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Abstract: Aerator is an indispensable tool in aquaculture, and China is one of the largest aquaculture 

countries in the world. So, the intelligent control of the aerator is of great significance to energy 

conservation and environmental protection and the prevention of the deterioration of dissolved 

oxygen. There is no intelligent aerator related work in practice and research. In this paper, we mainly 

study the intelligent aerator control based on deep learning, and propose a dissolved oxygen 

prediction algorithm with long and short term memory network, referred as DopLSTM. The 

prediction results are used to the intelligent control design of the aerator. As a result, it is proved that 

the intelligent control of the aerator can effectively reduce the power consumption and prevent the 

deterioration of dissolved oxygen. 
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1. Introduction  

Aerator is a machine used in aquaculture industry. When the aerator is working, the water is 

stirred through the impeller to dissolve the oxygen in the air into the water and increase the oxygen 

in the water [1,2]. The aerator is usually driven by the power engine, which involves the problem of 

power consumption. It is of great significance to reduce unnecessary waste and achieve energy 

saving and emission reduction in the use of aerator [3,4]. The concentration of dissolved oxygen is 
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the concentration of dissolved oxygen in the water. The concentration of dissolved oxygen in 

aquaculture is easily influenced by factors such as solar radiation, water temperature, pressure, 

salinity and water nutrition. The concentration of dissolved oxygen usually reaches the highest value 

around 4 p.m. and the lowest value at around 4 a.m. Therefore, according to the lethal concentration 

of critical dissolved oxygen in the animal, the critical concentration of shrimp is 4.0mg/L. If the 

lowest concentration of dissolved oxygen at 4 a.m. is lower than that of 4.0mg/L, the value of 

dissolved oxygen will have a tendency to deteriorate [5]. There is no any intelligent aerator in 

realities and research. 

Artificial intelligence including artificial immune [6–8], artificial neural network [9,10] and etc., 

has received more and more attention in the field of computer science. It has been applied in robot, 

economic, political decision making, control system [11–13], simulation system, and etc. The 

concept of deep learning [14] is derived from the artificial neural network. At present, deep learning 

has been successfully applied in the fields of machine vision, fingerprint identification, face 

recognition, electric power prediction, medical rehabilitation, and so on. However, there is no 

research on the aerator control algorithm design in the breeding industry. 

At present, the common prediction models includes curve fitting (CF) [15], auto-regression (AR) [16], 

neural network (NN) [17], grey models (GM) [18], support vector machine (SVM) [19] and so on. 

However, these methods need much training data, and the prediction accuracy can continue to be 

improved. Long and short term memory network has the advantages of less training data and high 

prediction accuracy. In order to explore a new method of dissolved oxygen prediction method and 

improve the prediction accuracy, the paper proposes the dissolved oxygen prediction method with 

long and short term memory network. 

The intelligent technology control of the aquaculture aerator based on deep learning is to build a 

prediction control algorithm with the Long-Short Term Memory (LSTM) [20,21] in deep learning. 

The model is used to accurately predict the concentration of dissolved oxygen in aquaculture industry, 

and the predicted data can be used to intelligently control the work time of the aerator, to ensure that 

the energy consumption of the aerator is at the lowest level when the concentration of dissolved 

oxygen is suitable. In the breeding of pond shrimp, when the dissolved oxygen cannot be known in 

advance, the work time of the aerator is 12 hours a day so as to prevent the concentration from 

deterioration. If the concentration of dissolved oxygen is predicted precisely, and the minimum 

concentration of the predicted value of the second day is no less than 4.0mg/L, it can be reduced by 4 

hours in the second day, that is to open 8 hours a day; and if the value is less than 4.0mg/L, the work 

time of aeration need to add two hours more, which is 14 hours a day, by doing so to improve the 

dissolved oxygen and avoid further deterioration of water quality. 

This paper mainly studies the intelligent control of aerator based on deep learning, and proposes 

an algorithm combining the dissolved oxygen prediction with long and short term memory network 

(DopLSTM). In this way, the aerator could work intelligently. When the dissolved oxygen is 

sufficient, the aerator reduces the work time and thus reduces the power consumption. However, 

when dissolved oxygen is insufficient, the aerator would increase the work time, which will increase 

the dissolved oxygen. Finally, we compare the power consumption of the intelligent aerator with that 

of the existing aerators. We use 10 consecutive days' data of three ponds in the experiments, among 

which the first seven days data are regarded as training data, and the last three days as test data. The 

results of intelligent control of power consumption by aerator are compared. As a result, the 

intelligent control of the aerator based on the deep learning can effectively reduce the power 

consumption, prevent the deterioration of the dissolved oxygen and improve the economic efficiency. 
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2. Proposed dissolved oxygen prediction algorithm 

Long-Short Term Memory (LSTM) is a kind of deep learning neural network based on 

Recurrent Neural Network (RNN) [22], which is proposed by Sepp Hochreiter and Jürgen 

Schmidhuber, and improved and promoted by Alex Graves [23]. The long and short term memory 

network which contains memory units can deal with the problem of RNN gradient disappearance, so 

it can predict more accurately. The proposed dissolved oxygen prediction algorithm with LSTM 

neural network is described as follows. 

2.1. The structure of the algorithm 
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Figure 1. LSTM Cell Structure. 

The cell unit structure of LSTM based on recurrent neural network RNN is improved as shown 

in Figure 1 [24,25]. 

The cell unit of long and short term memory network contains Cell Gate, Input Gate, Forget 

Gate and Output Gate. The Cell Gate is mainly used for receiving data, and the Forget Gate is mainly 

used for processing the data at the last time, that is, selective discarding. Input Gate, Output Gate, 

and Forget Gate all contain their own offset bias, as shown in Figure 1. There is a connection 

between various doors and cells. This connection is called weight. The real line represents the weight 

of the current time, and the dotted line represents the weight of the time at the last moment. 

2.2. The calculation of the algorithm 

The calculations of the cell unit structure of the long and short memory network are shown 

below [24,25]. Firstly, we define the current time Input as   , the last time as   
   , and the Cell 
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value of the cell at the last time as   
   . Secondly, g(x), f(x) and h(x) represent different activation 

functions. Wil, Wic, Wiw and Wiφ are the weights from input to and Input gate, Cell gate, Output gate 

and Forget gate, respectively. Equation (1)–Equation (15) give the detailed algorithm calculation 

process. 

The Input Gate value of the cell unit   
  is calculated as follows, 
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The Forget Gate value  
φ
  of cell unit is calculated as follows: 
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The Cell value of cell unit   
  is calculated as follows: 
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The Output Gate value [24-25] of the cell unit   
   is calculated as follows: 
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The Cell Output value [24,25] of cell unit   
   is calculated as follows: 

  
    

     
   (9)  

According to the Equations (1)–(9), the correlation value of cell structure of the long and short 

memory network can be calculated. In the process of training the model, the weight needs to be 

updated. Therefore, the gradient of each weight needs to be solved, and then the global optimal 

solution is found by using the training samples for random gradient descent. 
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First, we define the related loss function, as follows. 

K

k k kk=1
L(x,d)= -Lnp(d x )= - d Lny K=1,2,3,  d is the true value.       (10)  

The gradient about Cell Output value of cell θ
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The gradient about Output Gate of cell unit δ
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The gradient about Cell value of cell units θ
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The gradient about Forget Gate of the cell Forget Gate δ
 

 
  is calculated as follows: 
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Combining Equation (11) -Equation (15), the algorithm then use n n-1

n

L
w =m w -
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 to update 

weights where m∈[0,1], α is the learn rate and 
n

L

w




 is the calculated gradient. In most cases, m is 

set as 1. This is also called as the Backward Pass. In the algorithm, the iteration includes Forward 
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Pass and Backward Pass. 

The above long and short term memory network can be built to predict the dissolved oxygen in 

aquaculture industry, so as to realize the intelligent control of the aquaculture aerator. On the basis of 

accurate prediction of dissolved oxygen, the intelligent control of the aerator can prevent water 

deterioration, reduce the loss of aquaculture, save electrical energy, reduce energy waste and reduce 

the costs of aquaculture. 

3. Experiments 

The data of the experiments are three representative shrimp ponds taken from Beihai, Guangxi, 

China. The shrimp pond, with 3 blade aerators which power is 1.5 KW, covers an area of three mu. 

DopLstm includes 9 nodes in input layer, 16 nodes in middle layer, and 3 nodes in output layer. As 

for the parameters, the learning rate is set as 0.01 and the iterations are 3000. 

In the experiments, the dissolved oxygen data at 4 a.m. of seven days was trained and studied. 

The dissolved oxygen was predicted by the LSTM for the eighth, the ninth, the tenth days, and the 

work time of the aerator was intelligently controlled according to the prediction concentration of 

dissolved oxygen. 

3.1. Data processing of dissolved oxygen 

(1) Data normalization 

The data of dissolved oxygen in three shrimp ponds are normalized respectively. There are 

many normalization methods for the data pre-processing. We use the vector normalization 

method [26]. The value of the selected dissolved oxygen data is   , and the normalized formula is 

defined by Equation 16. 

 
(16)  

 (2) Division of training and test data 

The data of 10 days are divided into four groups: 1~3, 2~4, 3~5, 4~6 days, which are used to 

input training, respectively, 4, 5, 6 and 7 days data are used to output training for each group. 

(3) The prediction of dissolved oxygen 

The data of 5~7 days are used to predict the eighth day value, and then the eighth day’s real 

value would be put into the test to optimize the model, and the value of the ninth days would be 

predicted by the former eighth days' real value, and so on. 

Figure 2 gives the relationship of iterations and training accuracy. From the Figure 2, we can see 

that from the first iteration to the 501st iteration, the training accuracy is increasing, the 501st 

iteration’s accuracy is a litter decreasing. However, since then, the training accuracy has been 

increasing until the 2147th iteration. The training accuracy is smaller than 10
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Figure 2. The iteration and training accuracy. 

3.2. Experimental results 

In this part, the results of dissolved oxygen prediction are given and analyzed. On this basis, the 

power consumption based on DopLSTM algorithm is compared and analyzed. Furthermore, the 

development cost of prototype system is discussed. 

3.2.1. The dissolved oxygen prediction 

The predicted results of the three ponds (Figure 3, Figure 4 and Figure 5) are in good agreement 

with the actual value. For Figure 3–5, the metric unit of y axis is mg/L. The next three days of the 

first ponds are less than 4.0mg/L, which is judged to be a worsening situation. Then the aerator 

should open more 2 hours than the normal in the next three days to improve the concentration of 

dissolved oxygen and the water environment. The value of the next three days in the second and third 

ponds are higher than that of the 4.0mg/L, so the aerator should work 8 hours every day. And it is 4 

hours less than aerator without intelligent control every day. 

For the first pond, the dissolved oxygen tends to be deteriorated. The actual values of dissolved 

oxygen in three days were 3.8, 3.7 and 3.5, respectively. The predicted values were 3.96, 3.8 and 

3.75, respectively. The maximum prediction error is 0.25 and the maximum prediction error 

percentage is 6.67%. For the second pond, dissolved oxygen was the normal case. The actual values 

of dissolved oxygen in three days were 4.49, 4.2 and 4.2, respectively. The predicted values were 

4.34, 4.24 and 4.24, respectively. The maximum prediction error is 0.15 and the maximum prediction 

error percentage is 3.4%. For the third pond, the dissolved oxygen also showed a normal case. The 
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actual values of dissolved oxygen in three days were 4.09, 4.02 and 4.01, respectively. The 

predicted values were 4.09, 4.02 and 4.01. The maximum prediction error was 0.29 and the 

maximum prediction error percentage was 7.23%. All the three predicted experimental results 

meet the actual requirements. 
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Figure 3. The predicted value of dissolved oxygen in first pond. 

In Figure 3, for the predicted three days, DopLstm achieves the 4th, 2nd, 3rd accuracy, 

respectively. Although it does not achieve the highest accuracy, it meets the needs of 

practical application.  
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Figure 4. The predicted value of dissolved oxygen in second pond. 

In Figure 4, for the predicted three days, DopLstm achieves the second highest accuracy, which 

follows the NN. However, DopLstm is the highest for the last two days.  
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Figure 5. The predicted value of dissolved oxygen in third pond. 

In Figure 5, for the predicted third day of the third pond, DopLstm achieves the highest 

accuracy including CF, AR, NN, SVM, and GM. However, the NN is better than the DopLstm for the 

last two days. However, both of them are effective.  

In general, among the six prediction methods, DopLstm obtains satisfactory prediction accuracy 

for three experiments, which can meet the needs of practical application in aquaculture industry. 

3.2.2. The contrast of power consumption of each pond 

The power consumption of the three ponds (Figure 6, Figure 7 and Figure 8) is calculated 

according to the parameters of the three shrimp ponds selected by the experiments. For Figure 6–8, 

the metric unit of y axis is KWH. It is divided into the power consumption without intelligent control 

aerator and the power consumption adding intelligent control .As the above data shows, the last three 

days dissolved oxygen of the first pond is deteriorate, while the second and the third are apposite. 

3.2.3. The power consumption comparison 

Table 1. The comparison of power consumption. 

Models Deterioration Normal circumstances 

Power increment 16.67% −33.33% 

Table 1 shows the changes in power consumption of pond applied to intelligent control under 

normal and deteriorative conditions. As we can conclude from the result, the shrimp pond with the 

intelligent aerator could predict the deterioration trend of dissolved oxygen in advance, so it would 

increase 2 hours of using aerator to avoid further deterioration, improve the concentration of 

dissolved oxygen and avoid unnecessary loss. In the deteriorative conditions, the power consumption 

of pond with intelligent control will increase by 16.67% but it is necessary, while the power 
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consumption will be reduced by 33.33% in normal situations. Because the deteriorative conditions of 

the shrimp ponds will only occur in a sudden deterioration of the environment or in a few cases, the 

intelligent control of the aerator can be used to reduce the energy consumption effectively. Therefore, 

the intelligent control of the aerator in the shrimp pond can effectively prevent the deterioration of 

dissolved oxygen and avoid the loss of the breeding industry; on the other hand, it can save the loss 

of electric energy and increase the economic benefit. 

 
Figure 6. The contrast of power consumption with the first pond. 

 
Figure 7. The contrast of power consumption with the second pond. 
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Figure 8. The contrast of power consumption with the third pond. 

Followed by the energy comparison of the intelligent aerator, we further discuss the prototype 

building cost. After the dissolved oxygen sensors collect the data and send them to the computer, the 

algorithm only needs a small amount of data to achieve accurate prediction. So, the data can be even 

stored in Excel files and the algorithm does not need high-performance computers to achieve. 

Therefore, the prototype building cost is the implementation of the algorithm. At present, the 

algorithm is mature and stable, but an intelligent aerator need a single chip computer (SCM) to 

control. .As for the hardware cost, the common aerator takes about ￥2000. However, the intelligent 

aerator needs a SCM (such as ATmega 16) and a circuit board. Each of them takes about ￥10. As 

for the software development and time cost, a skilled programmer can implement in two working 

days including the circuit board soldering. So the software cost is about ￥1000 in China. The 

software cost could be shared for each intelligent aerator instead of the hardware cost. The more 

intelligent oxygen generators that we produce the, the lower that the software development cost is. 

Without purchasing additional high performance computers and software development is easy, so the 

building cost of an intelligent aerator is almost with the common one. The scale of the world's 

aquaculture industry is quite huge, so the intelligent aerator has broad application prospects. 

4. Conclusions 

China as a large aquaculture industry, the rational use of aerator can effectively prevent the 

deterioration of dissolved oxygen, increase the utilization rate of resources and reduce energy 

consumption. The intelligent control of aerator based on deep learning can make the aerator 

achieve this effect. The proposed algorithm, DopLstm, does not need large data for training, and 

can be continuously optimized in the process of prediction, making the prediction more accurate. 

The intelligent aerator, combing with the control of the deep study and the control of the 

traditional aerator, can control the opening time of the daily aerator intelligently, thus improving 

the utilization rate of the electric energy, reducing the power consumption of the aerator and 

improving the economic benefit of the aquaculture industry. Thus, it has good practical 
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application significance in aquaculture. 
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