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Abstract: The topological structures of complex networks have been playing an important role on the
epidemic spreading. There has been several studies of pairwise epidemic models on adaptive networks
with Poisson distribution, all of which have shown that the rewiring behaviors can lead to complex
dynamics numerically or analytically. However, the triples approximation formula under Poisson dis-
tribution overlooked the degree of center node of triples which has dramatic effects on the structures.
Therefore in this paper, through a new moment closure incorporating the effect of center node’s de-
gree, we study how the topological structures of adaptive networks influences epidemic dynamics. The
SIS pairwise epidemic model is first closed by the new triple approximation formula, then we trans-
form the model into an equivalent nondimensionalized three dimensional system. By the qualitative
theory and the stability theory of ordinary differential equations, the basic reproduction number R0 of
the model is obtained, the existence and stabilities of the equilibria are analyzed. Moreover, we prove
that the model exhibits transcritical forward bifurcation, backward bifurcation, saddle-node bifurcation
and Hopf bifurcation using the methods of bifurcation theory. In addition, by a numerical example,
the normal form of Hopf bifurcation and the first Lyapunov coefficient are derived, which show that a
stable limit cycle can bifurcate from the endemic equilibrium with larger epidemicity. Our study show
that the adaptive behavior can lead to rich dynamics on epidemic transmission, including oscillation
and bistability. Finally the numerical simulations which is consistent with the analytical results above
are given.

Keywords: epidemic model; Hopf bifurcation; backward bifurcation; bistability

1. Introduction

Modelling has become an important approach in understanding and control of infectious diseases
over recent years. Classical infectious disease model has a long history which can trace back to the
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study of smallpox in 1760 by Bernoulli [1]. Since then the classical compartmental epidemic models
are used more and more to study the epidemic spreading in human population. The homogeneous
mixing model in early stage assume that the population are well-mixing, meaning that each pair of in-
dividuals has an equal probability of contacting which is idealized obviously. With the rise of complex
network, it is found that the complex networks can characterize the contact pattern of people more
practical. And increasingly, more and more researchers realize that modeling the spreading of epi-
demic incorporating complex social network structures is more reasonable. Thus Pastor-Satorras et al.
established and studied the susceptible-infective-susceptible(SIS) model based on the node dynamics
on static homogeneous and scale-free networks (so called node-based epidemic model), respectively
[2]. They proved that there has no the epidemic threshold in scale-free network when the parameters
are proper. Furthermore, Pastor-Satorras and Vespignani studied the transmission threshold of epi-
demic on scale-free networks with the limited scale [3]. Then Boguna et al. gave the critical value
of SIS epidemic model with correlations on complex networks [4], and they found that the epidemic
threshold inversely proportional to the largest eigenvalue of the connectivity of the average number of
contaction with the type of a node with connectivity k linking to the other node with degree k

′

.

Following this idea, a large body of investigations on network epidemiology emerged based on the
modeling approach of node-based epidemic model. Mieghem et al. [5] introduced a node-level epi-
demic model by remoulding a traditional SIS model. Yang et al. [6, 7, 8] studied the spreading of
virus by taking into account heterogeneous, the influence of patch forwarding and bi-virus competing,
respectively. Zhang et al. [9] established an SIS model for epidemic spreading on semi-directed net-
works, which contains the outbreak threshold on undirected networks and directed networks as special
cases. Yang et al. [10] incorporated the infection age into on epidemic model on complex networks
and studied the effect of which on epidemic spreading. Peng et al. [11] considered the dual influ-
ences of dynamical contact networks’ structures and heterogeneous spatial constraints. Sun et al. [12]
investigated the effect of feedback regulation on vegetation patterns in semi-arid environments on ho-
mogeneous networks, and gave a conclusion and compare between the homogeneous mixing models
and network-based epidemic models[13]. However, the node-based epidemic models on complex net-
works neglects the correlation of connections, Keeling et al. [14, 15, 16] proposed the moment closure
epidemic model by taking the different types of edges into the dynamic models (so called edge-based
epidemic model). Wang et al. [17, 18, 19] put forward several different edge-based epidemic models
investigating the effect of multiple routes of transmission, infectious force in latent period on random
networks and two-stage contact process on complex networks, respectively. Yang et al. [20] proposed
a new coumputational approach for the basic reproduction number of epidemic models on complex
networks. Li et al. [21, 22] studied the spread of several specific infectious diseases through modeling
approach of epidemic models on homogeneous complex networks.

Furthermore, modeling epidemic on dynamical networks has attracted tremendous interest recently.
With the study of infections disease, people find that adaptive behavior is frequently happening. For ex-
ample, if the susceptible discover they have infected neighbors, the edges between the susceptibles and
infected neighbors can be automatically interrupted to avoid being infected. The edge after disconnect-
ing can sometimes rewire with other non-infected node or don’t rewire sometimes. Then most of the
researches either mainly focus on the studies of structures of complex networks[23, 24] or dynamics
of node-based epidemic models on networks [25, 26, 27, 28]. Moreover, Zhang et al. [28] established
the epidemic models on complex networks to study the spreading of seasonal-influenza diseases, and
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they found that that preferential imitation can invalidate targeted subsidy policies epidemic spreading.
Gross et al. [29, 30]studied a SIS edge-based model in dynamical networks. It’s worth mentioning
that Zhang et al. [31] gave a rigorously proof that the adaptive behaviors can lead to rich dynamics
like degenerate Hopf bifurcation, homoclinic bifurcation and Bogdanov-Takens bifurcation analytical,
etc. All of these studies suggested that a simple rewiring rule for the network has a profound impart
on the network structure and dynamics behavior. In addition, Shaw et al. studied susceptible-infective-
recovered-susceptible(SIRS) model in dynamics network and employ Monte Carlo for stochastic sim-
ulation. In this paper, it is assumed that once susceptible node has lost the connection with an infected
neighbour, it will re-established connections only with other noninfected node, and there exist thresh-
old and different steady state solutions when rewiring rate is zero. When rewiring rate isn’t zero, there
have rich dynamics which contains bistable phenomenon and Hopf bifurcation, transcritical bifurcation
and saddle-node bifurcation [32]. By contrast, Zanette and Risau-Gusman [33] assumed that the new
connections are allowed connected with other nodes randomly whatever their states are. This sort of
rewiring is appropriate for asymptomatic diseases. Besides that, Schwarzkopf et al. [34] considered a
epidemic model with an discriminate rewiring mechanism, depending on the nodes’ degree instead of
the infection process. More recently, Rogers et al. study a SIRS pair-wise proxy model by combining
random activation-deletion links with ’smart’ rewiring, they develop a method to predict the effects
of stochasticity in adaptive network [35]. Moreover, Juher et al. [36] studied the epidemic spreading
with two extinction scenarios by bifurcation analysis, and they obtained an analytical condition for the
occurrence of bistability based on[29]. Zhou et al. revealed the phenomenon of epidemic reemergence
in growing network by the dynamics of bistability and oscillation[37].

Make a survey of above studies, the triples approximation formula used to close the moment closure
models is based on the Poisson distribution, in which the average degree are often used to stand for
the nodes’ degrees. However, there are very large difference among degrees of nodes of real world
complex networks since which are usually heterogeneous. Thus the triples approximation formula
overlooked the degree of center node of triples which has dramatic effects on the accuracy of approx-
imation and the analysis of system. By incorporating the center node’s degree as a variable of triples
approximation formula, Kiss et al. [38] proposed a more precise approximation formula which can
consider the effect of heterogeneous of the complex networks. Above all, in this paper, we study how
the topological structures of adaptive networks influences epidemic dynamics using the new triples
approximation formula. We firstly close the model and reduce which to a three dimensional system
by some reasonable assumptions. Owing to the more nonlinearity of the new formula, the analysis
of the corresponding closed model is more difficult. By the qualitative theory and the stability theory
of ordinary differential equations, the basic reproduction number is derived, and the rich dynamics of
backward bifurcation, saddle-node bifurcation and Hopf bifurcation are analyzed.

In our paper, we develop a new triple approximation formula [38] and make further theoretical
analysis on the basis of the previous researches. The new triple approximation formula can involve
the dramatic effects of center nodes’ degree of triples on the structures, which makes the approxima-
tion more accurate. We close the epidemic model on adaptive networks on the basis of new triple
approximation formula, and the analytical conditions for rich dynamics like backward bifurcation and
saddle-node bifurcation are given. The outline of this paper is as follows. In Section 2, we give the
SIS epidemic model based on the adaptive networks, then an equivalent nondimensionalized three di-
mensional model is derived under the new triple approximation formula. In Section 3, the existence
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and stabilities of equilibria are studied, and the occurrence of backward bifurcation and saddle-node
bifurcation are proven analytically. In Section 4, the normal form of Hopf bifurcation and the first
Lyapunov coefficient are derived by a numerical example. What is more, numerical simulations (bi-
furcation diagrams and time series plots) holding for these results are also provided. Finally a brief
conclusion is given in Section 5.

2. The model

We consider an adaptive network with the constant number of nodes and connections are N and K,
respectively. Thus the average degree of the network can be denoted as n = 2K

N . Since there are no
isolated nodes in the network and the network is connected, the degree of every node is larger that 1,
i.e. n > 1.

The individuals (nodes) of the network are divided into two groups: the susceptibles (S), and the
infected (I). In the model, transmission will occur from infected nodes to susceptible nodes along an
edge connecting an infected node with a susceptible individual (so called SI link). For every SI link,
the susceptible is infected by his or her infective neighbor with fixed probability of τ per unit time. In
additional, each infected individual recovers to susceptible at rate γ independently. Furthermore, since
the susceptible individuals are likely to protect themselves, so the connections between susceptible
and infected individuals are also being rewired adaptively during the spreading of the epidemic. Each
SI link is rewired with probability w to connect the susceptible node to another randomly selected
susceptible one. Assume that there are no self-loops and multiple connections between nodes to form
in the rewiring process.

Let [S ] and [I] denote the total number of susceptible and infected individuals in the adaptive
network G. Moreover, [AB] and [ABC] represent the number of pairs of type A − B (with one member
in state A, and the other member in state B) and the number of triples of type A− B−C (with one edge
member in state A, the middle member in state B, and the other edge member in state C), respectively,
where A, B,C ∈ S , I. Then we have the balanced relationships, [S ] + [I] = N and [S S ] + 2[S I] + [II] =

2K, with respect to the nodes and edges of the network, respectively. Hence the spreading process on
an adaptive network can be described by the following S IS pairwise epidemic model

˙[S ] = γ[I] − τ[S I],
˙[I] = τ[S I] − γ[I],
˙[S I] = τ([S S I] − [IS I]) − (τ + γ + w)[S I] + γ[II],
˙[S S ] = 2γ[S I] + 2w[S I] − 2τ[S S I],
˙[II] = −2γ[II] + 2τ[IS I] + 2τ[S I].

(2.1)

One can verify that ˙[S ] + ˙[I] = 0 and ˙[S S ] + 2 ˙[S I] + ˙[II] = 0, which corresponds to the balance
conditions of nodes and edges respectively. However, these equations (2.1) are unclosed and cannot
be analyzed. The proceeds of the computation and analysis need to seek approximations that allow us
to close these equations at a lower dimension. That is to say, in order to close the equations (2.1) it
is necessary to approximate the triples [S S I] and [IS I] that appear. Keeling et. al. [15] proposed an
approximate formula in terms of pairs and singles

[ABC] ≈
n − 1

n
[AB][BC]

[B]
, (2.2)
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where n is the average degree of the network, and A, B,C ∈ {S , I}. However, since all triples are formed
from two pairs sharing a common central node, the approximation of triples depends on the degree of
central node. Therefore Kiss et. al. [38] modified the equation (2.2) by replacing the average degree
of the whole network with the group of central individuals

[ABC] ≈
kB − 1

kB

[AB][BC]
[B]

, (2.3)

where kB denotes the expected average degree of central nodes with type B. In fact, all types of triples
[S S I] and [IS I] are susceptible, therefore the average degree of susceptible individuals is only needed,
which given by

kS =
[S S ] + [S I]

[S ]
. (2.4)

Henceforth, we use equation (2.3) to approximate the triple structures in the network. Furthermore,
utilizing the balance conditions of constant number of nodes and connections, the system (2.1) is closed
at the level of pairs and singles

˙[I] = τ[S I] − γ[I],

˙[S I] = τ [S S ]+[S I]+[I]−N
(N−[I])([S S ]+[S I]) [S I]([S S ] − [S I]) − (τ + γ + w)[S I] + γ(nN − 2[S I] − [S S ]),

˙[S S ] = 2(γ + w)[S I] − 2τ [S S ]+[S I]+[I]−N
(N−[I])([S S ]+[S I]) [S S ][S I].

(2.5)

in which the derivations are taken with respect to t′. Therefore for biological feasibility, we just con-
sider the system (2) in the following domain

Ω0 =
{
([I], [S I], [S S ]) ∈ R3

+

∣∣∣ 0 6 [I] < N, 0 6 2[S I] + [S S ] 6 nN
}
. (2.6)

It is not difficult to verify that all of the solutions in the first octant will stay or enter inside the set Ω0.
Moreover, for simplicity of expression and analysis, we will rescale the model (2) into a dimension-

less system. Let

x =
[I]
N
, y =

2[S I]
nN

, z =
[S S ]
nN

,

t′ =
1
γ

t, A1 =
τ

γ
, A2 =

w
γ
,

(2.7)

therefore system becomes into the following nondimensionalized model
ẋ = −x +

A1ny
2 ,

ẏ =
A1y(2−2x−ny−2nz)(y−2z)

2(1−x)(y+2z) − (A1 + A2 + 3)y + 2(1 − z),

ż = y
(
A2 + 1 +

A1(2−2x−ny−2nz)z
(1−x)(y+2z)

)
,

(2.8)

where the dots represent the derivatives with respect to time t.
Since the average degree n > 1 holds, and according to (2.7), then one can define the parameter

space as following
Λ = {(A1, A2, n)|A1 > 0, A2 > 0, n > 1}. (2.9)
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Further, due to Ω0 is positive invariant of system (2), then we have

Ω =
{
(x, y, z) ∈ R3

+

∣∣∣ x, y, z > 0, x < 1, y + z 6 1
}

(2.10)

is positive invariant of system (2.8).
In the rest of the paper, we will study the dynamics and bifurcations of the dimensionless system

(2.8) in Ω with parameters in Λ.

3. Dynamics analysis of the model

3.1. Existence of equilibria

We find equilibria by setting the right hand side of system (2.8) equal to zero. One trivial equilibrium
point is the disease-free equilibrium (DFE), which is denoted by E0(0, 0, 1). The stability of the E0 is
determined by the Jacobian,

J =


−1 1

2 A1n 0
0 A1n − 2A1 − A2 − 3 −2
0 A1 + A2 + 1 − A1n 0

 . (3.1)

Evaluating the J on the disease-free equilibrium E0 yields the characteristic polynomial,

P0(λ) = (λ + 1){λ2 + [2A1 + A2 + 3 − A1n]λ + 2(A1 + A2 + 1 − A1n)}. (3.2)

Then we define the reproduction number as

R0 =
A1n

A1 + A2 + 1
. (3.3)

Then, E0 is stable (unstable) for R0<1 (R0>1), as expected.
Next, we discuss the existence of endemic equilibrium. As mentioned above, the solution according

to the endemic equilibrium, x > 0, is founded by letting the right side of the equations of the system
(2.5) to zero. Then the coordinates of any endemic equilibrium E(x, y, z) satisfy

y(x) =
2x
A1n

, z(x) =
(A1 + A2 + 1)(1 − x) − x +

√
∆1

2A1n
, (3.4)

where
∆1 =

[
(A1 + A2)2 + 4A1

]
x2 − 2

[
(A1 + A2)2 + 3A1 + A2

]
x + (A1 + A2 + 1)2,

it should be noted that ∆1 > 0 always holds since whose discriminant is −16A1(A2 + 1) < 0, and we
discard the other branch root of z(x) =

(A1+A2+1)(1−x)−x−
√

∆1
2A1n since it is negative. Define

f1(x) := A2x + A1n − (A1 + A2 + 1).

and
f2(x) := a2x2 + a1x + a0,
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where
a2 = A2(A1 + A2 + 2), a0 = (A1 + A2 + 1)2(1 − R0),
a1 = (n − 1)A2

1 + (A2(n − 3) + 2n − 3) A1 − 2A2(A2 + 1).

Then the coordinate x is a root of the following cubic polynomial equation

f2(x) = f1(x)
√

∆1. (3.5)

By a direct calculation, we analyze the roots of following equivalent equation f (x) of (3.5) within the
interval (0, 1)

f (x) = b3x3 + b2x2 + b1x + b0 = 0 with f1(x) f2(x) > 0, (3.6)

where
b3 = A2

2 > 0, b2 = A2(2A1n − A1 − 2A2),
b0 = A1n(A1 + A2 + 1)(1 − R0),
b1 = (n2 − n)A2

1 − (3A2n − A2 + 1)A1 + A2(A2 + 1).

In order to obtain the exact solutions of equation (3.6) by utilizing the ShengJin’s formula [39], then
we have

A = b2
2 − 3b3b1, B = b2b1 − 9b3b0, C = b2

1 − 3b2b0,

δ =

√
A

3b3
, h =

2A
√

A
27b2

3

, xN = −
b2

3b3
, yN =

2Ab2 − 3b3B
27b2

3

,

∆ = y2
N − h2 =

B2 − 4AC
81b2

3

.

Because of the uncertainty of the sign of ∆, we list all the possible real roots formulas below:

Cases 1. ∆ < 0 (implies A > 0), equation (3.6) has 3 different real roots

x11 = xN + 2δ cos
θ

3
= xN − 2δ cos

(
α

3
+

2π
3

)
,

x12 = xN + 2δ cos
(
θ

3
+

4π
3

)
= xN − 2δ cos

(
α

3
+

4π
3

)
,

x13 = xN + 2δ cos
(
θ

3
+

2π
3

)
= xN − 2δ cos

α

3
,

where θ = arccos −yN
h , α = arccos yN

h and x11 > x12 > x13.
Cases 2. ∆ = 0, equation (3.6) has 3 real roots,

(i) If A > 0, two of which are repeated roots

x21 = xN − 2 3

√
yN

2b3
= −

b2

b3
+

B
A
,

x22 = x23 = xN + 3

√
yN

2b3
= −

B
2A

.

(ii) If A = 0, there are 3 equal roots at x1,2,3 = xN .
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Cases 3. ∆ > 0, the unique real root of equation (3.6) is

x31 = xN +
3
√

Y1 +
3
√

Y2,

where Y1,2 =
−yN±

√
∆

2b3
.

We denote the possible endemic equilibria by Ei j

(
xi j, y(xi j), z(xi j)

)
(i, j = 1, 2, 3 and i > j).

For (A1, A2, n) ∈ Λ, f (1) = A1(n − 1) + A2 > 0, f ′′(1) = 2A2(A1(2n − 1) + A2) > 0, we have the
following three cases about the existence of endemic equilibria.

(1) R0 > 1: In this case f (0) = b0 < 0. It is not difficult to derive that b2 > A2(A1 + 2) > 0, therefore
f ′′(0) = 2b2 > 0, then f ′′(x) > 0 always holds when x ∈ (0, 1), that is to say, f ′(x) is monotone
increasing in the interval (0, 1). We discuss the roots of f (x) in the following situations:

(a) If b1 > 0, i.e. f ′(0) > 0, thus f ′(x) > 0 always holds when x ∈ (0, 1), implying that f (x) is
monotone increasing in the interval (0, 1).

(b) If b1 < 0, i.e. f ′(0) < 0, on account of

f ′(1) > A1A2n + A1(A2 + 1)(n − 1) + A2 > 0, f ′′(0) > 0,

which guarantees x∗1 ∈ (0, 1). Therefore it is not difficult to derive that f (x) is decreasing and
increasing monotonically in the interval (0, x∗1) and (x∗1, 1), respectively.

Hence, system (2.8) has a unique endemic equilibrium whose x-coordinate is the largest real root
of f (x).
(i) If ∆ < 0, the unique endemic equilibrium is E11 (x11, y(x11), z(x11)) since x11 > x12 > x13;
(ii) If ∆ = 0, equation (3.6) has 3 real roots, since b2 and b0 have opposite sign, then A = 0 and
∆ = 0 cannot be simultaneously true, namely it is nonexistent of 3 equal roots. Hence, we just
consider the case of A > 0, i.e. there has 3 real roots, x21, x22 = x23, two of which are repeated
roots. According to the Vieta theorem

x21 + 2x22 = −
b2

b3
< 0, x21x2

22 = −
b0

b3
> 0,

then we can obtain x21 > 0, x22 = x23 < 0, therefore the unique endemic equilibrium is
E21 (x21, y(x21), z(x21)).
(iii) If ∆ > 0, it is obviously that the unique endemic equilibrium is E31 (x31, y(x31), z(x31)).

(2) R0 = 1: In this case f (0) = b0 = 0, b2 = A2(A1 + 2) > 0 and f (x) = x(b3x2 + b2x + b1), recall that
f (1) > 0, therefore system (2.8) has a unique endemic equilibrium if and only if b1 < 0. Actually
it is not difficult to prove that ∆ < 0 holds in this case, and the 3 different real roots are

x11 =
−b2 +

√
b2

2 − 4b3b1

2b3
> 0, x12 = 0, x13 =

−b2 −

√
b2

2 − 4b3b1

2b3
< 0

respectively. Thus the unique endemic equilibrium is E11 (x11, y(x11), z(x11)).
(3) R0 < 1: In this case f (0) = b0 > 0, thus f (x) = 0 has at least one negative real root, namely

system (2.8) has up to two endemic equilibria. It is obvious that system (2.8) has no endemic
equilibrium if b1 > 0 and b2 > 0 due to all of the coefficients of equation (3.6) are non-negative in
this case. Therefore we just need to consider the existence of positive roots of f (x) = 0 in (0, 1)
when b1 < 0 or b2 < 0. It is not difficult to derive that x∗1 > 0.
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(a) ∆ < 0 implies A > 0, f (x) = 0 has 3 different roots which satisfy x13 < x12 < x11, then x13 <

0. Since f (x) is monotonically decrease and increase at the interval (x∗2, x
∗
1) and (x∗1,+∞)

respectively, thus x12 < x∗1 < x11. According to the Vieta theorem

x11x12x13 = −
b0

b3
< 0,

then x11 and x12 have the same sign, we have 0 < x12 < x11. On the other hand, 1 ∈ [x12, x11]
is false due to f (1) > 0, that is to say either 1 < x12 < x∗1 < x11 or x12 < x∗1 < x11 < 1, then
it is not difficult to derive that the latter case holds if and only if x∗1 < 1 which is equivalent
to f ′(1) > 0 since f ′′(1) > 0. Above all, f (x) = 0 has 2 different roots satisfying 0 < x12 <

x11 < 1 if and only if x∗1 < 1 (i.e. f ′(1) > 0), otherwise there are no roots in the interval (0, 1).
System (2.8) has 2 endemic equilibria E11 (x11, y(x11), z(x11)) and E12 (x12, y(x12), z(x12)).

(b) ∆ = 0 implies A > 0 (otherwise one can get a contradiction b1 > 0 and b2 > 0). f (x) = 0
has 3 roots x21 < 0 and x22 = x23 = x∗1 > 0. To sum up, f (x) = 0 has 2 roots satisfying
0 < x22 = x23 < 1 if and only if x∗1 < 1 (i.e. f ′(1) > 0), otherwise there are no roots in the
interval (0, 1). System (2.8) has 2 identical endemic equilibria E22 (x22, y(x22), z(x22)) which
x22 = x23 = x∗1 > 0.

(c) ∆ > 0. It is obviously that f (x) = 0 has a unique real root x31 < 0, there are no roots in the
interval (0, 1).

Note that if b1 < 0 or b2 < 0 and A > 0, one have f (x∗2) > f (0) > 0 since x∗1 > 0 and f (x) is
monotonically increase and decrease at the interval (−∞, x∗2) and (x∗2, x

∗
1) respectively. Therefore the

sign of ∆ is completely consistent with f (x∗1) because of ∆ = f (x∗2) f (x∗1).
We summarize the result above in the following theorem.

Theorem 3.1. For system (2.8) with (A1, A2, n) ∈ Λ and (x, y, z) ∈ Ω, f (1) = A1(n − 1) + A2 > 0,
f ′′(1) = 2A2(A1(2n − 1) + A2) > 0,

(1) The disease-free equilibrium E0 always exists.
(2) When R0 > 1, there exists a unique endemic equilibrium which is (a) E11 when ∆ < 0; (b) E21

when ∆ = 0; (c) E31 when ∆ > 0.
(3) When R0 = 1, there exists a unique endemic equilibrium E11 if and only if b1 < 0.
(4) When R0 < 1, and

(a) If b1 > 0 and b2 > 0 or f ′(1) 6 0, there is no endemic equilibrium.
(b) If b1 < 0 or b2 < 0 and f ′(1) > 0, system (2.8) has two endemic equilibria E11 and E12 if and

only if ∆ < 0(implies A > 0), and these two equilibria coalesce into one endemic equilibrium
E11 = E12 = E22 if and only if ∆ = 0(implies A > 0). Otherwise, system (2.8) has no endemic
equilibrium.

3.2. Stability of disease-free equilibrium

We primarily study the stability of disease-free equilibrium E0 in this subsection. By considering
the distribution of the roots of the characteristic equation (3.2) of Jacobian at disease-free equilibrium
E0, one can obtain E0 is stable (unstable) for A1 + A2 + 1 > A1n (A1 + A2 + 1 < A1n). Then the
disease-free equilibrium E0 is locally asymptotically stable (resp. unstable) for R0 < 1 (resp. R0 > 1).

We determine the types of disease-free equilibrium E0(1, 0, 1) in the following.
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Theorem 3.2. For the system (2.8), the disease free equilibrium E0(1, 0, 1) is

(a) R0 < 1: an attracting node;
(b) R0 > 1: an hyperbolic saddle;
(c) R0 = 1 and

(i) A2(A1 + A2) > 1: a saddle-node of codimension 1;
(ii) A2(A1 + A2) < 1: a saddle-node of codimension 1;
(ii) A2(A1 + A2) = 1: an attracting semi-hyperbolic node of codimension 2.

Proof. For the system (2.8), form the characteristic equation (3.2), it is not difficult to obtain that E0 is
an attracting node if R0 < 1, and E0 is an hyperbolic saddle if R0 > 1.

If R0 = 1, the eigenvalues of Jacobian at E0 are −1, −(A1 + 2) and 0. To determine the type of E0,
we linearize the system (2.8) at E0 and diagonalize the linear part, then we obtain the following system

Ẋ = −
2(A2

2+A1A2−1)
(A1+2)2 X2 + X · O (| Y,Z |) + O

(
| Y,Z |2

)
+ O

(
| X,Y,Z |3

)
,

Ẏ = −Y + O
(
| X,Y,Z |2

)
,

Ż = −(A1 + 2)Z + O
(
| X,Y,Z |2

)
,

(3.7)

Therefore if A2(A1 + A2) , 1, it is unnecessary to calculate the center manifold, and E0 is a saddle-node
of codimension 1.

If A2(A1 + A2) = 1, according to the center manifold theorem, there exists a center manifold for
system (3.7), which have the following form

Y =
A2

2(A2 + 1)2

(A2
2 − A2 − 1)(A2

2 − 2A2 − 1)2
X2 + O

(
| X |3

)
, Z =

2A3
2(A2 + 1)

(A2
2 − 2A2 − 1)3

X2 + O
(
| X |3

)
,

then one can obtain

Ẋ = −
2A2

2(A2 + 1)
(A2

2 − 2A2 − 1)2
X3 + O

(
| X |4

)
, (3.8)

so E0 is an attracting semi-hyperbolic node of codimension 2. �

4. The analysis of bifurcation and numerical simulations

Owing to the complexity of the expressions of the equilibria, in this section we launch into a detailed
discussion of the effect of adaptive behavior on the epidemic spreading through numerical simulations,
including stabilities, backward bifurcation, saddle-node bifurcation and Hopf bifurcation, etc. In order
to study the effect of topology of adaptive networks aroused by rewiring rate w and average degree
n, infection rate τ and recovery rate γ on disease transmission respectively, we perform the numerical
simulation of the system (2.9) based on the original parameter instead of A1 and A2. From the analysis
(2.7) and (3.3) in Sections 2 and 3, the basic reproduction number can be represented as

R0 =
A1n

A1 + A2 + 1
=

τn
τ + w + γ

. (4.1)

First, we simulate the time series of total densities of infected individuals on adaptive networks
based on the different values of rewiring rate w by fixing the other three parameters τ = 0.008, γ =
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0.002 and n = 10. In Figure 1(a), (d) and (g), we choose w = 0.004, which corresponding to A1 = 4
and A2 = 2, in this case the basic reproduction number R0 = 5.714; In Figure 1(b), (e) and (h), we
choose w = 0.04, which corresponding to A1 = 4 and A2 = 20, in this case the basic reproduction
number R0 = 1.600; In Figure 1(c), (f) and (i), we choose w = 0.4, which corresponding to A1 = 4 and
A2 = 200, in this case the basic reproduction number R0 = 0.195; We can see that if R0 < 1, the disease
will disappear (see Figure 1(c)), otherwise R0 > 1 the endemic equilibrium will stable (see Figures
1(a), (b)). Furthermore from Figures 1(a) and (b), we can see that the infected individuals tends to
the same level even though the different initial values x(0) = 0.96 (red line), x(0) = 0.55 (green line)
and x(0) = 0.20 (blue line) are selected, from which the infected individuals tends to zero, namely the
disease extinction is determined by the basic reproduction number R0 in this case. In the other hand,
the disease will persist or extinct when the rewiring rate w is lower or higher, respectively.
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Figure 1. Time series plot with τ = 0.008, γ = 0.002.

Next we show the backward bifurcation, saddle-node bifurcation and Hopf bifurcation can really
happen by plotting the relations of infected individuals versus parameters τ and w respectively, as
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shown in Figure 2. One can see that if R0 > 1, there is an unique endemic equilibrium, however 2
endemic equilibria appear at R0 = 1 and disappear when coalesce into one endemic equilibrium with
multiplicity 2, namely backward bifurcation occurs when R0 = 1 and disappears at the critical point LP
of saddle-node bifurcation. Since R0 is monotonically decrease ( or increase ) with the increasing of w
(or τ), the backward bifurcation curves are opening left and right in Figures 2(a) and 2(b) respectively.
Comparing to Figure 2(a) and 2(b), it is different that there is a unique endemic equilibrium when the
rewiring rate w is small or the infection rate τ is large. In addition 2 endemic equilibria appear at R0 = 1
in common, the larger one is stable initially ( red solid line )and the lower one is always a saddle node(
blue dashed line ).
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Figure 2. (a) Bifurcation diagram of infection percentage versus rewiring rate w, where
τ = 0.008, γ = 0.002. (b) Bifurcation diagram of infection percentage about versus infection
rate τ. w = 0.15, γ = 0.002. The imaginary line represents unstable and solid line represents
stable. The LP represents saddle-node point(limit point) and the BP denotes transcritical
point and the HP is Hopf bifurcation point.

We continue to explore the the bistability and oscillations of the system. In Figure 2(a), we can
also see that there have a critical point HP across which the stability of endemic equilibrium with
larger epidemicity is changed, then we can observe Hopf bifurcation bifurcating from critical point
HP and disappears when w is large (Figure 2(a)) or τ is small (Figure 2(b)). Since the disease-free
equilibrium E0 is stable when R0 < 1, then the bistability occurs from the R0 = 1 and disappears at the
critical point HP, namely both the larger endemic equilibrium and disease-free equilibrium are stable.
Furthermore, limit cycle will arise near the critical point HP, i.e. the periodic oscillations can occurs
for the system (2.8). To conform above conjectures, we fix two parameters γ = 0.002 and τ = 0.008,
and choose w = 0.3044 close to the HP point in Figure 2(a), the phase portrait of system is shown in
Figure 3. In this case the disease-free equilibrium E0 is stable node and the larger endemic equilibrium
is an unstable focus. Both the orbits of blue and green curve with initial conditions P1(0.8, 0.04, 0.15)
and P3(0.7, 0.12, 0.15) spiral outward (or inward) to a same stable limit cycle. The orbit (red curve)
with initial condition P2(0.85, 0.05, 0.10) spirals outward to the disease-free equilibrium E0. There this
example have proved that the system has a stable limit cycle, see Figure 3.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2973–2989.



2985

0

0.2
0.4

0.6
0.8

1

0
0.05

0.1
0.15

0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
y

z

P1P2
P3

Figure 3. Phase portraits of system (2.8) with three different initial value P1, P2 and P3. The
parameters are selected by γ = 0.002, τ = 0.008, w = 0.3044.

4.1. The analysis of bifurcation

Furthermore we show the Hopf bifurcation will really happen through a concrete example in this
Subsection. In additional, the type of Hopf bifurcation( supercritical or subcritical) is also determined
by calculating the first Liapunov coefficient. By selecting the parameters γ = 0.002, τ = 0.008 and
n = 10, by a direct calculation one can obtain the critical value of rewiring rate at HP point is w =

0.3008852. In this case the larger endemic equilibrium is E1(0.9687103, 0.04843551, 0.1210720).
In order to derive the norm form of Hopf bifurcation, we draw into the following affine transforma-

tion, 
x
y
z

=


0.9687103

0.04843551
0.1210720

 +


−0.002 0.04 0

0.3833287 −0.1322818 0.1189486

−0.4791774 −0.001111213 −0.1233932




u
v
w

, (4.2)

where the columns of the nonsingular transformation matrix are the eigenvectors of Jacobian matrix of
system (2.8) at E1 with selected parameters, corresponding to the eigenvectors of λ1,2 = ±0.0404113i
and λ3 = −0.2576751, respectively. We obtain the following normal form dynamical system,

u̇ = −0.0404113v +
∑

i+ j+k=2
ai jkuiv jwk,

v̇ = 0.0404113u +
∑

i+ j+k=2
bi jkuiv jwk,

ẇ = −0.2576751w +
∑

i+ j+k=2
ci jkuiv jwk,

(4.3)
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where

a002 = −2.135144, a101 = 1.141062, a011 = 0.8192872, a200 = −0.06860938,

a110 = 0.09381623, a020 = 0.2130411, b002 = 0.6924218, b101 = −0.2467929,

b011 = −0.03582535, b200 = −0.034729964, b110 = −0.2051875, b020 = −0.1968319,

c002 = 1.580789, c101 = −1.224142, c011 = −1.314055, c200 = 0.2261677,

c110 = 0.4684255, c020 = 0.2354379,

A direct calculation to obtain the center manifold which is

w = h(u, v) = −0.1653248u2 + 0.6436124uv + 0.7258436v2 + o(ρ2), ρ =
√

u2 + v2,

then the system restricted to the center manifold is given byu̇ = −0.04041138v + F1(u, v) + O
(
| u, v |4

)
,

v̇ = 0.04041138u + F2(u, v) + O
(
| u, v |4

)
,

(4.4)

where

F1(u, v) =0.3072829u3 + 0.4645974v3 + 1.508608u2v + 1.820306uv2

− 0.03472996u2 − 0.2051875uv − 0.1968319v2,

F2(u, v) = − 1.539753u3 − 1.550427v3 − 4.755158u2v − 4.737570uv2

+ 0.2261677u2 + 0.4684255uv + 0.2354379v2,

Thus from the Ref [40, 41] we can calculate the first Liapunov coefficient of system L1 which is

L1 =
1

16

[
∂3F1

∂u3 +
∂3F1

∂u∂v2 +
∂3F2

∂u2∂v
+
∂3F2

∂v3

]
+

1

16
√
|Im(λ1,2)|

[
∂2F1

∂u∂v

(
∂2F1

∂u2 +
∂2F1

∂v2

)

−
∂2F2

∂u∂v

(
∂2F2

∂u2 +
∂2F2

∂v2

)
−
∂2F1

∂u2

∂2F2

∂u2 +
∂2F1

∂v2

∂2F2

∂v2

]
|u=v=0 = −1.592995 < 0,

(4.5)

Therefore supercritical Hopf bifurcation occurs near the critical point HB which is consistent with the
numerical simulation in Figure 3.

5. Conclusion

For the purpose of assessing the impact of adaptive behavior on the epidemic spreading, a new
triples approximation formula incorporating the effect of center nodes’ degree of triples is proposed,
by which the SIS epidemic model on adaptive complex networks is closed. We first transform the
model into an equivalent nondimensionalized three dimensional system, and the existence of equilibria
is derived. Then the basic reproduction number R0 is obtained through the analysis of the stabilities
of disease-free equilibrium E0. In addition, the conditions of the existence of endemic equilibria are
analyzed strictly. By the qualitative theory and the stability theory of ordinary differential equations,
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the local stabilities of the endemic equilibria are proved. Moreover, using the methods of bifurcation
theory, we show that the model exhibits rich and complicated dynamics such as transcritical forward
bifurcation, backward bifurcation, saddle-node bifurcation. Besides, owing to the complexity, we
calculate the normal form of Hopf bifurcation numerically, and the first Lyapunov coefficient is derived
to determine the type of Hopf bifurcation (supercritical or subcritical). Then we show that a stable
limit cycle can bifurcate from the endemic equilibrium with larger epidemicity, and the numerical
simulations which is consistent with the analytical results are given.

The topological structure of adaptive network has obvious significance on epidemic spreading in
theory, i.e. adaptive behavior can lead to rich dynamics. At the point of the application, on account
of that backward bifurcation implies that the the basic reproduction number R0 < 1 is not enough
to control the spread of infectious diseases any more, and Hopf bifurcation means the oscillations
will occur, therefore adaptive behavior raises the difficulty of prevention and control of infectious
diseases. Keeling et al. [14, 16] studied the spread of the childhood epidemics and sexually transmitted
diseases by moment closure epidemic model without adaptive behaviors, and they show that the models
have no rich dynamics. Therefore, this paper show that adaptive topology is an important reason of
periodic outbreaks of epidemic as well as the nonlinear incidence rate and recovery rate in well-mixing
epidemic models, which expands people’s understanding on the epidemic oscillation in theory. And in
application, by controlling the parameters in a ’safe’ region to break the occurrence the bifurcations,
the research on this paper can provide a new guidance to prevention and control of diseases.
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