [0,T ] satisfies (3.3) with R0 > 1. Set 0 < λ0 ≤
1
2 (1 − 1

R0
)β(ρ(t)y),

and direct calculations show that, I(y, t) = ηeλ0tφ(y, t) satisfies
It −

dI
ρ2(t)∆I ≤ β(ρ(t)y)(1 − δ0)I − γ(ρ(t)y)I − nρ̇(t)

ρ(t) I, y ∈ Ω(0), t ≥ Tε0 ,

I(y, t) = 0, y ∈ ∂Ω(0), t ≥ Tε0 ,

I(y,Tε0) ≤ I(y,Tε0), y ∈ Ω(0).

(3.17)

It follows from (3.15) and the comparison principle that

I(y, t) ≥ I(y, t) = ηeλ0tφ(y, t) for y ∈ Ω(0), t ≥ Tε0 ,

therefore, I(y, t)→ ∞ as t → ∞, which contradicts (3.14). This proves statement (ii).

4. Simulation and discussion

In this section, we first carry out numerical simulations for problem (1.7), (1.8) to illustrate the
theoretical results by using Matlab. Let us fix some coefficients. Assume that

dS = 0.05, dI = 0.02, γ∗ = 0.1, Λ = 2.0, f (S , I) = S
S +I , Ω(0) = (0, 1),

S 0(y) = 1.3 sin(πy) + 0.5 sin(5πy),
I0(y) = 1.2 sin(πy) + 0.5 sin(3πy) + 0.6 sin(5πy)

and subsequently λ∗ = π2, then the asymptotic behaviors of the solution to problem are shown by
choosing different ρ(t) and β∗.

Example 1. Fix β∗1 = 0.27. We first choose ρ1(t) ≡ 1, which means that the habitat is fixed. Direct
calculations show that

R0(ρ1) =
β∗1

( dI
ρ2

1
λ∗ + γ∗)

=
0.27

(0.02π2 + 0.1)
≈ 0.9079 < 1.

It is easily seen from Figure 1 that the infected individual I decays to zero.
Now we choose ρ2(t) = e0.1(1−cos(4t)), it follows from (3.5) that

ρ−2
2 =

2
π

∫ π
2

0
e0.2(cos(4t)−1)dt ≈ 0.8269

Mathematical Biosciences and Engineering Volume 16, Issue 4, 3094–3110.



3105

and

R0(ρ2) =

∫ π
2

0
β∗1dt∫ π

2

0
( dI
ρ2

2(t)λ
∗ + γ∗)dt

=
β∗1

(dIλ∗ρ
−2
2 + γ∗)

≈ 1.0257 > 1.

It is easily seen from Figure 2 that I stabilizes to a positive periodic steady state.
One can see from the example that the infected individual vanishes in a fixed domain, but persist in

a periodically evolving domain.
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Figure 1. β∗1 = 0.27 and ρ1(t) ≡ 1. The domain is fixed and R0 < 1. Graphs (a) − (c) showed
that infected individual I decays to 0. Graphs (b) and (c) are the cross-sectional view and
contour map respectively.

Example 2. Fix β∗2 = 0.3. We first choose ρ3(t) ≡ 1 and consider the corresponding problem in the
fixed domain. Calculations show that

R0(ρ3) =
β∗2

( dI
ρ2

3
λ∗ + γ∗)

=
0.3

(0.02π2 + 0.1)
≈ 1.0087 > 1.

It is easily seen from Figure 3 that I stabilizes to a positive periodic steady state.
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(a)
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Figure 2. β∗1 = 0.27 and ρ2(t) = e0.1(1−cos(4t)). The domain is evolving with a larger evolution
rate ρ2(t) and R0 > 1. Graphs (a) show that infected individual I stabilized to a positive
periodic steady state. Graphs (b) and (c), which are the cross-sectional view and contour
map respectively, present the periodic evolution of the domain.

If we choose ρ4(t) = e−0.2(1−cos(4t)), it follows from (3.5) that

ρ−2
4 =

2
π

∫ π
2

0
e0.4(1−cos(4t))dt ≈ 1.5521

and

R0(ρ4) =

∫ π
2

0
β∗2dt∫ π

2

0
( dI
ρ2

2(t)λ
∗ + γ∗)dt

=
β∗2

(dIλ∗ρ
−2
4 + γ∗)

≈ 0.7382 < 1.

It is easily seen from Figure 4 that I decays to zero and the infected individual vanishes eventually.
Results in the example imply that the infected individual spreads in a fixed domain, but vanishes in

a periodically evolving domain.

Shifting of habitat for species or expending of infected domain for disease plays considerable bi-
ological significance, related problems have been attracting much attention. To explore the impact of
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Figure 3. β∗2 = 0.3 and ρ3(t) ≡ 1. The domain is fixed and R0 > 1. Graphs (a) − (c) showed
that infected individual I tends to a positive periodic steady state. Graphs (b) and (c) are the
cross-sectional view and contour map respectively.

the periodic evolution in habitats on the prevention and control of the infectious disease, we study a
SIS reaction-diffusion model with periodical and isotropic domain evolution.

We first transform the SIS epidemic model with periodical evolving domain into a reaction-diffusion
system on a fixed domain with time-dependent diffusion term, and then introduce the spatial-temporal
risk index R0(ρ) by using the next infection operator. R0(ρ) depends on the domain evolution rate ρ(t)
and its average value ρ−2 := 1

T

∫ T

0
1

ρ2(t)dt plays an important role, see the explicit formula (3.5). It is
proved in Theorem 3.2 that If R0 < 1, the disease-free equilibrium (S ∗(y, t), 0) is globally asymptoti-
cally stable for system (1.7), (1.8), while for R0 > 1, there exists ε0 > 0 such that any positive solution
of system (1.7),(1.8) satisfies lim sup

t→∞
‖(S (y, t), I(y, t)) − (S ∗(y, t), 0)‖ ≥ ε0, which means the disease-

free equilibrium (S ∗(y, t), 0) is unsatble. Moreover, our numerical simulations show that the periodical
domain evolution with large evolution rate has a negative effect on the control of the disease (see Fig-
ures 1 and 2), and that with small evolution rate has a positive effect on the control of the disease (see
Figures 3 and 4). However, mathematically, we can not derive the property of the endemic equilibrium
at present, which deserves further study.
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Figure 4. β∗2 = 0.3 and ρ4(t) = e−0.2(1−cos(4t)). The domain is evolving with a smaller evolution
rate ρ4(t) and R0 < 1. Graphs (a) show that infected individual I decays to zero. Graphs (b)
and (c), which are the cross-sectional view and contour map respectively, present the periodic
evolution of the domain.
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