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Abstract: We consider a model of host-symbiont interactions, in which symbionts can only live in
association with their host and are transmitted both vertically from associated hosts to their offspring
and horizontally from associated hosts to nearby unassociated hosts. The effect of the symbiont is
modelled by a change in the birth rate of associated hosts. We analyze the two-dimensional dynamics
in the resulting four-dimensional parameter space, and determine the qualitative behaviour for all pa-
rameter values. We find that for all but one choice of parameter values, solutions in the feasible region,
apart from a 0- or 1-dimensional set of initial conditions, tend either to a unique equilibrium, or to one
of two distinct equilibria. Moreover, the bistable case occurs only when the symbiont is a mutualist
whose horizontal spread rate through the host population exceeds the positive change in the birth rate
of associated hosts.
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1. Introduction

Symbiosis is an important aspect of ecology [1]. In fact, an entire journal, titled Symbiosis, is
devoted to the study of symbiotic interactions at all levels ranging from the molecular to the organismic.
The precise meaning assigned to the term symbiosis may vary depending on context; a fairly general
definition, given in [2], is a close physical association between different species, regardless of whether
that association is harmful, beneficial or neutral to any of the species involved.

In many cases of interest, the symbiosis is between a host, and one or more types of symbiont living
within the host, often in large numbers. Two examples, both relating to humans, are infectious diseases
[3, 4] and gut microbe interactions [5]. A harmful symbiont is a pathogen, while a beneficial symbiont
is a mutualist. Previous mathematical studies have focused on studying either the pathogen case [6] or
the mutualist case [7, 8], however it would be useful to understand, from a unified perspective, how the
nature of the host-symbiont relationship affects the range of observed interactions.

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019151


3048

To this end, we study a simple two-variable model of host-symbiont interactions with four pa-
rameters (described in the next section) that includes both horizontal and vertical transmission of the
symbiont, and naturally incorporates both the pathogen and mutualist cases, as well as the intermediate
neutral (neither harmful nor beneficial) case, modelled by the symbiont’s effect on the host birth rate.
As well, we assume recovery is possible; that is, it is possible for the symbiont within a host to die
without killing the host. For simplicity, we assume perfect vertical transmission of the symbiont, and
distinguish only presence or absence of the symbiont within the host, tracking the population density
of both unassociated hosts (those without the symbiont) and associated hosts. A generalization to
imperfect vertical transmission is also easily implemented, though we have not considered it here.

A special case of our model appears in [9], in which the authors discuss how it is possible, with a
mixture of horizontal and vertical transmission, for a pathogen to successfully invade and persist within
a host population, and they also give precise conditions for the pathogen to reach full occupation. In
their model, only the pathogen case is considered, and recovery from the symbiont does not occur. In
addition, the concern is with existence of certain equilibria and so a full description of the dynamics is
not given. However, they also consider the case of imperfect transmission which is not covered here.
From a different perspective, a model of mutualism [7], which is similar though not identical to this
model, shows a qualitatively similar nullcline structure in some cases that leads to bistability; interest-
ingly, this similarity is only observed after a change of variables is made in our model, from associated
and unassociated host density to total host density and proportion of hosts that are associated.

For our model we are able to obtain a complete description of the dynamics for all values of the
four parameters. In all but a single case, every trajectory tends to one of at most three distinct equi-
libria, ruling out sustained oscillations and reducing the study of the model to the characterization of
equilibria. In turn, the number and location of equilibria is closely related to two factors:

• the effect of the symbiont upon the host (pathogen, mutualist or neutral), and
• which of the two is larger: the difference in the birth rate of associated vs. unassociated hosts

(which is positive only for mutualists), and the horizontal rate of spread of the symbiont through
the host population.

The second quantity is shown to be relevant only after making the above-mentioned change of
variables. One way to view it is by how the symbiont allocates resources: is it focused on increasing
the host’s rate of birth and thus vertical transmission, or is it focused on spreading immediately to
existing hosts via horizontal transmission?

An important finding for this model is that bistability (between host-symbiont coexistence and either
host extinction or host survival only) can only occur when the symbiont is a mutualist that is more
focused on horizontal transmission than on improving host birth rate (i.e. when the second quantity
above is positive), and that in the absence of bistability, all solutions with a positive density of both
host and symbiont tend to a unique equilibrium. Moreover, in the absence of bistability the set of
qualitative behaviours displayed by the system is insensitive as to whether the symbiont is a pathogen
or a mutualist, except in the difference in host density between the host-without-symbiont equilibrium
vs. the host-symbiont coexistence equilibrium, when both exist.

The original motivation for making a detailed study of this model was to obtain complementary
results for a study of the corresponding stochastic spatial model [10]. When working on that paper, a
preliminary analysis of the differential equations yielded partial but artifically restrictive results. The
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reason for this restriction was revealed only after making the change of variables mentioned above,
from associated vs. unassociated host density to total host density vs. proportion of hosts that are
associated, which made evident the occurrence of bistability, which previously we had thought was
not possible. Thus one conclusion of this analysis is that the (biological) perspective of host-symbiont
interactions as being a “stacked” system, in which hosts have their own birth-death dynamics, while
symbionts within the host population have a similar birth-death dynamics taking place over the host
population, is also a useful perspective when analyzing the dynamical system. It is worth noting that
the stacked perspective is also used in [11] and indeed in our paper [10], where it assists in the analysis
of the stochastic spatial model by suggesting comparisons with simpler models.

2. Model derivation and main result

For simplicity, we ignore environmental transmission of the symbiont, and distinguish only presence
or absence of the symbiont within the host. Unassociated hosts reproduce at some rate, and all hosts
die at some rate which is normalized to 1. Associated hosts can infect unassociated hosts, and can also
recover and become unassociated. Moreover, associated hosts reproduce at some possibly different rate
from associated hosts. We assume, again for simplicity, perfect vertical transmission of the symbiont,
so that offspring of associated parents are always associated. The symbiont is identified as pathogen,
mutualist, or neutral by its effect on the host’s birth rate.

To derive the differential equations that we study, we begin with a set of N sites each of which can be
either empty, occupied by an unassociated host, or occupied by an associated host. Each unassociated
host attempts to give birth to an unassociated host onto a site chosen uniformly at random at rate
λ10, being successful if that site is empty. Similarly, each associated host attempts to give birth to an
associated host at rate λ20. Each host dies at rate 1, while each associated host becomes an unassociated
host at rate δ. Each associated host attempts to transmit the symbiont to a randomly chosen site at rate
λ21, being successful if the recipient is an unassociated host. Let U (N)

0 (t),U (N)
1 (t),U (N)

2 (t) denote the
number of empty sites, unassociated hosts and associated hosts, respectively. Since

∑2
i=0 U (N)

i (t) = N,
we find that (U (N)

1 (t),U (N)
2 (t)) is a Markov chain with the following transitions.

(U1,U2)→ (U1,U2) +



(1, 0) at rate λ10U0U1/N

(−1, 0) at rate U1

(0, 1) at rate λ20U0U2/N

(0,−1) at rate U2

(−1, 1) at rate λ21U1U2/N

(1,−1) at rate δU2

If we rescale to proportions u(N)
i (t) = U (N)

i (t)/N, then a result of Kurtz [12] implies that as N → ∞, on
any bounded time interval, sample paths of (u(N)

1 (t), u(N)
2 (t)) converge in probability to solutions of the

following pair of equations, which we take as our object of study:

u′1 = λ10 u0u1 − u1 + δu2 − λ21 u1u2

u′2 = λ20 u0u2 − u2 − δu2 + λ21 u1u2.
(2.1)
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We note of course that the asymptotic behaviour of these equations is, in general, not the same as
the above stochastic process. That said, for such models the connections often run deeper than just
finite-time convergence; see for example the work of [13].

As it turns out, it is more productive to study the total proportion of hosts: x1 = u1 + u2 and the
proportion of hosts that are associated: x2 = u2/x1. Letting λa = λ20 − λ10 and λb = −λa + λ21, after a
bit of algebra we obtain the system

x′1 = G1(x1, x2) = x1((λ10 + λax2)(1 − x1) − 1)
x′2 = G2(x1, x2) = x2((λa + λbx1)(1 − x2) − δ).

(2.2)

The coordinate change u → x is singular at x1 = 0 but note the inverse u1 = x1(1 − x2), u2 = x1x2

is smooth and onto. Thus, every solution of (2.1) is the image of a solution of (2.2), so to understand
(2.1) it is enough to study (2.2). In terms of the original description, the host population survives if
lim inft→∞ x1(t) > 0 and the symbiont survives if lim inft→∞ x2(t) > 0. The symbiont takes over if
limt→∞ x2(t) = 1. It should be clear that takeover is only possible if δ = 0, and even then only if further
conditions are satisfied.

From the form of (2.2) it should be clear that (x1, x2) is a more natural choice of variables than
(u1, u2), since the right-hand sides in (2.2) both factor nicely into density dependent form, with a good
deal of symmetry between the two equations. This form is the previously mentioned “stacked” per-
spective, wherein the total host density, and the prevalence of the symbiont within the host population,
are thought to be the best descriptors of the population demographics. The sign of λa separates the
pathogen, neutral and mutualist cases by λa < 0,= 0, > 0 respectively. The sign of λb determines
whether or not a higher host density is beneficial to the spread of the symbiont, measured by the pro-
portion of hosts that are associated – since it depends on λ21, we say the symbiont is weakly infectious
if λb < 0, neutrally infectious if λb = 0 and strongly infectious if λb > 0. Distinguishing various cases
according to the sign of λa and λb is crucial to making a complete analysis.

We first identify the regions of interest. Define the feasible region Λ = [0, 1]2 and let

Λ+ =

(0, 1] × (0, 1) = {(x1, x2) ∈ Λ : x1 > 0, 0 < x2 < 1} if δ = 0,
(0, 1]2 = {(x1, x2) ∈ Λ : x1, x2 > 0} if δ > 0.

In addition, let
p0 = (0, 0),
p1 = (a1, 0) = (1 − 1/λ10, 0),
p2 = (a2, 1) = (1 − 1/λ20, 1) and
p3 = (0, a3) = (0, 1 − δ/λa).

Except for some corner cases, these are the only candidates for equilibria on the boundary of Λ.
Define λM = max(λ10, λ20) which is an upper bound on the host birth rate. Also define the conditions

(AinvU) : λ20(1 − a1) + λ21a1 > 1 + δ and
(UinvA) : λ10(1 − a2) − λ21a2 > 1.

(AinvU) stands for “associated invades unassociated”, and is relevant iff λ10 > 1, in which case it
corresponds to parameter values for which a small introduction of associated hosts in a stable popu-
lation of unassociated hosts leads to an increase in the proportion of associated hosts. Equivalently,
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G2(p1 + εe2) > 0 for small ε > 0, where e2 = (0, 1). (UinvA) is analogous, and is relevant iff λ20 > 1
and δ = 0.
The following is the main result of this article. Since the classification is somewhat lengthy we begin
with a brief summary. There are four main cases: (E),(UH),(AH),(C), and two exceptional cases:
(RS) and (B). In every case except for redundant symbiont (RS), every trajectory in Λ+, the interior of
the feasible region, tends to one of at most three equilibria, and tends to a unique equilibrium when
bistability (B) does not occur. When (RS) and (B) do not occur, the system settles into one of the
following four states:

• extinction of both host and symbiont (E),
• survival of host and extinction of symbiont (UH),
• survival of host and complete adoption of the symbiont (AH), which is only possible if δ = 0, and
• survival of host, with stable coexistence of associated and unassociated hosts (C).

Case (RS) is defined precisely as λ10 = λ20 > 1, δ = λ21 = 0 and would otherwise correspond to (UH).
Case (B) is defined later, under section heading Subcase 5b, in terms of intersections of the nullclines.
It falls strictly within the range of parameter values satisfying λa > 0 and λb > 0, that is a strongly
infectious, mutualist symbiont, and would otherwise correspond to either (E) or (UH).

Theorem 2.1. The following six cases include all parameter values.
We begin with two exceptional cases.

1. Redundant symbiont (RS). Suppose λ10 = λ20 > 1 and δ = λa = λ21 = 0, which would otherwise
correspond to (UH). For all x ∈ Λ+, limt→∞ φ1(t, x) = a1 and t 7→ φ2(t, x) is constant.

2. Bistability (B). This occurs for a non-empty set of parameter values satisfying min(λa, λb) > 0,
δ > 0, that would otherwise correspond to (E) if λ10 ≤ 1, or to (UH) if λ10 > 1. Moreover, the set
of values (δ, λ21) that gives (B) is non-empty iff λ20 > max(1, λ2

10).

There are three subcases: onset (OB), marginal (MB) and non-marginal (NB) bistability. (NB) is
an open, contractible set of parameter values and (OB), (MB) are piecewise smooth and on the
boundary of (NB). In each subcase there is an interior equilibrium x̄ ∈ Λ+ satisfying max(0, a1) <
x̄1 < a2.

i) Onset of bistability (OB). limt→∞ φ(t, x) = x̄ for x ∈ Λ+.

ii) Marginal bistability (MB). There is a set U ⊂ Λ+, open in Λ+ and not containing x̄, such that

limt→∞ φ(t, x) = (max(0, a1), 0) for x ∈ U, and
limt→∞ φ(t, x) = x̄ for x ∈ Λ+ \ U.

iii) Non-marginal bistability (NB). There are x̄ ∈ U2, ȳ ∈ Λ \ (U1 ∪ U2), with max(0, a1) < ȳ1 <

x̄1 < a2 and max(0, a3) < ȳ2 < x̄2 < 1, and disjoint sets U1,U2 ⊂ Λ+ both open in Λ+, with
Λ+ \ (U1 ∪ U2) the stable manifold of ȳ, such that

limt→∞ φ(t, x) = (max(0, a1), 0) for x ∈ U1,

limt→∞ φ(t, x) = x̄ for x ∈ U2, and
limt→∞ φ(t, x) = ȳ for x ∈ Λ+ \ (U1 ∪ U2).
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Figure 1. Diagram indicating for which values of λ10, λ20 there exist δ, λ21 such that (B) (on
the left) or (E),(C), (UH) and (AH) (on the right) can occur.

Suppose (RS) and (B) do not hold. Then, there exists x̄ ∈ Λ such that limt→∞ φ(t, x) = x̄ for all x ∈ Λ+.
Assuming (RS) and (B) do not hold, four cases are possible.

1. Extinction. (E) x̄ = (0,max(0, a3)), if λ10 ≤ 1 and λ20 ≤ 1 + δ.

2. Survival and coexistence of associated and unassociated host. (C)

max(0,min(a1, a2)) < x̄1 < max(a1, a2) and
max(0, a3) < x̄2 < 1, if

(a) δ > 0 and either
i. λ10 ≤ 1 and λ20 > 1 + δ, or

ii. λ10 > 1 and (AinvU) holds, or
(b) δ = 0 and either

i. λ10 ≤ 1, λ20 > 1 and (UinvA) holds,
ii. λ10 > 1, λ20 ≤ 1 and (AinvU) holds, or

iii. min(λ10, λ20) > 1, (AinvU) holds and (UinvA) holds.

3. Survival of unassociated host only. (UH) x̄ = p1 if λ10 > 1 and (AinvU) does not hold.

4. Survival of associated host only. (AH) x̄ = p2 if δ = 0, λ20 > 1 and (UinvA) does not hold.

It is worth noting the behaviour under (OB) is the same as in (C). The reason why we do not include
it in (C) is because it occurs for parameter values that would otherwise satisfy either (E) or (UH).

In Figure 2 we show streamlines together with nullclines in a few different cases.

Theorem 2.1 gives a complete picture of the dynamics, with the possible objections that

• the exact parameter ranges for (OB),(MB), and (NB) are not specified, and
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Figure 2. Streamlines in the (x1, x2) plane for λ10 = 0.5, λ20 = 4, λ21 = 12 and δ = 2, 4 and
6 from left to right, corresponding to coexistence, bistability subcase (NB) and extinction,
respectively. x1 nullcline in blue, x2 nullcline in red.

• a precise formula for interior equilibria is not given.

In the case of (MB) and interior equilibria this is because they are determined by intersection con-
ditions between curved nullclines on the interior of Λ. Despite this, in Subcase 5b we give a fairly nice
formula for (OB), which leads to the iff condition λ20 > max(1, λ2

10) for the possibility of bistability
given in Theorem 2.1. We also give a satisfying characterization of the values of (δ, λ21) such that (NB)
occurs.

Before moving onto the proof we unpack somewhat the result of Theorem 2.1, tying it to the original
motivation. We begin with (B) since it is the most unusual case. Ignoring (OB) and (MB) since they are
boundary cases, when (NB) occurs there are two stable equilibria; the first gives either extinction of the
host (if λ10 ≤ 1) or survival without symbiont (if λ10 > 1), while the second is a coexistence equilibrium
at a higher host density. The case λ10 ≤ 1 is obligate mutualism, as for example with termites and their
protozoa [14], since neither the host nor the symbiont can survive without the other; this has been
previously observed mathematically in, for example, [15]. The case λ10 > 1 is facultative mutualism,
whereby the host is able to survive without the symbiont, but still benefits from its introduction. We
note that, in order for (B) to occur, not only must the symbiont be a mutualist, but because of the
condition λ20 > max(1, λ2

10), the benefit it imparts must be sufficiently high, and quite significant if
λ10 is fairly large. On the other hand, since λb = −λ21 + λa, its tendency λ21 to spread through the
host population must also exceed the benefit λa = λ20 − λ10 that it imparts to the host birth rate.
Thus bistability can only occur when we have a very helpful, yet selfish mutualist in the sense that
the significant benefit it provides is still exceeded by its rate of spread through the host population.
The latter trait can also be viewed as a strategy for survival which is more focused on horizontal
transmission than on vertical transmission.

When we have either a pathogen (λa < 0), or a mutualist that does more to aid host survival than
to spread itself through the host population (λb < 0), (B) does not occur. In this case there is a
single equilibrium attracting all solutions in the interior of the feasible region, which is determined
by the location of boundary equilibria (survival of unassociated hosts or associated hosts, in isolation)
together with the invasion conditions (AinvU) or (UinvA), and whether or not the recovery rate is
zero. In particular, it is straightforward to determine whether we have host extinction (E), survival of
unassociated host only (UH), coexistence (C), or survival of associated host only (AH), so we leave
it to the reader to inspect each case. This description, of course, bears the exception of the trivial
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case (RS) that essentially corresponds to two equally viable species that don’t interact except in their
competition for space.

The remainder of the paper is organized as follows. In Section 3 we recall some basic theory of
plane systems of differential equations. In Section 4 we take care of the dynamics on Λ \ Λ+, which
consists of invariant lines on the boundary of the feasible region. In Section 5 we study the dynamics
on the interior of Λ, in several steps. We first study special parameter values where (2.2) separates
into a simpler form. We then determine boundary equilibria and their stability. Next we study the
nullclines, and move on to study the itinerary of trajectories on regions delineated by the nullclines.
We then give a sufficient condition to rule out periodic orbits, homoclinic orbits and heteroclinic cycles,
using Dulac’s criterion. At this point, we have the tools to study the dynamics in the remaining cases
where (2.2) does not assume a simple form, and we complete the proof.

3. Background and definitions

We first recall some basic theory that can be found in [16], specialized to the present context. Let
F ∈ C1(R2,R2). Corresponding to F there exists a C1 function φ : S → R2 called the flow, defined on
an open S ⊂ R × R2 containing {0} × R2 and satisfying

φ(0, x) = x and ∂tφ(t, x) = F(φ(t, x)) for (t, x) ∈ S .

In particular, for fixed x, t 7→ φ(t, x) solves the initial value problem

y′ = F(y), y(0) = x

in an open time interval around 0. Letting τ+(x) = sup{t : (t, x) ∈ S } and τ−(x) = inf{t : (t, x) ∈ S }, if
we require that for every x ∈ R2,

1. τ−(x) = −∞ or limt↓τ−(x) ‖φ(t, x)‖ = ∞ and that
2. τ+(x) = ∞ or limt↑τ+(x) ‖φ(t, x)‖ = ∞,

then φ exists and is the unique function with the stated properties. In particular, for every x ∈ R2 the
above initial value problem has a unique solution forward and backward in time, to either ±t = ∞ or
until it diverges. Given x ∈ R2, the corresponding trajectory Γ is defined as

Γ(x) = {φ(t, x) : τ−(x) < t < τ+(x)},

and the sets {Γ(x) : x ∈ R2} form a partition of R2 into trajectories. We are also interested in the positive
semi-trajectory

Γ+(x) = {φ(t, x) : 0 ≤ t < τ+(x)}.

We say that a set E ⊂ R2 is invariant if x ∈ E implies Γ(x) ⊂ E, and forward invariant if x ∈ E implies
Γ+(x) ⊂ E. If E is both bounded and forward invariant, the above implies τ+(x) = ∞ for every x ∈ E.
In this case we are interested in the omega-limit set of points x ∈ E, defined by

ω(x) = {y : y = lim
n→∞

φ(tn, x) for some sequence (tn) with lim
n→∞

tn = ∞}

and contained in the closure of E. Omega-limit sets are known to be closed, connected, invariant, and
made up of trajectories, which can be of a few types, including the following. An equilibrium point
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is a point x such that F(x) = 0. A periodic orbit is the positive semi-trajectory of a point x satisfying
φ(T, x) = x for some T > 0, and a separatrix cycle is the union of finitely many equilibrium points
p1, . . . , pm for some m ≥ 1 and trajectories Γ(xi), i = 1, . . . ,m satisfying

limt→∞ φ(−t, xi) = pi for i = 1, . . . ,m,
limt→∞ φ(t, xi) = pi+1 for i = 1, . . . ,m − 1 and

limt→∞ φ(t, xm) = p1.

(3.1)

A separatrix cycle with m = 1 is a homoclinic orbit, and with m > 1 is a heteroclinic cycle. It should
be clear from the definition that if ω(x) is a single point, then limt→∞ φ(t, x) = ω(x).

4. Preliminary analysis

We return to (2.2) and begin by studying the dynamics on invariant boundary lines.

Dynamics on Λ \ Λ+. Let L1 = {x2 = 0}, L2 = {x1 = 0} and L3 = {x2 = 1}, so that

Λ+ =

Λ \ (L1 ∪ L2) if δ > 0
Λ \ (L1 ∪ L2 ∪ L3) if δ = 0.

The lines L1, L2 are invariant, as is L3 if δ = 0. On L1 the equilibria are p0 and p1. Since G1 =

x1(λ10(1 − x1) − 1) if x2 = 0, the segment {0 < x1 ≤ 1, x2 = 0} is forward invariant and for x in that
segment,

lim
t→∞

φ(t, x) = (max(0, a1), 0).

On L2 the equilibria are p0 and p3. Since G2 = x2(λa(1 − x2) − δ) if x1 = 0, the segment {x1 = 0, 0 <
x2 ≤ 1} is forward invariant and for x in that segment,

lim
t→∞

φ(t, x) = (0,max(0, a3)).

On L3, G2 = −δx2, so if δ = 0 that line is invariant and the equilibria are p3 and p2. Since G1 =

x1(λ20(1 − x1) − 1) if x2 = 1, the segment {0 < x1 ≤ 1, x2 = 1} is forward invariant and for x in that
segment,

lim
t→∞

φ(t, x) = (max(0, a2), 1).

Forward invariance of Λ,Λ+. Note that on the line {x1 = 1}, G1 = −1 < 0, and if δ > 0 then G2 < 0
on {x1 > 0, x2 = 1}. Therefore Λ is forward invariant. This is because every side of [0, 1]2 is either
invariant, or else is such that for x on that side, φ(t, x) ∈ (0, 1)2 for small enough t > 0, which means
that trajectories cannot exit [0, 1]2 along any of its four sides. The same is true if we remove any
number of invariant lines from Λ. In particular, Λ+ is also forward invariant.

5. Dynamics on Λ+

Next we determine ω(x) for x ∈ Λ+, proving Theorem 2.1. By forward invariance
ω(x) ⊂ Cl(Λ+) = Λ, where Cl denotes the closure. The analysis is broken up into five broad
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cases. In each situation we point out which case in Theorem 2.1 ((RS), (OB), (MB), (NB), (E), (C),
(UH), (AH)) applies.

Case 1 – low host birth rate: λM = max{λ10, λ20} ≤ 1 (E). If x ∈ Λ then G1 ≤ x1(λM(1 − x1) − 1).
So, λM ≤ 1 implies G1 ≤ −x2

1 and limt→∞ φ1(t, x) = 0.

Case 2 – neutral symbiont: λM > 1, λa = 0. In this case λ10 = λ20 > 1 and λb = λ21, so

G1 = x1(λ10(1 − x1) − 1) and G2 = x2(λ21x1(1 − x2) − δ).

Since λ10, λ20 > 1, a1, a2 > 0. Moreover if x ∈ Λ then limt→∞ φ1(t, x) = a1. Since λ10 = λ20, we have
λ20(1 − a1) = λ10(1 − a2) = 1, so (AinvU)⇔ λ21a1 > δ and (UinvA)⇔ λ21a2 > 0⇔ λ21 > 0.

If δ = λ21 = 0 (RS) then G2 = 0, so t 7→ φ2(t, x) is constant.
If δ = 0 and λ21 > 0 (AH) then G2 > 0 for x1 > 0 and 0 < x2 < 1, so limt→∞ φ2(t, x) = 1 for x ∈ Λ+.
If δ > 0 and λ21 = 0 (UH) then G2 < 0 for x2 > 0, so limt→∞ φ2(t, x) = 0 for x ∈ Λ+.
If δ, λ21 > 0, then using the limiting value of φ1 we find that

lim
t→∞

φ2(t, x) = x̄2 = max(0, 1 −
δ

λ21a1
) for x ∈ Λ+.

If λ21a1 ≤ δ (UH) then x̄2 = 0 and if λ21a1 > δ (C) then 0 < x̄2 < 1.

Case 3 – neutrally infectious symbiont: λM > 1, λa , 0, λb = 0. In this case λ10 , λ20 and
λ10 = λ20 − λ21. This forces λ20 > λ10 so that λa > 0 and λ21 > 0. Multiplying on both sides by λ10,

(AinvU) ⇔ λ20 + λ21(λ10 − 1) > (1 + δ)λ10 ⇔ λ21λ10 > δλ10

which is⇔ λ10 > 0 and λ21 > δ. Multiplying on both sides by λ20,

(UinvA) ⇔ λ10 − λ21(λ20 − 1) > λ20 ⇔ −λ21λ20 > 0,

so (UinvA) does not hold. We find

G1 = x1((λ10 + λax2)(1 − x1) − 1) and G2 = x2(λa(1 − x2) − δ),

so
lim
t→∞

φ2(t, x) = x̄2 = max(0, 1 − δ/λa) for x ∈ Λ+.

Then,
if δ = 0 then x̄2 = 1, (AH)
if 0 < δ < λa then 0 < x̄2 < 1 (C) or (E)

and if δ ≥ λa then x̄2 = 0 (UH) or (E).

Plugging x̄2 into the equation for G1 we find

lim
t→∞

φ1(t, x) = max(0, 1 − 1/(λ10 + λa x̄2)) for x ∈ Λ+.
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In particular, φ1 → 0 exactly on the condition λ10 + λa x̄2 ≤ 1, which

if δ = 0 is λ20 ≤ 1 thus empty,
if 0 < δ < λa is λ20 ≤ 1 + δ (E)

and if δ ≥ λa is λ10 ≤ 1 (E).

This concludes the easy cases. To treat cases with λa, λb , 0, more effort is required. We will start
by studying equilibria on the boundary of Λ+, then nullclines on Λ+, then itineraries on Λ+. Then, we
will be ready to consider the remaining cases.

Equilibria on L. Let L = L1 ∪ L2 if δ > 0 and L = L1 ∪ L2 ∪ L3 if δ = 0, so that Λ+ = Λ \ L.
Since λa, λb , 0, p0, p1, p2, p3 are the possible equilibria (eq) on L. Letting a1 = 1 − 1/λ10, a2 =

1 − 1/λ20, a3 = 1 − δ/λa,

1. p0 = (0, 0) ∈ L1 ∩ L2 is always an eq in Λ.
2. p1 = (a1, 0) ∈ L1 is an eq in Λ \ {p0} if λ10 > 1.
3. p3 = (0, a3) ∈ L2 is an eq in Λ \ {p0} if δ < λa, and if δ = 0 then p3 = (0, 1) ∈ L2 ∩ L3.
4. p2 = (a2, 1) ∈ L3 is an eq in Λ \ {p3} if δ = 0 and λ20 > 1.

To assess stability we compute the Jacobian matrix J(x) = (∂ jGi(x))i j.

J(x) =

(
(λ10 + λax2)(1 − 2x1) − 1 λax1(1 − x1)

λbx2(1 − x2) (λa + λbx1)(1 − 2x2) − δ

)
.

If x ∈ L then at least one of x1, x2 is equal to 0 or 1, and J(x) is triangular, so its eigenvalues are equal
to its diagonal entries. Straightforward computation shows that

1. J(p0) has eigenvalues λ10 − 1 and λa − δ,
2. J(p1) has eigenvalues 1 − λ10 and J22(p1),
3. J(p2) has eigenvalues 1 − λ20 and J22(p2) if δ = 0, and
4. J(p3) has eigenvalues λ20 − (1 + δ) and δ − λa.

Since λb = −λa + λ21, λa = λ20 − λ10, λ10(1 − a1) = 1 and 1 − a1 = 1/λ10,

J22(p1) = λa + λba1 − δ = λa(1 − a1) + λ21a1 − δ

= λ20(1 − a1) + λ21a1 − (1 + δ)
= λ20/λ10 + λ21(1 − 1/λ10) − (1 + δ),

and if δ = 0 then since −λa = λ10 − λ20 and λ20(1 − a2) = 1,

J22(p2) = −λa − λba2 = −λa(1 − a2) − λ21a2

= λ10(1 − a2) − λ21a2 − 1
= λ10/λ20 − λ21(1 − 1/λ20) − 1.

Using these calculations and the fact that G2(x + εe2) = εG2(x) + o(ε),

i) J22(p1) > 0⇔ (AinvU)⇔ G2 > 0 just above p1.
ii) J22(p2) > 0⇔ (UinvA)⇔ G2 < 0 just below p2.
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Recall the following three types of equilibria p:

i) Attracting: for some ε > 0, |x − p| < ε implies limt→∞ φ(t, x) = p.
ii) Saddle point: the stable manifold and unstable manifold

Ws(p) = {x : lim
t→∞

φ(t, x) = p} and Wu(p) = {x : lim
t→−∞

φ(t, x) = p}

are smooth curves each consisting of p and a pair of trajectories, and the tangent lines to Ws,Wu

at p are eigenvectors of J(p) with eigenvalues whose real part is negative, respectively positive.
iii) Repelling: for some ε > 0, |x − p| < ε implies limt→−∞ φ(t, x) = p.

Given equilibrium p, let µ1, µ2 be the eigenvalues of J(p), and recall that [hartman-grobman]

i) p is attracting if (µ1), (µ2) < 0,
ii) p is a saddle point if (µ1) < 0 < (µ2), and

iii) p is repelling if 0 < (µ1), (µ2).

If one or both of (µi) = 0 then p could be of any type, or none.

Nullclines.

{G1 = 0} = {x1 = 0} ∪ γ1 where γ1 = {(λ10 + λax2)(1 − x1) = 1}, and
{G2 = 0} = {x2 = 0} ∪ γ2 where γ2 = {(λa + λbx1)(1 − x2) = δ}.

γ1 is a hyperbola with vertical asymptote x1 = 1, so instead let γ1 be the branch with x1 < 1.
If δ = 0 then γ2 = {x2 = 1} ∪ {x1 = −λa/λb} so instead let γ2 be the vertical line {x1 = −λa/λb}.
If δ > 0 then γ2 is a hyperbola with horizontal asymptote x2 = 1, so instead let γ2 be the branch with
x2 < 1. Both γ1 and γ2 intersect each of the invariant lines at most once. The intersection points, and
conditions for existence, are

• γ1 ∩ {x2 = 0} = p1 if λ10 > 0,
• γ1 ∩ {x1 = 0} = r1 = (0, b1) with b1 = (1 − λ10)/λa,
• γ1 ∩ {x2 = 1} = p2 if λ20 > 0,
• γ2 ∩ {x2 = 0} = r2 = (b2, 0) with b2 = (δ − λa)/λb,
• γ2 ∩ {x1 = 0} = p3, and
• γ2 ∩ {x2 = 1} = r3 = (b2, 1) if δ = 0.

By considering what happens when x2 = 0 and noting that {x1 = 0}, γ1 are the only null sets
for G1 when 0 ≤ x1 ≤ 1, it follows that G1 > 0 to the left of γ1 in Λ+. On the other hand, since
∂x1G2 = λbx2(1 − x2), if λb < 0 then G2 > 0 to the left of γ2, while if λb > 0 then G2 > 0 to the right of
γ2, in Λ+.

If λ10 > 1 then b2 = a1 marks the boundary between (AinvU) and its complement.
Similarly, if λ20 > 1 and δ = 0 then b2 = a2 marks the boundary between (UinvA) and its complement.
Also, it’s easy to check that b1 = a3 is equivalent to λ20 = 1 + δ.
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It’s useful to think of γ1 as the graph of the function

x2 = g1(x1), x1 < 1 where g1(x1) = λ−1
a

(
1

1 − x1
− λ10

)
,

and when δ > 0 to think of γ2 as the graph of the function

x2 = g2(x1), x2 < 1 where g2(x1) = 1 −
δ

λa + λbx1
.

If δ = 0 then γ1 ∩ γ2 has cardinality 0 or 1 as γ1 has at most one intersection point with any vertical
line. If δ > 0 then since the sign of the pairs (g′1(x1), g′′1 (x1)) and (g′2(x1), g′′2 (x1)) do not depend on x1

and never coincide (to see this, break up according to (sgn(λa), sgn(λb)), noting that λa + λb = λ21 ≥ 0
implies (sgn(λa), sgn(λb)) , (−1,−1)), γ1 ∩ γ2 has cardinality 0, 1 or 2.

Itineraries. Let G = (G1,G2) and for a pair (a, b) let sgn(a, b) = (sgn(a), sgn(b)) ∈ {−1, 0, 1}2. For
each sign vector σ ∈ {−1, 0, 1}2 let

R(σ) = {x ∈ Λ+ : sgn(G(x)) = σ}.

Since all signs are represented, {R(σ) : σ ∈ {−1, 0, 1}2} is a partition of Λ+. Note that one or more of
these sets could be empty.

• The set R(0, 0) = γ1 ∩ γ2 ∩ Λ+ consists of equilibrium points and has cardinality 0, 1 or 2.
• The sets R(0, 1)∪R(0,−1) = γ1 ∩Λ+ \ γ2 and R(1, 0)∪R(−1, 0) = γ2 ∩Λ+ \ γ1, so we refer to the

union of all four as Rγ. Since neither hyperbola has either a horizontal or vertical tangent at any
point, while G is horizontal or vertical on each one (or if δ = 0, γ2 is vertical while G is horizontal
on γ2), it follows that on Rγ, G is transverse to the tangent space of Rγ, so for any x ∈ Λ+, the set
of times {t : φ(t, x) ∈ Rγ} is a discrete set.
• The sets R(σ) for σ ∈ {−1, 1}2 are open subsets of (0, 1]2 that, based on the number of intersection

points of γ1 and γ2, each have at most 2 connected components.

If x ∈ (0, 1]2 \ R(0, 0) then since R(0, 0) is invariant and {t : φ(t, x) ∈ Rγ} is discrete, there is
a (possibly finite) symbolic sequence I(x) = (σ1, σ2, . . . ) called the itinerary of x, with each σi ∈

{−1, 1}2, and an increasing sequence of times t(x) = (t1, t2, . . . ), with t0 = 0, and with ti = ∞ iff I(x)
has length i, with the property that

φ(t, x) ∈ R(σi) for t ∈ (ti−1, ti).

Define a directed graph called the sign graph with vertices {−1, 1}2 by including each directed edge
(σ,σ′) iff there is x such that (Ii(x), Ii+1(x)) = (σ,σ′) for some i ≥ 1. The sign graph is cyclic if there is
a sequence of edges (σ1, σ2), . . . , (σk, σ1), and acyclic if not. Appearance of (σ,σ′) in the sign graph
is also represented by R(σ) → R(σ′). R(σ) is absorbing if none of the edges (σ, ·) appear on the sign
graph. An equilibrium point p ∈ Cl(R(σ)) is a sink for R(σ) if for some x ∈ R(σ), I(x) = σ and
limt→∞ φ(t, x) = p. If p is a sink for R(σ) then it is a local maximum of x 7→ σ · x on R(σ). The
following lets us seal the fate of trajectories, when the sign graph is acyclic. The proof is given in the
Appendix.
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Lemma 5.1. If I(x) is finite and its last entry is σ then ω(x) is a sink for R(σ).
In particular, if the sign graph is acyclic then for all x ∈ Λ+, ω(x) is a sink.

Periodic orbits and cycles. Lemma 5.1 makes our life easier when the sign graph is acyclic. When
the sign graph is cyclic, we will use the following proposition to simplify the analysis.

Proposition 5.1. For each x ∈ Λ+, ω(x) is either

1. an equilibrium point or
2. contains a separatrix cycle intersecting an equilibrium in L.

Proof. There are three steps.

1. Show there are no periodic orbits in Λ and no separatrix cycles in Λ+.
2. Show that a separatrix cycle intersecting L must intersect an equilibrium in L.
3. Invoke a generalized form of the Poincaré-Bendixson theorem.

Step 1. We begin with

Lemma 5.2 (Dulac’s criterion). – Suppose we have the planar system

u′ = F(u) where u ∈ R2 and F : R2 → R2 is a C1 function.

Let R ⊂ R2 be a simply connected region in the plane and B : R2 → R2 be a C1 function (called a
Dulac function) such that the divergence of BF is non-zero and has constant sign almost everywhere
on R. Then, the system u′ = F(u) has no periodic orbit and no separatrix cycle on R.

Since most proofs of Dulac’s criterion only rule out periodic orbits, we include a proof in the appendix.
No periodic orbit or separatrix cycle in Λ+. Since the restriction of x 7→ (x1(1− x2), x1x2) to {0 < x1 ≤

1, 0 < x2 < 1} maps bijectively onto {u1, u2 > 0, u1 + u2 ≤ 1}, periodic orbits and separatrix cycles are
mapped to the same. So, to rule them out on the former set, we find a Dulac function for (2.1) on the
latter set. The function B(u) = 1/(u1u2) works, since

∇ · (BF) = ∂u1(λ10 u0/u2 − 1/u2 − λ21 + δ/u1)

+ ∂u2(λ20 u0/u1 − 1/u1 + λ21 − δ/u1)

= −λ10/u2 − δ/u2
1 − λ20/u1

is strictly negative when u1, u2 > 0 (at least one of λ10, λ20 is positive).
If δ = 0 the set {0 < x1 ≤ 1, 0 < x2 < 1} is equal to Λ+.
If δ > 0, Λ+ includes also the segment {0 < x1 ≤ 1, x2 = 1}. Since G2 < 0 on that segment, any
trajectory that intersects it also intersects Λc, so is not contained in Λ.

No periodic orbit in L. If a periodic orbit C intersects L = Λ \ Λ+, it intersects an invariant line on L.
Since C is a single trajectory, it is a subset of that invariant line. Since C is the continuous injective
image of a circle and L is either a pair of orthogonal lines, or two parallel lines and an orthogonal line,
this cannot occur.
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Step 2. A separatrix cycle is the continuous injective image of a circle. If it intersects L, it intersects
an invariant line on L, so it must contain an equilibrium point on that line. If it did not, it would consist
of a single trajectory on that line.

Step 3. This step is a trivial application of the following result.

Theorem 5.1 (Generalized Poincaré-Bendixson Theorem). – Let E ⊂ R2 be an open set and F ∈
C1(E,R2). Suppose the system x′ = F(x) has a positive semi-trajectory Γ+(x) contained in a compact
set K ⊂ E with the property that F(x) = 0 for at most finitely many x ∈ K. Then, ω(x) is either

1. an equilibrium point,

2. a periodic orbit, or

3. contains a separatrix cycle.

Proof. This is given by Theorem 2 in Section 3.7 of [17], and the comments that follow. �

This concludes the proof of Proposition 5.1. �

Trajectories. We are now ready to study dynamics in the remaining cases. We break up our analysis
according to the sign of λa, λb. The interested reader will note that Case 3 above can also be covered
here using the same methods, although it does not give an explicit formula for the interior equilibrium,
when there is one.

Case 4 – pathogen: λM > 1, λa < 0, λb , 0. In this case, λ10 > max(1, λ20) and λb = −λa + λ21 > 0, so
a1 = 1 − 1/λ10 > 0, b2 = (δ − λa)/λb > 0 and G2 > 0 to the right of γ2. g1 is decreasing and concave,
and if δ > 0 then g2 is increasing and concave, while if δ = 0 then γ2 = {x1 = b2} – in either case
γ2 lies to the right of {x1 < b2} so G2 < 0 on this set. Since G1 > 0 near p0 it attracts no points in
Λ+, and since p3 = (0, a3) with a3 = 1 − δ/λa ≥ 1, if p3 ∈ Λ then δ = 0, p3 = (0, 1) and G2 < 0 in a
Λ+-neighbourhood of p3, which means p3 attracts no points in Λ+.

If b2 ≥ a1 then (AinvU) does not hold, which gives (UH). R(−1, 1) → R(−1,−1) → R(1,−1) appear
from right to left. If p2 ∈ Λ then since λ20 < λ10, a2 < a1 ≤ b2 so G2 < 0 in a Λ+-neighbourhood of p2.
Since the sign graph is acyclic, every solution tends to a sink, and the only candidate is p1.

If δ > 0 and b2 < a1 (AinvU) which gives (a.ii) of (C), or δ = 0 and a2 < b2 < a1 which gives (AinvU)
and (UinvA) and thus (b.iii) of (C) if a2 > 0 or (b.ii) of (C) if a2 ≤ 0, then (C) holds. γ1∩γ2 is a unique
point p4 ∈ Λ+ and p1 is a saddle, as is p2 if δ = 0. The sign graph is cyclic, so we use Proposition
5.1 to conclude that solutions tend to p4 provided no separatrix cycles on Λ contain an equilibrium
on L – let C denote a possible candidate. Since p1 is a saddle, Ws(p1) = {0 < x1, x2 = 0} so p1 ∈ C
implies p0 ∈ C. Since p0 is a saddle with Ws(p0) = {x1 = 0, x2 < a3 = 1 − δ/λa}, p0 ∈ C implies
p3 ∈ C. If δ > 0, p3 < Λ so C cannot exist, otherwise δ = 0 and p0 ∈ C implies p3 = (0, 1) ∈ C.
If λ20 < 1 then Ws(p3) = {a2 < x1, x2 = 1} and C cannot exist. If λ20 = 1 then since γ2 does not
intersect p3, still G2 < 0 in a Λ+-neighbourhood of p3, so Ws(p3) is disjoint from Λ+ which means
Ws(p3) = {0 ≤ x1, x2 = 1} and C cannot exist. If λ20 > 1 then p3 is repelling, and C cannot exist. If
δ > 0 then p2 < Λ, and if δ = 0 and p2 ∈ Λ then p2 is a saddle with Ws(p2) = {0 < x1, x2 = 1}, so
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p2 ∈ C implies p3 ∈ C. Since p3 is repelling, C cannot exist.

If δ = 0 and b2 ≤ a2 < a1 then (AinvU) holds but (UinvA) does not, which gives (AH).
R(1,−1) → R(1, 1) → R(−1, 1) appear from left to right, and p1 is a saddle. Since the sign graph is
acyclic, solutions tend to a sink, and the only candidate is p2.

Case 5 – mutualist: λM > 1, λa > 0, λb , 0. In this case λ20 > max(1, λ10) so a2 > 0, and g1 is
increasing and convex. Notice that g1 intersects the set {x1 = 0, 0 ≤ x2 < 1} ∪ {0 ≤ x1 < a2, x2 = 0} at
exactly one point, which is p1 if λ10 > 1, p0 if λ10 = 1 and r1 = (0, b1) = (0, (1 − λ10)/λa) if λ10 < 1.

Subcase 5a – weakly infectious mutualist: λb < 0. If δ > 0 then g2 is decreasing and concave, and
recall γ2 ∩ {x2 = 0} contains only the single point (b2, 0) with b2 = (δ − λa)/λb, and γ2 ∩ {x1 = 0}
contains only the single point p3 = (0, a3) with a3 = 1 − δ/λa. γ1 ∩ γ2 ∩ Λ+ contains exactly one point
if either 0 < a1 < b2 or a1 ≤ 0 and a3 > b1, both of which correspond to (C), and otherwise is empty.
Notice that

a3 > b1 ⇔ (λa − δ)/λa > (1 − λ10)/λa ⇔ λa − δ > 1 − λ10 ⇔ λ20 > 1 + δ.

If δ = 0 then b2 = −λa/λb > 0 and p3 = (0, 1) is a saddle, so attracts no points in Λ+. If a1 < b2 < a2,
which corresponds to (C), then γ1∩γ2∩Λ+ contains exactly one point, otherwise γ1∩γ2∩Λ+ is empty.

If δ > 0 and γ1 ∩ γ2 ∩ Λ+ is empty then either a1 > 0 and a1 ≥ b2 (UH), or a1 ≤ 0 and a3 ≤ b1

which implies λ10 ≤ 1 and λ20 ≤ 1 + δ (E). There are at most three sign regions in Λ (two if b2 ≤ 0):
R(1, 1) → R(1,−1) → R(−1,−1), appearing in that order from left to right. In case of (UH), p0 is a
saddle and p1 ∈ Λ, and in case of (E), p0 is the only equilibrium in Λ.

If γ1 ∩ γ2 ∩ Λ+ is not empty then it is a unique point p4 ∈ Λ+. If a1 ≤ 0 then p0 is a saddle, otherwise
p0 is repelling and p1 is a saddle, and if δ = 0 then p2, p3 are saddles. A similar argument as before
shows there is no periodic orbit or separatrix cycle in Λ. Thus, all solutions tend to p4.

If δ = 0 and 0 < b2 ≤ a1 < a2 (UH), R(1, 1) → R(1,−1) → R(−1,−1) appear from left to right. Since
a1 > 0, p0 is a saddle and p1 ∈ Λ, while p2, p3 are saddles, so solutions tend to p1.

If δ = 0 and a1 < a2 ≤ b2 (AH), then R(−1,−1) → R(−1, 1) → R(1, 1) appear from right to left, p0 is
repelling, and p1, p3 are saddles, so solutions tend to p2.

Subcase 5b – strongly infectious mutualist: λb > 0. In this case (B) can occur, so we take a moment
to define precisely the three conditions in terms of the nullclines:

1. (OB) occurs when g1, g2 intersect at two points in Λ, one in Λ+ and the other on the subset
{x1 = 0, 0 ≤ x2 ≤ 1} ∪ {0 ≤ x1 ≤ 1, x2 = 0} of the boundary.

2. (MB) occurs when g1, g2 intersect tangentially at one point in Λ+.
3. (NB) occurs when g1, g2 intersect at two points, both in Λ+.

As we go through the various cases we will point out when one of the above might occur; in particular,
we’ll see that they all occur for values that would otherwise correspond to (E) or (UH). We’ll also
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describe the dynamics in all possible cases. We’ll then show that each of (OB),(NB),(MB) does occur,
make some effort to characterize them, and show (NB) is simply connected.

If δ = 0 then G2 = x2((λa + λbx1)(1 − x2) > 0 on Λ+, so (AH) holds. b1 = −λa/λb < 0 and
R(−1, 1) → R(1, 1) appear from right to left. Because of the sign of G2, p0 (and p1 if a1 > 0) attract
no points, and p3 = (0, 1) is a saddle. Since the sign graph is acyclic, solutions tend to a sink, and the
only candidate is p2.

For the rest we assume δ > 0. g2 is increasing and concave, so γ2 intersects the set
{x1 = 0, 0 ≤ x2 < 1} ∪ {x1 ≥ 0, x2 = 0} at exactly one point, which is p3 = (0, a3) = (0, 1 − δ/λa) if
δ < λa, p0 = (0, 0) if δ = λa and r2 = (b2, 0) = ((δ − λa)/λb, 0) if δ > λa.

If either a1 > max(b2, 0), or a1 ≤ 0 and a3 > max(b1, 0), then γ1 ∩ γ2 ∩ Λ+ is a unique point p4 ∈ Λ+.
A similar argument as before shows that all solutions tend to p4. The first option gives λ10 > 1 and
(AinvU) so corresponds to (C). For the second option, note that a1 ≤ 0⇔ λ10 ≤ 1 and

a3 > b1 ⇔ λa − δ > 1 − λ10 ⇔ λ20 > 1 + δ,

so it also corresponds to (C).

If b2 = a1 > 0 (UH), then γ1, γ2 intersect at p1. If g′1(a1) ≥ g′2(a1), then γ1∩γ2∩Λ+ is empty, and the sign
regions R(1,−1),R(−1,−1),R(−1, 1) appear from left to right with R(1,−1),R(−1, 1)→ R(−1,−1), so
the sign graph is acyclic. Since b2 > 0 and γ2 is increasing, a3 < 0 so p3 < Λ+ and G1 > 0 near p0 so
solutions tend to p1. If g′1(a1) < g′2(a1), which as we’ll see corresponds to (OB), then γ1 ∩ γ2 ∩ Λ+ is
a single point p4. All four sign regions now appear, with R(1,−1),R(−1, 1) → R(1, 1),R(−1,−1). To
show all solutions tend to p4 it remains to show that p1 is not a sink for any sign region. p1 is in the
closure of R(1,−1),R(−1, 1) and R(1, 1). Since G2 > 0 on R(−1, 1) p1 cannot be a sink, and p1 is a local
minimum of x 7→ x·(1, 1) on R(1, 1), whereas a sink is a local maximum. The only remaining candidate
is R(1,−1). G2 has a double root at p1, which can be seen from either the transverse intersection of
two x2-nullclines ({x2 = 0} and γ2) or by writing G2 as a function of x̃ = x − p1. Writing G in these
coordinates,

G1 = (x̃1 + a1)((λ10 + λa x̃2)(1 − (x̃1 + a1)) − 1)
= (x̃1 + a1)(λ10 + λa x̃2)(λ−1

10 − x̃1) − 1)
= (x̃1 + a1)(−λ10 x̃1 + λa x̃2(λ−1

10 − x̃1))

and
G2 = x̃2(λa + λb(x̃1 + (δ − λa)/λb)(1 − x̃2) − δ)

= λb x̃1 x̃2(1 − x̃2) − δx̃2
2

If a trajectory in R(1,−1) tends to p1 then x̃1 → 0− and x̃2 → 0+. If x̃1 < 0 < x̃2 are small in
magnitude then by 1st-order approximation G1 ≥ c1(−x̃1 + x̃2) > 0 for some c1 > 0, and by 2nd-order
approximation, G2 ≤ c2 x̃1 x̃2 − c3 x̃2

2 < 0 with c3, c4 > 0. Writing a solution to (2.2) as x̃2 = h(x̃1),

h′ =

d
dt x̃2

d
dt x̃1

=
G2

G1
≥

c2 x̃1 x̃2 − c3 x̃2
2

c1(−x̃1 + x2)
= −

c2

c1
x̃2
−x̃1

−x̃1 + x̃2
−

c3

c1
x̃2

x̃2

−x̃1 + x̃2
≥ −

c2 + c3

c1
x̃2,
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noting that 0 < −x̃1, x2 ≤ −x̃1+x2 on the last step. So, given initial value x̃1(0), x̃2(0), the corresponding
solution has h(x̃1) ≥ x̃1(0)e−cx̃1 with c = (c2 + c3)/c1, so intersects {x̃1 = 0} at a positive value of x̃2.
Thus no trajectories tend to p1.

If a3 = b1 ≥ 0 (E), then γ1, γ2 intersect at p3. If g′1(a3) ≥ g′2(a3), then as above, γ1 ∩ γ2 ∩ Λ+ is empty
and R(1,−1),R(−1, 1) → R(−1,−1). Since a1 ≤ 0, if a3 = 0 then p0 is the only equilibrium, and if
a3 > 0 then G2 > 0 near p0 and p1 < Λ+ so solutions tend to p3. If g′1(a3) < g′2(a3), then γ1 ∩ γ2 ∩ Λ+

is a single point p4, and R(1,−1),R(−1, 1) → R(1, 1),R(−1,−1). A similar argument as above shows
that p3 attracts no points in Λ+ – this time, G1 has a double root, so write a solution as x̃1 = h(x̃2) and
perform a similar estimate. This situation corresponds to (OB).

If 0 < a1 < b2 (UH) then γ1 ∩ γ2 ∩ Λ+ has cardinality 0, 1 or 2, with a saddle node bifurcation when
the cardinality is 1.

1. If the cardinality is 0, then R(1,−1),R(−1, 1)→ R(−1,−1) and solutions tend to p1, similar to the
case g′1(a1) ≥ g′2(a1) above.

2. If the cardinality is 1, then we have (MB). To see this, note that p1 is attracting, and there is
a unique interior equilibrium p4. Three sign regions R(1,−1),R(−1,−1),R(−1, 1) appear, with
R(1,−1),R(−1, 1) → R(−1,−1) and R(−1,−1) disconnected by p4 into two components, the
lower of which with sink p1 and the upper with sink p4. Since p1 is locally stable it attracts an
open neighbourhood S 3 p1 of points in Λ+. Since the basin of attraction of p1 is

⋃
t<0 φ(t, S ) it

is open in Λ+.

3. If the cardinality is 2, we have (NB). To see this, note that p1 is again attracting, and there are
two interior equilibria p4, p5, letting p5 denote the upper one. All sign regions appear, with
R(1,−1),R(−1, 1)→ R(−1,−1),R(1, 1) and R(−1,−1) split in two as before. p1 is the unique sink
for the lower part of R(−1,−1), and p5 the unique sink for R(1, 1) and the upper part of R(−1,−1).
Since γ1, γ2 intersect transversally at p4 and p5 and are the only nullclines through those points,
the Jacobian is non-singular so both equilibria are hyperbolic. Since p5 attracts more than a single
curve of points it is attracting, and since p4 fails to attract nearby points in R(−1,−1) and R(1, 1)
it is not attracting. As argued above, both p1 and p5 have open basins of attraction in Λ+. Since
Λ+ \ {p4} is open in Λ+ and connected, it cannot be the combined basins of attraction of p1 and p5

since that would imply a disconnection. The only option is that some points other than p4 tend to
p4, so p4 is a saddle and its basin of attraction is its stable manifold, which is a smooth curve.

If a1 ≤ 0 and 0 < a3 < b1 (E) then γ1∩γ2∩Λ+ has cardinality 0, 1 or 2 as before. Similar observations
show that (E), (MB), (NB) occur, respectively.

Properties of (B). We now show that each of (OB), (MB) and (NB) occurs for some parameter values,
that (MB) and (OB) lie on the boundary of (NB), and that (NB) is simply connected. For this it is
helpful to view the parameter space in terms of the four independent variables (λ10, λa, δ, λb), subject
to the general constraints λ10, δ ≥ 0, λa ≥ −λ10 and λb ≥ −λa. Here, of course, we may assume further
that δ, λa, λb > 0, since (B) has been ruled out in other cases. We’ll let x̄ and ȳ, x̄ denote γ1 ∩ γ2 ∩ Λ
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Figure 3. Transition from (OB) to (NB) to (MB) with λ10 = 0.5, λa = 1.5, λb = 5 and
δ = 1, 1.1, 1.25 from left to right. g1 in blue, g2 in red.

when its cardinality is, respectively, 1 or 2, with ȳ < x̄ in the elementwise order.

We recall g1, g2 and their derivatives:

g1(x1) =
1
λa

(
1

1 − x1
− λ10), g2(x1) = 1 −

δ

λa + λbx1
,

g′1(x1) =
1
λa

1
(1 − x1)2 and g′2(x1) =

δλb

(λa + λbx1)2 .

Existence. Our approach is to first characterize (OB), then show a small change in δ leads to (NB),
then show a large enough change in δ gives (MB). We treat separately the cases a1 ≤ 0 and a1 > 0,
beginning with a1 ≤ 0. To have (OB) we need g1(0) = g2(0), i.e., b1 = a3, and g′1(0) < g′2(0). Earlier
we showed that a3 = b1 ⇔ λ20 = 1 + δ, that we write as δ = λa + λ10 − 1, which requires λa + λ10 > 1,
i.e., λ20 > 1, since δ > 0 by assumption. If g′1(0) < g′2(0) then λ−1

a < δλb/λ
2
a, so λa < δλb, that we write

as λb > λa/δ. Thus if λ10 ≤ 1 and λa are fixed, (OB) occurs iff λa + λ10 > 1, λb ∈ (λa/(λa + λ10 − 1),∞)
and δ = λa + λ10 − 1, which is a non-empty set of parameters. Take some such choice of parameters,
and note that g1(0)− g2(0) = 0 and g′1(0)− g′2(0) < 0. Since g2 decreases with δ while g1 is unchanged,
a small increase in δ then gives (NB). If δ is increased enough, then g2(1) < g1(0) and γ1 ∩ γ2 ∩ Λ+ is
empty, so there is a unique intermediate value of δ that gives (MB). This is depicted in Figure 3.

If a1 > 0, to have (OB) we need a1 = b2 > 0 and g′1(a1) < g′2(b2). The former gives a1 = (δ−λa)/λb,
that we write as δ = λba1 + λa noting a1 depends only on λ10, while the latter gives λ2

10/λa < δλb/δ
2, or

δ < λaλb/λ
2
10. Plugging in δ and putting λb terms to one side gives the condition λb(λa/λ

2
10 − a1) > λa.

Given λ10 and λa, λb can be chosen large enough to satisfy this inequality iff

λa/λ
2
10 > a1 ⇔ λa > a1λ

2
10 = λ2

10 − λ10 ⇔ λ20 > λ
2
10.

Thus for a1 > 0, (OB) occurs iff λa > λ2
10 − λ10, λb ∈ (λa/(λa/λ

2
10 − a1),∞) and δ = λba1 + λa. Again,

this is a non-empty set of parameters. As before, we can vary δ to obtain (NB) and (MB).

A consequence of the above existence arguments is that they specify for which values of λ10 and
λa bistability can be achieved by appropriate choice of δ, λb, namely, for λ20 > max(1, λ2

10). They also
show that for any choice of λ10, λa, λb, the set of values of δ that gives (B) is a bounded set, with (OB)
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Figure 4. Typical (δ, λb) slice of the phase portrait when λ10 ≤ 1 (left) and λ10 > 1 (right)
and bistability is possible. Left: λ10 = 0.5 and λa = 1.5, and right: λ10 = 1.25 and λa = 10.

at the lower endpoint, (MB) at the upper endpoint and (NB) in the interior. A slice of the phase portrait
is shown in Figure 4.

Geometry. It’s clear that (NB) is an open set in parameter space. Define the functions λ̃a = λ10 +

max(1, λ2
10) and

λ̃b =

λa/(λa + λ10 − 1) if λ10 ≤ 1,
λa/(λa/λ

2
10 − (1 − 1/λ10)) if λ10 > 1.

Note that both functions are continuous. From the above discussion we obtain functions δ−(λ10, λa, λb)
and δ+(λ10, λa, λb) with domain λ10 ≥ 0, λa > λ̃a and λb > λ̃b such that (OB),(NB) and (MB) occur iff
(λ10, λa, λb) are in the domain and δ = δ−, δ− < δ < δ+ and δ = δ+, respectively. The function δ− is
given above explicitly, piecewise:

δ−(λ10, λa, λb) =

λa + λ10 − 1 if λ10 ≤ 1
λa + λb(1 − 1/λ10) if λ10 > 1,

and one easily verifies its continuity. The function δ+ is not given explicitly, but we can show it is
smooth, using the implicit function theorem. (MB) corresponds to a unique x̄1 ∈ (0, 1) such that
g1(x̄1) − g2(x̄1) = g′1(x̄1) − g′2(x̄1) = 0. We have

∂(x1,δ)(g1 − g2, g′1 − g′2) =

(
g′1 − g′2 ∂δ(g1 − g2)
g′′1 − g′′2 ∂δ(g′1 − g′2)

)
where the ′ indicates ∂x1 . At (MB), g1(x̄1)′ − g2(x̄1)′ = 0, moreover g′′1 − g′′2 > 0 since g1 − g2 is
convex. Also, ∂δ(g1 − g2) = −1/(λa + λbx1)2 > 0 since λa > 0 by assumption. Thus the above matrix
is invertible. Since (g1 − g2, g′1 − g′2) is a smooth function of parameters, and of x1, when λa > 0
and x1 ∈ (0, 1), by the implicit function theorem, (x̄1, δ

+) is a smooth function of (λ10, λa, λb), on the
domain of δ+.

We now show (NB) is a contractible set, via a sequence of homotopies that gives a deformation
retraction. Define δ̃ = (δ− + δ+)/2, which is continuous, and note that (NB) occurs when δ = δ̃. Notice
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that λ̃a, λ̃b and δ̃ are functions of λ10, λ10 and λa, and λ10, λa and λb respectively. Define the sequence
of homotopies as follows, at each step letting λ̃a, λ̃b and δ̃ take the previous values in the list as their
input:

(i) H1 = (λ10, λa, λb, (1 − t)δ + t δ̃),
(ii) H2 = (λ10, λa, (1 − t)λb + t(λ̃b + 1), δ̃),

(iii) H3 = (λ10, (1 − t)λa + t(λ̃a + 1), λ̃b + 1, δ̃),
(iv) H4 = ((1 − t)λ10 + t, λ̃a + 1, λ̃b + 1, δ̃).

Note that t ∈ [0, 1] is the deformation parameter. In words,

(i) H1 acts only on δ, centering its value to δ̃,
(ii) H2 acts on λb and δ, centering λb to λ̃b + 1 while keeping δ = δ̃,

(iii) H3 centers λa to λ̃a + 1 while keeping λb = λ̃b + 1 and δ = δ̃ and
(iv) H4 centers λ10 to 1 while keeping other parameters centered.

We have already checked the continuity of component functions, and it’s clear they keep points in (NB).
Applying the Hi in sequence deforms (NB) to the single point with λ10 = 1 and the corresponding
values of λ̃a, λ̃b and δ̃.

6. Discussion and conclusion

In this article we consider a simple differential equation model of host-symbiont dynamics, that
includes both vertical and horizontal transmission of the host, as well as recovery (i.e. transition from
associated [with symbiont] to unassociated [without symbiont] host). The model naturally incorporates
the pathogen, neutral, and mutualist cases through the choice of parameter values, providing a unified
setting for the study of all three cases.

Our analysis indicates that the most natural way to view the process is through the total host density
(both associated and unassociated) and the proportion of hosts that are associated. Moreover, the two
main factors governing the dynamics are (i) the effect of the symbiont on the host (i.e. whether it is
pathogen, neutral or mutualist) and (ii) the difference between the additional birth rate of associated
vs. unassociated hosts (which is positive only for mutualists) and the rate of horizontal transmission of
the symbiont.

We obtain a complete picture of the model’s dynamic phases, as follows. Except for the very special
case when the symbiont is completely redundant (neutral, no recovery and no horizontal transmission),
populations that initially contain both host and symbiont, and not located at an unstable equilibrium,
always settle down to one of at most three equilibria. The limiting equilibrium is unique when the
symbiont is either a pathogen, is neutral, or is a mutualist but focuses more on increasing the host birth
rate than on horizontal transmission. Bistability (exactly two locally attracting equilibria) can occur
when the symbiont is a sufficiently beneficial mutualist that focuses more on horizontal transmission
than on increasing the host birth rate. There are three limiting equilibria only in a boundary case at the
onset of bistability. When the limiting equilibrium is unique, survival and coexistence are determined
by straightforward invasibility conditions, i.e., whether one type can invade the extinction equilibrium
(for survival) or the stable equilibrium containing only the other type (for coexistence).

Interestingly, the dynamical behaviour, and in particular the number of stable equilibria, hinges less
on whether the symbiont is pathogen or mutualist, and more on whether the symbiont is highly bene-
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ficial (increases host birth rate), versus highly infectious (has a high rate of horizontal transmission).
Moreover, we have shown that, at least when including only the simple mechanisms considered in this
model, stable periodic behaviour is not possible.
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Appendix

Proof of Lemma 5.1. For a definite sign vector σ ∈ {−1, 1}2 and ε > 0 let

R(σ, ε) = {x ∈ Λ+ : sgn(G(x)) = σ and ‖G(x)‖ > ε},

noting that R(σ) =
⋃

ε>0 R(σ, ε) and σ ·G(x) ≥ ε for x ∈ R(σ, ε). If x ∈ R(σ, ε) for definite σ and letting

τ(x, ε) = inf{t : φ(t, x) < R(σ, ε)},

φ(t, x) ∈ R(σ, ε) for t < τ(x, ε), so using the second fact above,

∂tσ · φ(t, x) = σ ·G(φ(t, x)) ≥ ε.

Since for y, z ∈ Λ+, |σ·y−σ·z| ≤ 2, it follows that τ(x) ≤ 2/ε. Thus, letting E(σ, ε) = Cl (R(σ) \ R(σ, ε))
and

E(σ) =
⋂
ε>0

E(σ, ε)

where Cl denotes the closure, E(σ) consists of equilibrium points in Cl(R(σ)). Letting τ(x) = inf{t :
φ(t, x) < R(σ)}, the only way that τ(x) = ∞ is if for any ε > 0, eventually φ(t, x) ∈ E(σ, ε), which
means that ω(x) ∈ E(σ). Since ω(x) is connected and (for the cases that remain) the set of equilibrium
points in Λ is finite, the first claim follows. The second claim follows since acyclic implies itineraries
are finite. �

Proof of Lemma 5.2. Suppose Γ is a periodic orbit or a separatrix cycle, both of which are the image of
a circle in R2, under a piecewise C1 function. Since trajectories do not cross, the image is injective, so
let D be the interior of Γ, whose existence is given by the Jordan curve theorem. By Green’s theorem,"

D
∇ · (BF)dxdy =

∮
−BF2dx + BF1dy.

where F = (F1, F2). First suppose Γ is a periodic orbit with solution curve u(t) satisfying u(T ) = u(0).
Ignoring the orientation, since it only changes the sign, the latter integral can be parametrized with
dx = u̇1(s)ds, dy = u̇2(s)ds as∫ T

0
−B(u(s))(F2(u(s))u̇1(s) + F1(u(s))u̇2(s))ds.

However, F2(u(s)) = u̇2(s) and F1(u(s)) = u̇1(s) so the integrand is identically zero, thus so is the
integral, and this contradicts the assumption on ∇ · (BF). Suppose instead that Γ is a separatrix cycle
and let u(1)(t), . . . , u(m)(t) denote the corresponding heteroclinic solutions. Since solutions are arranged
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tip-to-tail as described by (3.1), it follows that {u̇(i)(t) : t ∈ R, i = 1, . . . ,m} orients the tangent space for
Γ, so up to its sign, we can parametrize the above contour integral as

m∑
i=1

∫ ∞

−∞

−B(u(s))(F2(u(s))u̇1(s) + F1(u(s))u̇2(s))ds

and the same observation shows the integral is zero, which is a contradiction.
�
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