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Abstract: As an effective technology, near infrared spectroscopy (NIRS) can be widely applied to 

analysis of active ingredients in medicinal fungi. Multiple regression methods are used to compute the 

relationship between spectral vectors and ingredient contents. In this paper, an autonomous feature 

extraction method by using attention based residual network (ABRN) to model original NIRS vectors is 

introduced. Attention module in ABRN is employed to enhance feature wave bands and to decay noise. 

Different from traditional NIRS analysis methods, ABRN does not require any preprocessing of artificial 

feature selections which rely on expert experience. The experiments test ABRN by analyzing original 

spectrums of medicinal fungi (Antrodia Camphorata and Matsutake), which are from 800 nm to 2500 nm, 

and predicting active ingredients within them. We compare ABRN with other popular NIRS analysis 

methods. The root mean square error of Antrodia Camphorata training set (RMSET) and validation set 

(RMSEV) are 0.0229       and 0.0349       for polysaccharide, and 0.0173       and 0.0189 

      for triterpene. The RMSET and RMSEV of Matsutake are 0.1343       and 0.2472       

for polysaccharide, and 0.0328       and 0.0445       for ergosterol. The    (coefficient of 

determination) of these four ingredients are 0.711, 0.753, 0.847 and 0.807. The results indicate that 

ABRN has better performance in autonomously extracting feature wave bands from original NIRS 

vectors, which can decrease the loss of tiny feature peaks. 

Keywords: near infrared spectroscopy; medicinal fungi; residual network; attention mechanism; 

deep learning 
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1. Introduction  

Medicinal fungi, such as Cordyceps, Reishi, Antrodia Camphorata and Matsutake, can enhance 

human immunity, anti-tumor and anti-cancer. The active ingredients in medicinal fungi are useful in 

a wide range of clinical therapies and these ingredients can be detected quickly by near infrared 

spectroscopy (NIRS). NIRS is a convenient, fast and non-intrusive analysis method which has been 

applied to quantitative analysis of medicinal fungi data. In organic molecules, the vibration 

frequency and the frequency multiplier at all levels of hydrogen-containing groups (O-H, N-H, C-H), 

these absorption regions are consistent with near infrared spectrum regions. By scanning the near 

infrared spectrum of the sample, the frequency information of one single chemical bond in molecule 

can be recorded. Due to the advantage of NIRS, researchers can quickly and accurately analyze the 

content of various active ingredients in medicinal fungi, and the NIRS has been widely used in 

qualitative and quantitative analysis in medicinal fungi domains such as chemical and 

pharmaceutical industries [1,2]. As a secondary analysis method, NIRS needs to build a 

mathematical method to explain the relation between spectra data and reference value. 

Many traditional NIRS analysis methods, such as partial least squares (PLS) and radial basis 

function neural network (RBFNN), show a good prediction accuracy and performance. However, due 

to the high dimensionality and multiple information mixture of NIRS data, these methods require 

feature spectral wave band selection which depends on experts’ experience to reduce the dimensions 

and improve the prediction accuracy. The artificial selection of feature wave bands from high 

dimensional spectral data may lose some tiny but significant feature peaks in original spectral curves 

and also be consuming. 

Recently, with the popularity and development of deep learning technologies, convolutional 

neural network, as a typical model of deep learning, can rapidly extract feature information from 

high dimensional data. Compared with the artificial feature selection depends on experts’ experience, 

convolutional neural network can autonomously learn and extract every local feature of data through 

multiple convolution layers and iterations. Meanwhile, a deep structure with nonlinear activation 

function makes the model more suitable for big data, especially for those with high dimension and 

non-linearity, such as NIRS. 

In this paper, we provide an NIRS analysis method, attention based residual network (ABRN) 

for NIRS. ABRN is based on convolutional neural network. In ABRN, we add attention module to 

enhance the feature wave bands and to reduce the noise bands in original NIRS vectors, and then use 

residual network to autonomously extract each dimension features in spectral vectors. Finally, ABRN 

will output the predicted value corresponding to the spectrum. To verify ABRN, we predict the 

content of several active ingredients in medicinal fungus (Antrodia Camphorata and Matsutake), 

compare the result with current popular NIRS analysis methods.  

2. Related work 

There are many developed methods in analyzing NIRS data. There are three categories: (1) 

Linear regression method based on principal component analysis and PLS; (2) Nonlinear machine 

learning methods, such as artificial neural network (ANN), RBFNN, support vector machine (SVM), 

and so on; (3) Feature extraction and value prediction from high-dimensional NIRS data methods 

based on deep learning methods.  
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Here are detailed summarizations of NIRS analysis methods. 

2.1. PLS method 

PLS regression method is a traditional NIRS analysis method. It maps predicted values and 

actual values into a new common space through linear regression method. A satisfactory calibration 

method has been built with PLS via adopting optimum wavelength [3]. Due to the potential 

interferences and noises in NIRS, the successive projection algorithm for interval selection in PLS 

(iSPA-PLS) [4,5]  is used to eliminate the unrelated variables. The wavelength selection and data 

preprocessing on NIRS, such as smoothing, derivative, multiplicative scattering correction [6,7]  

etc., also affect the PLS’s accuracy of predictions. Kim G. et al. use maximum normalized 

preprocessing to eliminate extraneous noise in the spectrum [8]. Magalhães A. F. B. et al. obtain 

better results by reducing the range of original spectra [9]. However, these traditional NIRS linear 

analysis methods need to artificially extract the spectral crests which reflect some of features in 

original spectrum. The accuracy of prediction depends on if the feature wave bands are typical. 

Furthermore, PLS is a linear regression method, which there may be some limitations in solving nonlinear 

problems such as NIRS. 

2.2. Nonlinear machine learning method 

Using nonlinear neural network can retrieval and extract relationships from biomedical data or 

literatures [10–14]. One of the most popular nonlinear machine learning methods of analyzing 

biomedical NIRS data is through RBFNN [15]. For example, Lu J H et al. [16] use wavelet transform 

preprocessing based RBFNN to analyze NIRS. Meanwhile, moving window method [17] is part of 

pre-processing in RBFNN to select the feature wave bands by using the degree approximation [18–20]. 

Jintao X et al. use ANN to extract main components and compare PLS with ANN to verify that ANN 

has better nonlinear fitting performance [21,22]. Other machine learning methods [25,26] , such as 

SVM [23,27] also shows good performance and predictive accuracy in NIRS analysis. As the input 

of these machine learning methods, the original NIRS data requires pre-processing [24] such as 

dimensionality reduction [28], denoising and feature wave bands selection, to improve the accuracy 

of prediction [29]. Artificial feature selection, which relies on experts’ experience, may lose some 

tiny feature peaks in NIRS. In original high-dimensional spectral data, many unrelated noise bands 

also affect the accuracy of prediction. 

2.3. Deep learning method 

Deep learning methods have good performance in extracting relationships [30] and features 

from high-dimensional biomedical data [31]. Unsupervised learning method, deep automatic encoder 

(DAE), can extract valid features from NIRS by transforming high dimensional data into 

low-dimensional codes with linear and nonlinear combination features [32]. Deep belief network 

with dropout can prevent overfitting and cost less training time compared with DAE [33]. 

Convolutional neural network also shows good performance by converting one dimensional vector of 

NIRS into two-dimensional information matrix [34]. The accuracy of previous methods in analyzing 

NIRS depends on artificial feature wave bands selection. One of the biggest advantages of deep 
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learning methods is that it can autonomously extract features from high dimensional data through 

multiple iterations. However, due to the complexity of original spectral data, irrelevant information 

and noise will affect the extraction of feature wave bands. Therefore, current deep learning methods 

in NIRS analysis require artificial denoising and compression of original spectral data. 

The above NIRS analysis methods rely on experts’ experience to perform preprocessing of 

artificial feature wave bands selection. Even with deep learning methods, only a small number of 

feature wave bands are available in original spectral data, and many noise wave bands affect the 

extraction of key feature wave bands. The proposed ABRN can directly use original spectral data as 

input vectors, redistribute the weights of feature wave bands and reduce irrelevant wave bands 

through attention module in ABRN. The residual network in ABRN, which is proposed by Kaiming 

He et al. [35], performs autonomous extraction of features and content prediction. Our ABRN is 

accelerated by NVIDIA GeForce GTX 1080. Compared with traditional NIRS analysis methods, 

ABRN can improve computational and time efficiency and maintain high accuracy. 

3. Method 

To reduce the impact of human factors and achieve an autonomous analysis of original NIRS 

data, we propose ABRN which based on residual network. Traditional NIRS analysis methods rely 

on human experience to select feature wave bands, while ABRN can realize autonomous selection of 

feature wave bands in original NIRS vectors through multiple convolutional layers. We adopt 

attention module in ABRN to autonomously enhance the features to improve the accuracy of 

prediction. Figure 1 shows the structure of ABRN. 

 

Figure 1. The architecture of ABRN. 

3.1. The residual network architecture 

Convolutional neural network has been successfully applied in image recognition tasks and has 

achieved good performance due to its advantages of extracting local features in the images. With the 

increasing of convolutional layers, a deeper traditional convolutional neural network may have 

degradation problem, which causes feature disappear during multiple nonlinear layers. In this paper, 
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we use residual convolutional network to solve degradation problem. ResNet adds a shortcut branch 

in the forward propagation to build two kinds of residual blocks: identity block and convolutional 

block, which are to fix the gradient disappearance and accuracy decline. Figure 2 shows that shortcut 

branch combines the input and the output of multiple convolution.  

 

Figure 2. Identity block (A): represents the main path of network propagation, and the 

shortcut which skips three layers. Convolutional block (B): add convolution (Con2D) and 

normalization layer (BatchNorm) to the shortcut based on identity block. Both of them have 

convolution with activation function of rectified linear unit (ReLU) in each layer of block. 

 The network is divided into five different stages: Stage 1 is a standard convolution; Stage 2 is 

one convolutional block followed by two identity blocks; Stage 3 is one convolutional block 

followed by three identity blocks; Stage 4 is one convolutional block followed by five identity blocks; 

Stage 5 is the same as Stage 2. Eventually, fully connected layer with a unit acts as output layer. In 

the following we consider a ResNet-50 as basic building block of ABRN due to the advantages of 

autonomous feature extraction and prediction. 

3.2. Attention based residual network 

There are many irrelevant wave bands and noise wave bands in the original spectral data, which 

would interfere with feature extraction and decline prediction accuracy. A small number of effective 

feature wave bands are unevenly distributed in the original high-dimensional spectral vector. To 

solve this problem, we add an attention module before the basic residual network, which is showed 

in Figure 3, to be an automatic preprocessing of feature weights redistribution. 

We will take one single sample as an example to introduce the principle of the proposed 

attention module in ABRN. We define the feature weights (    ) in attention module and original 

long sequence spectral input vector (   ) as  

          
         (1)  

       
               (2)  

where      is a square matrix and the size of which is consistent with the dimension of the input 
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vector, showed in Figure 3 (A4).   is the dimension of one sample and     is the number of 

samples. 

Attention module can enhance the feature wave bands and weaken the noise wave bands in the 

original spectral vector to increase the accuracy of the model, and attention module is defined as: 

    
             

   (3)  

    
  

       
      

  

        
      

 
  

          (4)  

where     and    
  is the  th dimension of single original spectral sample’s vector. We use 

softmax function on    
  to get     

 .     
  interacts with     

  via dot product to calculate the 

similarity by Eq (4).     
  is a     matrix, where each row represents a vector corresponding to 

each dimension of    , and the size   is consistent with the dimension of single sample    . 

Finally, we calculate the feature weights redistributed vectors      corresponding to each dimension 

of     as follows: 

    
 

          
           (5)  

where     
 

 is the  th dimension of vector after weights redistributed and    . 

We apply the feature enhancement spectral vector as the new input of ResNet. The new spectral 

vector via attention module’s autonomous processing can reduce the impact of noise, optimize the 

extraction of feature wave bands and improve the prediction accuracy. Experiments in section 4 

shows the validity of ABRN. 

After automatic preprocessing of attention module, we input the new spectral vectors to ResNet 

to extract the feature wave bands autonomously. In each convolution layer showed in Fig 3 (B), we 

apply moving convolutional operation by multiple convolutional kernel to obtain feature maps. Each 

map represents a feature in original spectral vectors. In order to adapt to the original samples’ 

property of a one-dimensional vector, we modify the size of convolutional kernel to     with 

stride 1. The kernel scans each dimension of the vector    and convolution is defined as  

                         (6)  

where          are the weights of kernel. After convolutional operation, we will obtain the 

feature map    in which the feature wave band represented by the kernel is highlighted. The weights 

of kernel are initialized randomly.  

We use Root Mean Squared Error (RMSE) as loss function of ABRN to find feature weights for 

each convolutional kernel through iterations, which is defined as 

      
               

   
 (7)  

where      is predicted value and        is actual value.     is the number of samples.  
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Figure 3. Attention module in ABRN. (A) shows the architecture of attention module: 

A1 and A6 are the feature distribution before and after attention module; A3 is the result 

of original NIRS vectors A1 processed by softmax; A4 is the attention weight matrix 

calculated by A2 and A3; A5 is calculated by matrix multiplication of A4 and A2. A7 is 

to adapt the input format by reshaping A5 to a matrix. (B) is an example of convolution: 

B1 keeps the original dimension by padding and B2 is feature map after convolution. 

4. Experiments 

4.1. Design 

In this section, we experiment with our proposed ABRN for predicting the active ingredient 

content in Antrodia Camphorata and Matsutake NIRS datasets, and compare the result with current 

popular NIRS analysis methods. 

We collect 165 Antrodia Camphorata samples and 200 Matsutake samples as our experiment 

datasets. The samples are processed by fermentation, centrifugation, freezing, filtration to obtain the 

final powder as an experimental sample. The spectral data of Antrodia Camphorata and Matsutake 

are obtained by scanning the NIRS of samples with Shimadzu UV-3150 UV-visible near infrared 

spectrophotometer and Japanese Shimadzu ISR-3100 integrating sphere accessory. The range of 

spectrophotometer is from 800 nm to 2500 nm. The scanned interval is 1 nm and the entrance slit 

width is 12 nm. We use barium sulfate product as a blank reference. Each sample is subjected to 3 

spectral scans, and we take the average spectral data as datasets. The NIRS of Antrodia Camphorata 

and Matsutake are shown in Figure 4. Different color curves in Figure 4 (A) and (B) represent 

different samples and the absorbance in Figure 4 reflects that different substances in samples have 

different reflection for the near infrared. Active ingredients in Antrodia Camphorata and Matsutake 

are determined by invasive analysis using chemical reagents. 
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Figure 4. (A):165 Antrodia Camphorata samples NIRS; (B):200 Matsutake samples NIRS. 

 In our experiments, 155 samples were selected randomly for model training to predict the 

content of polysaccharide and triterpenoid in Antrodia Camphorata, and the rest 10 samples were 

served as validation set. Meanwhile, 185 samples were selected randomly for model training to 

predict the content of polysaccharide and ergosterol in Matsutake, and the rest 15 samples were 

validation set. Due to uneven distribution of input data, we also normalized them before input into 

the model by subtracting the mean of input vectors and dividing by the variance to make the data 

conform to the standard normal distribution. 

 Adam algorithm [36] has faster learning rate and convergence rate than stochastic gradient 

descent, so we adopted it to optimize our ABRN. In the experiments, hyperparameters were set as 

follows: we set                     ,           ,             ,            

  ,              . Due to the small number of samples, we added regularization layers and 

dropout mechanism to overcome over-fitting problem during the model training. Finally, we evaluate 

the performance of ABRN by calculating the coefficient of determination (  ) between the predicted 

value and the actual value, which is defined as follows: 

   
   

   
  

     
  

   
     

       
     

   
 (8)  

4.2. Results and analysis 

In our experiments, we evaluate the performance of ABRN by analyzing original NIRS vectors 

without preprocessing of artificial feature wave bands selection. We take polysaccharide from 

Antrodia Camphorate and ergosterol from Matsutake as examples to present the intermediate results 

of attention module in ABRN shown in Figure 5.  
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Figure 5. The black curves in (A) and (B) represent original NIRS of one Antrodia Camphorate 

sample and one Matsutake sample. The red regions in (A) and (B) represent feature wave bands 

selected by attention module in ABRN. 

The we predict the content of various active ingredients in 165 Antrodia Camphorata samples 

and 200 Matsutake samples. Each group of experiments was repeated 10 times. The ABRN results of 

polysaccharide and triterpene in Antrodia Camphorata are shown in Figure 6. Meanwhile, the ABRN 

results of polysaccharide and ergosterol in Matsutake are shown in Figure 7 and Figure 8. 

Figure 6 shows the fitting results with actual values and predictive values using ABRN. It can be 

seen from A and B in Figure 6 that points are close to the blue line indicates ABRN has a high 

accuracy in predicting the content of active ingredients in Antrodia Camphorata samples. 

 

Figure 6. (A) and (B) are fitting between actual values and predictive values of ABRN in 

predicting the content of polysaccharide and triterpenoid in Antrodia Camphorata.  
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Comparative experiments 

We also compared ABRN with multiple linear regression with successive projections algorithm 

(SPA-MLR) [37]，PLS [8], RBFNN [17], residual network (ResNet) [35] in analyzing original NIRS 

vectors. RMSET indicates the root mean square errors of training set and RMSEV indicates the root 

mean square errors of validation set. Table 1 shows the comparative results. 

Table 1. Results of predicting active ingredients of Antrodia Camphorata and Matsutake 

by different NIRS methods. 

Method 
Evaluation  

Metrics 

Antrodia Camphorata Matsutake 

Polysaccharide Triterpene Polysaccharide Ergosterol 

SPA-MLR 

RMSET/(      ) 0.0571 0.0424 0.4047 0.0716 

RMSEV/(      ) 0.1129 0.0383 0.4151 0.0948 

      
  0.419 0.433 0.325 0.373 

PLS 

RMSET/(      ) 0.0537 0.0404 0.3164 0.0672 

RMSEV/(      ) 0.0439 0.0329 0.2816 0.0929 

      
  0.585 0.484 0.576 0.407 

RBFNN 

RMSET/(      ) 0.0233 0.0166 0.2231 0.0437 

RMSEV/(      ) 0.0453 0.0261 0.3790 0.0586 

      
  0.569 0.575 0.551 0.469 

ResNet 

RMSET/(      ) 0.0272 0.0202 0.1548 0.0345 

RMSEV/(      ) 0.0441 0.0338 0.2341 0.0510 

      
  0.696 0.724 0.723 0.550 

ABRN 

RMSET/(      ) 0.0229 0.0173 0.1343 0.0328 

RMSEV/(      ) 0.0349 0.0189 0.2472 0.0445 

      
  0.711 0.753 0.847 0.807 

In the comparative experiments, SPA-MLR uses successive projections algorithm as a 

preprocessing method, PLS uses principal component analysis as a preprocessing method and 

RBFNN use sliding window as preprocessing on original NIRS vectors to select feature wave bands. 

We can find in Table 1 that SPA-MLR, PLS and RBFNN both have higher RMSE and lower fitting 

than deep learning methods (ResNet and ABRN). As for deep learning methods, we compare ResNet 

with the proposed ABRN, both of them directly input the original spectral data instead of any 

artificial selected features, and achieve autonomous feature extraction. Unlike ResNet, we adopt 

attention module in ABRN to enhance feature wave bands and reduce noise wave bands. The results 

show that ABRN has the lowest RMSE in both training sets and validation sets. ABRN also has the 

best fitting: for Antrodia Camphorata, the coefficient of fitting between predictive values and actual 

values in predicting polysaccharide          and in predicting triterpene         ; for 

Matsutake, the coefficient of fitting between predictive values and actual values in predicting 

polysaccharide          and in predicting ergosterol         . ABRN shows the best 

performance among the four methods. 

Furthermore, we take PLS, RBFNN, ResNet and ABRN as examples to plot the fitting points of 

predictive values and actual values which is shown in Figure 7 and Figure 8. Due to the poor fitting 
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result of SPA-MLR, we do not show SPA-MLR figure in this manuscript. The prediction of 

polysaccharide and ergosterol content in Matsutake is taken as examples to visually show the fitting 

results of these 4 different methods. 

 

Figure 7. Fitting results of PLS, RBFNN, ResNet and ABRN in predicting 

polysaccharide content in Matsutake, where the horizontal axis indicates actual values 

and the vertical axis indicates predictive values. 

From Figure 7, we can find that ResNet and ABRN both have more points close to the blue line 

compared with PLS and RBFNN in predicting polysaccharide in Matsutake. Furthermore, ABRN 

shows a better fitting result than ResNet. 

In predicting ergosterol content in Matsutake, PLS, RBFNN and ResNet all have lower 

               . As for ResNet, though the most points are pretty concentrated, some of them are still 

deviate from the blue line. In fitting Figure 8 of ABRN, most of the points concentrate near the blue 

line which means that it has better fitting. 

In all groups of experiments, ABRN shows the best RMSE and    among four methods. It is 

because that compared with SPA-MLR, PLS and RBFNN which use preprocessing of common 

artificial feature wave bands selection, deep learning methods (ResNet and ABRN) can 

autonomously extract feature wave bands based on the characteristics of data itself in multiple 

iterations. The advantage is to avoid the loss of some tiny feature peaks in original spectral data. 

Meanwhile, the attention module we added in ABRN can reduce the influence of noise bands and 

increase the weights of feature wave bands, which can further improve the accuracy of feature wave 

bands extraction in the convolution. Therefore, the proposed ABRN has an outstanding and distinct 

 



3014 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 3003–3017. 

advantage in medicinal fungi active ingredients NIRS analysis. 

 

Figure 8. Fitting results of PLS, RBFNN, ResNet and ABRN in predicting ergosterol 

content in Matsutake, where the horizontal axis indicates actual values and the vertical 

axis indicates predictive values. 

5. Conclusion 

In this paper, we propose a NIRS of medicinal fungi analysis method, ABRN, which is based on 

ResNet. Compared with traditional NIRS analysis methods such as SPA-MLR, PLS and RBFNN, 

ABRN does not rely on experts’ experience for artificial feature wave bands selection. ABRN can 

directly use original NIRS vectors and autonomously extract feature wave bands from original NIRS 

vectors in multiple iterations, which can decrease the loss of tiny feature peaks. We add attention 

module in ABRN to do an automatic preprocessing of feature wave bands enhancement and noise 

wave bands decrement. We make comparative experiments in predicting the polysaccharide and 

triterpenoid content in Antrodia Camphorata and the polysaccharide and ergosterol content in 

Matsutake. The results show that ABRN has better fitting results (   and RMSE) than PLS, RBFNN 

and ResNet. 
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