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Abstract: In this study, a hybrid invasive weed optimization (HIWO) algorithm that hybridizes the 

invasive weed optimization (IWO) algorithm and genetic algorithm (GA) has been proposed to solve 

economic dispatch (ED) problems in power systems. In the proposed algorithm, the IWO algorithm 

is used as the main optimizer to explore the solution space, whereas the crossover and mutation 

operations of the GA are developed to significantly improve the optimization ability of IWO. In 

addition, an effective repair method is embedded in the proposed algorithm to repair infeasible 

solutions by handing various practical constraints of ED problems. To verify the optimization 

performance of the proposed algorithm and the effectiveness of the repair method, six ED problems 

in the different-scale power systems were tested and compared with other algorithms proposed in the 

literature. The experimental results indicated that the proposed HIWO algorithm can obtain the more 

economical dispatch solutions, and the proposed repair method can effectively repair each infeasible 

dispatch solution to a feasible solution. The convergence capability, applicability and effectiveness of 

HIWO were also demonstrated through the comprehensive comparison results.  

Keywords: economic dispatch; hybrid invasive weed optimization; crossover operation; mutation 

operation; power system 
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1. Introduction 

Economic dispatch (ED) [1] in power systems is an important issue for obtaining the 

steady-state and economic operations of systems that is a typical constrained optimization problem 

with multiple variables. The optimization goal of the ED problem is to determine the most economic 

power outputs of generators while satisfying multiple constraints, such as the generation capacity 

limits, power demand balance, network transmission losses, ramp rate limits and prohibited 

operating zones. Considering the valve-point effects (VPE) of multivalve steam turbines for the ED 

problem, the objective cost function is a nonlinear and nonconvex function, which is hard to solve [2]. 

Especially in large-scale power systems with multiple generators, the ED problem is a complex 

optimization problem with several local optimal solutions, and thus the global optimal solution is 

hard to find. 

In recent years, several optimization algorithms, including conventional algorithms and 

meta-heuristic algorithms, have been proposed to solve the ED problems. Some conventional 

algorithms, such as linear programming (LP) [3], self-adaptive dynamic programming (SADP) [4], 

iterative dynamic programming (IDP) [1] and evolutionary programming (EP) [5], have been applied 

to solve the ED problems. These methods solve the ED problems using the simplified optimization 

model in which the valve-point effects, ramp rate limits, prohibited operating zones and transmission 

losses are not considered. Moreover, the optimal results obtained by these methods may be the local 

optima and have lower computational accuracy. The drawbacks of conventional algorithms prompt 

researchers to study meta-heuristic algorithms for solving ED problems. 

Recently, many meta-heuristic algorithms have been proposed to solve the various optimization 

problems, such as flow shop scheduling [6–8], steelmaking scheduling [9], job shop scheduling [10–13], 

flexible task scheduling [14] and chiller loading optimization [15–17]. Due to the better optimization 

performance, many meta-heuristic algorithms have also been applied to solve the complex ED 

problems, and these algorithms include the genetic algorithm (GA) [18–21], particle swarm 

optimization (PSO) and its variants [22–26], firefly algorithm (FA) [27], oppositional real coded 

chemical reaction optimization (ORCCRO) [28], differential evolution (DE) [29,30], chaotic bat 

algorithm (CBA) [31], oppositional invasive weed optimization (OIWO) [32], teaching learning 

based optimization (TLBO) [33], tournament-based harmony search (THS) [34], grey wolf 

optimization (GWO) [35,36], hybrid artificial algae algorithm (HAAA) [37], orthogonal learning 

competitive swarm optimizer (OLCSO) [2], backtracking search algorithm (BSA) [38], social spider 

algorithm (SSA) [39], civilized swarm optimization (CSO) [40], kinetic gas molecule optimization 

(KGMO) [41] and hybrid methods [42–45]. Although the above meta-heuristic algorithms have been 

shown to be efficient in solving ED problems, the optimal results obtained by these algorithms are 

not the most economical.  

By mimicking the colonization behavior of weeds in nature, the invasive weed optimization 

(IWO) algorithm was proposed by Mehrabian and Lucas [46] to optimize multidimensional functions. 

The experimental results demonstrated that IWO can obtain superior optimization results compared 

to other evolutionary-based algorithms. Due to its robustness, convergence, high accuracy and 

searching ability, the IWO algorithm has been applied to solve many engineering optimization 

problems. However, when IWO is used to solve the ED problem in large-scale power systems, the 

optimization power outputs of generators obtained by IWO consumes more generation costs 

compared to the reported methods in literature. To further improve the optimization performance of 
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IWO in solving ED problems, especially ED problems in the large-scale power systems, inspired by 

the effective application of hybrid methods in solving ED problems [37,42–45], a hybrid invasive 

weed optimization (HIWO) algorithm that hybridizes IWO with GA is developed in this study. The 

motivation behind choosing GA integrated with IWO is to get a better dispatch solution using the 

crossover operation between offspring weed and its parent weed to improve the local search ability 

of IWO, and executing the mutation operation on offspring weeds to increase the diversity of the 

population. The main contributions of this study are as follows: (1) the economic dispatch problem 

with various practical constraints is investigated by minimizing the total power generation cost; (2) 

the crossover and mutation operations of GA are proposed to improve the optimization performance 

of IWO; and (3) an effective repair method of handing constraints is investigated to repair the 

infeasible dispatch solutions. 

The rest of this paper is organized as follows. Section 2 gives the mathematical formulation of 

the ED problem. Section 3 introduces a hybrid invasive weed optimization (HIWO) algorithm. 

Section 4 presents the application method of HIWO on ED problems. Section 5 shows the 

experimental results and analysis on six power systems with different scales. The conclusion is 

finally given in Section 6.  

2. Problem formulation 

The ED problem in power systems is to find the optimal dispatch solution of the power outputs 

of generators, while the total power generation cost of the system is minimized and all the constraints 

are satisfied.  

2.1. Optimization objective 

The optimization objective of the ED problem is to minimize the power generation cost (SC) 

consumed by N number of generators in the power system, as shown in Eq 1.  

                                                                                       

 

   

 

where Pi and Ci are the power output and generation cost of the ith generator, respectively.  

For the ED problem neglecting valve-point effects, Ci is calculated by Eq 2. For the ED problem 

considering valve-point effects, Eq 3 is used to calculate Ci [2,32].  

            
                                                                           

            
                         

                                           

where ai, bi and ci are the cost coefficients of the ith generator; ei and fi are valve-point coefficients of 

the ith generator;   
    is the lower limit of Pi.  

2.2. Constraints  

The feasible dispatch solutions of the ED problem should satisfy the following constraints. 



2778 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2775–2794. 

2.2.1. Generation capacity limits 

The power output of each generator must be in the range specified by the minimum (  
   ) and 

maximum (  
   ) of the power output of the     generator, as shown in Eq 4. 

  
         

                                                                        

2.2.2. Power demand balance 

The power outputs of generators should satisfy the system power demand (PD). For the ED 

problem neglecting network transmission losses (PL), the power demand balance is expressed as Eq 

5 [30]. For the ED problem considering PL, the power demand balance is expressed as Eq 6. 

   

 

   

                                                                                        

   

 

   

                                                                             

PL can be calculated using the power flow analysis method [47] or the B-coefficients method [48]. 

This study adopts the following B-coefficients method to calculate PL. 

          

 

   

 

   

       

 

   

                                                                   

where Bij, B0i and B00 represent the loss coefficients.  

2.2.3. Ramp rate limits 

In the actual operation of the power system, to avoid the excessive stress on the boiler and 

combustion equipment, the change rate of the power output of each generating unit should be within 

the ramp rate limit, as shown in Eq 8. 

 
     

     

  
        

                                                                                  

where   
  is the power output of the     generator at the previous time interval.     and     

represent the upper limits of ramp up and ramp down rate of the     generator, respectively. 

When taking into account both the generation capacity limits and ramp rate limits, the value 

range of    can be rewritten as Eq 9. 

       
      

                
      

                                                      

2.2.4. Prohibited operating zones 

Considering the operation limitations of machine components, the power outputs of some 
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generators cannot lie in the prohibited zones, as shown in Eq 10. 

    

  
           

 

      
         

 

      

       
   

                                                                                          

where     
  and     

  represent the upper and lower limits of the kth prohibited zone, respectively. 

    is the number of the prohibited zones of   . 

3. Hybrid invasive weed optimization algorithm 

3.1. IWO algorithm 

IWO is a novel evolutionary computation algorithm based on weed swarm intelligence. By 

simulating the propagation and growth behaviors of weeds in nature, IWO searches for the optimal 

solution of the problem in the solution space. The calculation steps of IWO include initialization, 

reproduction, spatial dispersal and selection. The initial population with Nwo weed individuals is 

randomly generated in the feasible solution space, in which each weed consisting of variables 

represents a feasible solution. Then, each weed Wj in the population reproduces seeds, and the seeds 

grow into offspring weeds through spatial dispersal. The amount (Nsj) of seeds reproduced by Wj is 

calculated by using Eq 11. 

    
           

             
                                                                           

where Fitj is the fitness value of Wj ; Fitmin and Fitmax are the minimum and maximum fitness values 

in the weed population, respectively; Nsmin and Nsmax are the minimum and maximum of the number 

of seeds, respectively.  

The parent weeds with higher fitness values can reproduce more seeds, and they have more 

offspring weeds in the population. This reproduction strategy means that IWO can converge rapidly 

and reliably to the approximate optimal solution. Offspring weeds are randomly distributed around 

their parent weed according to a normal distribution with a standard deviation (   ). The calculation 

formula of     is shown in Eq 12. Along with the increase of the iteration times,     is gradually 

reduced from an initial value (   ) to a final value (   ), which makes the search range of IWO be 

gradually reduced. This strategy makes IWO have the whole space search capability in early 

iterations and high local convergence in later iterations. After all the seeds grow into weeds, the 

Nwmax weeds with higher fitness values are selected from all the weeds as the parent weeds of the 

next iteration. Through Itermax times iterations, the weed with the highest fitness value is the optimal 

solution of the problem. 

    
               

       
                                                             

where m is the nonlinear modulation index, and Iter and Itermax are the current number and maximum 

of iterations, respectively. 
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3.2. Framework of HIWO 

In the proposed HIWO algorithm, IWO is used to explore the solution space around parent 

weeds. After the seeds reproduced by parent weeds have grown into offspring weeds, the crossover 

and mutation operations of GA are performed on offspring weeds for improving the quality and 

diversity of solutions, which can improve the convergence speed and avoid the premature 

convergence of the algorithm.  

 

Figure 1. Pseudo code of the hybrid HIWO algorithm. 

3.2.1. Pseudo code of HIWO 

The execution flow of HIWO is represented by the pseudo code shown in Figure 1. 

3.2.2. Crossover operation 

Each offspring weed (OW(j, q)) (q=1, 2, …, Nsj ) crosses with its parent weed (Wj) to generate a 

new weed (       
 ). For each variable Pi (i=1, 2, …, N), calculate the generation cost (        

 
) 

consumed by the Pi of OW(j, q) and the generation cost (   
 ) consumed by the Pi of Wj,, and then 

determine the value of the Pi of        
  according to the following two cases. 

(a) If         
     

 , the Pi of        
  is equal to that of OW(j, q). 
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(b) If         
     

 , the Pi of        
  is equal to that of Wj. 

After the new offspring weed (       
 ) is generated by the crossover operation, set OW(j, q) = 

       
 . 

3.2.3. Mutation operation 

For each offspring weed (OW(j, q)) ( q=1, 2, …, Nsj ), randomly select X mutation points from N 

variables             , and then modify the Pi of each mutation point using a random number that 

is distributed around Pi according to a normal distribution with a standard deviation (  ). The 

calculation formula of    is expressed as Eq 13.  

      
      

                                                       

where rand (0, 1) is a random number between 0 and 1. 

4. Application of HIWO on ED problem 

4.1. Implementation method 

In the proposed HIWO algorithm, the first task is the encoding to represent each solution 

considering all of the constraints. Each weed (  ) is represented as a row vector consisting of power 

outputs of generators, as shown in Eq 14. The weed population is initialized by randomly generating 

the power outputs of generators by using Eq 15. Then, infeasible weeds are repaired into feasible 

solutions by using the repair method in Section 4.2. Weeds in the initial population are used as the 

parent weeds to reproduce seeds, which grows into offspring weeds through spatial dispersal. The 

weeds with higher fitness value can reproduce more seeds. The fitness function used in this study is 

shown in Eq 16. Each offspring weed will perform the crossover and mutation procedures, like in the 

canonical GA, and thus can increase the diversity of the population. Then, the repair procedure is 

applied on the infeasible offspring weeds to make them satisfy with all of the constraints. If the total 

quantity of parent weeds and offspring weeds is larger than the specified population size, select the 

weeds with higher fitness values as the parent weeds of the next iteration. Otherwise, all the weeds 

are used as parent weeds. After multiple times iterations, the best weed with the highest fitness value 

is selected as the optimal dispatch solution of the ED problem. 

                                                                                                              

      
      

                 
                                            

      
 

   
                                                                                                   

where SCj and Fitj represent the power generation cost and fitness value of the jth weed, respectively. 
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4.2. Repair method of infeasible solutions 

An effective repair method of handing constraints is proposed in this study to repair infeasible 

weeds into feasible solutions. The detail repair steps are stated in the following. 

Step 1: Modify the                of Wj to satisfy the generation capacity limits and ramp 

rate limits by using Eq 17. If    violates the constraint of prohibited operating zone, update    

using a upper or lower limit of the prohibited operating zones that is closest to   . 

    
       

      
                          

      
      

      
      

                        
      

      
                                     

Step 2: Calculate the constraint violation (V) of the power demand balance. For the ED problem 

considering transmission losses, V is calculated by using Eq 18. For the ED problem neglecting 

transmission losses, V is calculated by using Eq 19. If    , go to Step 3. Otherwise, go to Step 5. 

      

 

   

           

 

   

 

   

       

 

   

                                           

      

 

   

                                                                            

Step 3: Determine the modification sequence of N generators. For each generator i (i=1, 2, …, 

N), calculate the modification value   
  of    using the power outputs of the other     

generators. Create the set R=              to store the indexes of the other     generators 

excluding the ith generator. For the ED problem neglecting transmission losses, Eq 5 is modified to 

Eq 20 to calculate   
 . For the ED problem considering transmission losses, Eq 6 can be expressed as 

a second-order equation in   
  as shown in Eq 21. One root of the second-order equation is chosen 

as   
 , as shown in Eq 22. Then, modify   

  using Eq 17 to satisfy the generation capacity limits. 
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    (22) 

For each generator i ( i=1, 2, …, N), assume that the ith generator is selected as the revised 

generator, and    is replaced by   
 . Calculate the cost change (   ) using Eq 23 and the constraint 

violation (PVi) of the power demand balance using Eq 18 or 19. Then, calculate the percentage (    ) 

according to     and PVi, as shown in Eq 24. Finally, create a set (S) to store the modification 

sequence of N variables, which is determined by the value of      sorted in ascending order. 
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Step 4: Modify the power output of each generator in turn according to the modification 

sequence stored in S until the power demand balance constraint is satisfied. When the ith (     

generator is selected as the modified generator, the modified value (  
 ) of its power output is 

calculated by using Eq 20 or 22. If all the generators are modified and the power demand balance 

constraint is still not satisfied, go to Step 3. Otherwise, go to Step 5. 

Step 5: Output the modified weed (Wj). 

5. Experimental results and analysis 

To validate the optimization ability of HIWO on ED problems with various practical constraints, 

six classical ED problems in the small, medium, large and very large-scale power systems were 

selected as the studied test cases. For each test case, the optimal dispatch results obtained by HIWO 

in 50 independent runs, including the minimum cost (SCmin), average cost (SCavg), maximum cost 

(SCmax) and standard deviation of the costs (SCstd), are compared to those of algorithms reported in 

the literature. The best optimization performance among these algorithms is shown in boldface. The 

parameters of HIWO on six test systems are set as follows: the initial population size Nwo = 30, 

maximum population size Nwmax = 50, minimum number of seeds Nsmin = 1, maximum number of 

seeds Nsmax = 5, nonlinear modulation index m = 5, initial standard deviation      , final standard 

deviation           , maximum number of iterations Itermax = 2000, and number of mutation 

points X = 1 in the 160-generator system and X = 3 in the other systems. HIWO is implemented by 

using the MATLAB (R2016a) environment on an Intel core i7-4790 CPU with 8.00 GB RAM 

personal computer.  

5.1. Small-scale test system 

The 15-generator power system [2,24] considering transmission losses, ramp rate limits and 

prohibited operating zones is selected as the small-scale test system. The power load demand of the 

system is 2630 MW. In this test system study, the optimal power outputs of generators obtained by 

HIWO are shown in Table 1.The optimal dispatch results of HIWO are compared to those of OLCSO [2], 

WCA [49], ICS [50], FA [27], RTO [51], EMA [52] and IWO, as shown in Tables 2. Compared to 

other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, 

the dispatch solution obtained by HIWO consumes the least cost.  

Table 1. Optimal power output of HIWO for the 15-generator system. 

Generators Pi Generators Pi Generators Pi Generators Pi Generators Pi 

1 455.0000 4 130.0000 7 430.0000 10 159.7871 13 25.0000 

2 380.0000 5 170.0000 8 71.2594 11 80.0000 14 15.0000 

3 130.0000 6 460.0000 9 58.4944 12 80.0000 15 15.0000 
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Table 2. Comparison of the optimal dispatch results for the 15-generator system. 

Algorithms       ($)       ($)       ($)       

EMA [52] 32704.4503 32704.4504 32704.4506 NA 

FA [27] 32704.5000 32856.1000 33175.0000 147.17022 

ICS [50] 32706.7358 32714.4669 32752.5183 NA 

WCA [49] 32704.4492 32704.5096 32704.5196 4.513e-05 

RTO [51] 32701.8145 32704.5300 32715.1800 5.07 

OLCSO [2] 32692.3961 32692.3981 32692.4033 0.0022 

IWO 32691.8615 32691.9392 32692.1421 0.0927 

HIWO 32691.5614 32691.8615 32691.8616 0.0001 

5.2. Medium-scale test system 

The 40-generator power system [32] considering valve-point effects and transmission losses is 

selected as the medium-scale test system. The power load demand of the system is 10500 MW. The 

optimal power outputs obtained by HIWO are shown in Table 3. The optimal dispatch results of 

HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], SDE [29], OIWO [32], 

HAAA [37] and IWO, as shown in Tables 4. Compared to other algorithms in the literature, the 

proposed HIWO algorithm can obtain the cheapest dispatch solution in terms of minimum, average 

and maximum of costs in 50 runs.  

Table 3. Optimal power output of HIWO for the 40-generator system. 

Generators Pi Generators Pi Generators Pi Generators Pi Generators Pi 

1 113.9993 9 289.4281 17 489.2798 25 523.2794 33 190.0000 

2 113.9993 10 279.5996 18 489.2793 26 523.2794 34 200.0000 

3 120.0000 11 243.5995 19 511.2795 27 10.0000 35 199.9999 

4 179.7330 12 94.0000 20 511.2793 28 10.0000 36 164.7999 

5 87.7999 13 484.0391 21 523.2794 29 10.0000 37 109.9998 

6 139.9998 14 484.0390 22 523.2794 30 87.7999 38 110.0000 

7 300.0000 15 484.0393 23 523.2794 31 190.0000 39 109.9999 

8 299.9997 16 484.0391 24 523.2794 32 190.0000 40 549.9999 

Table 4. Comparison of the optimal results for the 40-generator system. 

Algorithms       ($)       ($)       ($)       

ORCCRO [28] 136855.19 136855.19 136855.19 NA 

BBO [28] 137026.82 137116.58 137587.82 NA 

DE/BBO [28] 136950.77 136966.77 137150.77 NA 

SDE [29] 138157.46 NA NA NA 

OIWO [32] 136452.68 136452.68 136452.68 NA 

HAAA [37] 136433.5 136436.6 NA 3.341896 

IWO 136543.8580  137009.5641  137679.1073  292.9686  

HIWO 136430.9504 136435.2127  136441.1059  4.3238  
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5.3. Large-scale test system 

To verify the dispatch performance of HIWO on large-scale power systems with multiple local 

optimal solutions, two cases studies are performed to compare the optimization results of HIWO and 

other algorithms. The detail information of these two cases is shown as follows. 

Case I: The 80-generator power system [37] considering valve-point effects. The power load 

demand is 21000 MW.  

Case II: The 110-generator power system [20,32] neglecting valve-point effects and 

transmission losses. The power load demand is 15000 MW.  

Table 5. Optimal power output of HIWO for the 80-generator system (Case I). 

Generators Pi Generators Pi Generators Pi Generators Pi Generators Pi 

1 110.8335 17 489.3362 33 189.9994 49 284.6071 65 523.2794 

2 111.5439 18 489.2794 34 165.1983 50 130.0000 66 523.2835 

3 97.3834 19 511.2731 35 199.9997 51 94.0040 67 10.0000 

4 179.7603 20 511.2666 36 199.9998 52 94.0000 68 10.0000 

5 87.9806 21 523.2525 37 109.9999 53 214.7298 69 10.0000 

6 139.9997 22 523.2805 38 110.0000 54 394.2675 70 87.8052 

7 259.5584 23 523.2794 39 109.9987 55 394.2967 71 190.0000 

8 284.7677 24 523.2794 40 511.2603 56 304.4839 72 189.9997 

9 284.6331 25 523.2794 41 110.9296 57 489.3082 73 189.9991 

10 130.0000 26 523.2958 42 110.8195 58 489.2773 74 164.7786 

11 169.0220 27 10.0000 43 97.3706 59 511.2121 75 199.9994 

12 94.0000 28 10.0000 44 179.7187 60 511.2992 76 200.0000 

13 214.7422 29 10.0000 45 87.8560 61 523.2830 77 109.9990 

14 394.1929 30 89.6856 46 139.9995 62 523.3201 78 110.0000 

15 394.2794 31 189.9993 47 259.6320 63 523.2794 79 109.9996 

16 394.3050 32 189.9992 48 284.6702 64 523.2794 80 511.2482 

In the case I study, the optimal dispatch solution obtained by HIWO is shown in Table 5. The 

comparison results of generation costs generated by HIWO, THS [34], CSO [40], HAAA [37], GWO 

[35] and IWO are summarized in Table 6. It can be found from Table 6 that HIWO can obtain the 

cheapest dispatch solution compared to other algorithms.  

Table 6. Comparison of the optimal results for the 80-generator system (Case I). 

Algorithms       ($)       ($)       ($)        

THS [34] 243192.6899 243457.36 NA 120.9889 

CSO [40] 243195.3781 243546.6283 244038.7352 NA 

HAAA [37] 242815.9 242883 242944.5 29.2849 

GWO [35] 242825.4799 242829.8192 242837.1303 0.093 

IWO 246386.4038  248088.2077  249888.0623  844.0919  

HIWO 242815.2096  242836.1110  242872.4662  10.3458  
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In the case II study, the optimal dispatch solution obtained by HIWO is shown in Table 7. The 

generation cost generated by HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], 

OIWO [32], OLCSO [2] and IWO, which are summarized in Table 8. Compared to other algorithms 

in terms of minimum, average, maximum and standard deviation of costs in 50 runs, the optimal 

dispatch solution obtained by HIWO generates the least generation cost. 

Table 7. Optimal power output of HIWO for the 110-generator system (Case II). 

Generators Pi Generators Pi Generators Pi Generators Pi Generators Pi 

1 2.4000 23 68.9000 45 659.9999 67 70.0000 89 82.4977 

2 2.4000 24 350.0000 46 616.2499 68 70.0000 90 89.2333 

3 2.4000 25 400.0000 47 5.4000 69 70.0000 91 57.5687 

4 2.4000 26 400.0000 48 5.4000 70 359.9999 92 99.9986 

5 2.4000 27 499.9992 49 8.4000 71 399.9999 93 439.9998 

6 4.0000 28 500.0000 50 8.4000 72 399.9998 94 499.9999 

7 4.0000 29 199.9997 51 8.4000 73 105.2864 95 600.0000 

8 4.0000 30 99.9998 52 12.0000 74 191.4091 96 471.5717 

9 4.0000 31 10.0000 53 12.0000 75 89.9996 97 3.6000 

10 64.5432 32 19.9993 54 12.0000 76 49.9999 98 3.6000 

11 62.2465 33 79.9950 55 12.0000 77 160.0000 99 4.4000 

12 36.2739 34 249.9998 56 25.2000 78 295.4962 100 4.4000 

13 56.6406 35 359.9999 57 25.2000 79 175.0102 101 10.0000 

14 25.0000 36 399.9997 58 35.0000 80 98.2829 102 10.0000 

15 25.0000 37 39.9998 59 35.0000 81 10.0000 103 20.0000 

16 25.0000 38 69.9996 60 45.0000 82 12.0000 104 20.0000 

17 154.9999 39 99.9998 61 45.0000 83 20.0000 105 40.0000 

18 154.9993 40 119.9984 62 45.0000 84 199.9999 106 40.0000 

19 155.0000 41 157.4299 63 184.9996 85 324.9972 107 50.0000 

20 155.0000 42 219.9999 64 184.9996 86 440.0000 108 30.0000 

21 68.9000 43 439.9999 65 184.9984 87 14.0886 109 40.0000 

22 68.9000 44 559.9998 66 184.9997 88 24.0910 110 20.0000 

Table 8. Comparison of the optimal results for the 110-generator system (Case II). 

Algorithms       ($)       ($)       ($)        

ORCCRO [28] 198016.29 198016.32 198016.89 NA 

BBO [28] 198241.166 198413.45 199102.59 NA 

DE/BBO [28] 198231.06 198326.66 198828.57 NA 

OIWO [32] 197989.14 197989.41 197989.93 NA 

OLCSO [2] 197988.8576 197989.5832 197990.4551 0.3699 

IWO 198252.3594  198621.3233  198902.7697  138.4714  

HIWO 197988.1927  197988.1969  197988.2045  0.0025  
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5.4. Very large-scale test system 

To investigate the dispatch performance of HIWO on very large-scale power systems, the 

following two cases studies are performed for comparing the optimization results of HIWO and other 

algorithms. 

Case I: The 140-generator Korea power system [23,32] neglecting transmission losses. The 12 

generators consider the valve point effects. The power load demand is 49342 MW. 

Case II: The 160-generator power system [32] considering valve-point effects. The power load 

demand is 43200 MW. 

Table 9. Optimal power output of HIWO for the 140-generator system (Case I). 

Generators Pi Generators Pi Generators Pi Generators Pi Generators Pi 

1 115.2442 29 500.9998 57 103.0000 85 115.0000 113 94.0000 

2 189.0000 30 500.9994 58 198.0000 86 207.0000 114 94.0000 

3 190.0000 31 505.9993 59 311.9941 87 207.0000 115 244.0000 

4 190.0000 32 505.9997 60 281.1604 88 175.0000 116 244.0000 

5 168.5393 33 506.0000 61 163.0000 89 175.0000 117 244.0000 

6 189.9932 34 505.9998 62 95.0000 90 175.0000 118 95.0000 

7 489.9992 35 499.9996 63 160.0000 91 175.0000 119 95.0000 

8 489.9996 36 500.0000 64 160.0000 92 579.9998 120 116.0000 

9 495.9997 37 240.9993 65 489.9465 93 645.0000 121 175.0000 

10 495.9994 38 240.9999 66 196.0000 94 983.9998 122 2.0000 

11 495.9997 39 773.9996 67 489.9717 95 977.9993 123 4.0000 

12 496.0000 40 769.0000 68 489.9908 96 681.9997 124 15.0000 

13 506.0000 41 3.0000 69 130.0000 97 719.9998 125 9.0000 

14 509.0000 42 3.0000 70 234.7202 98 717.9993 126 12.0000 

15 506.0000 43 249.2474 71 137.0000 99 719.9997 127 10.0000 

16 504.9997 44 246.0287 72 325.4950 100 963.9998 128 112.0000 

17 505.9997 45 249.9973 73 195.0000 101 958.0000 129 4.0000 

18 505.9997 46 249.9863 74 175.0000 102 1006.9992 130 5.0000 

19 504.9994 47 241.0622 75 175.0000 103 1006.0000 131 5.0000 

20 505.0000 48 249.9950 76 175.0000 104 1012.9999 132 50.0000 

21 504.9998 49 249.9916 77 175.0000 105 1019.9996 133 5.0000 

22 505.0000 50 249.9995 78 330.0000 106 953.9999 134 42.0000 

23 504.9998 51 165.0000 79 531.0000 107 951.9998 135 42.0000 

24 504.9996 52 165.0000 80 530.9995 108 1005.9996 136 41.0000 

25 536.9997 53 165.0000 81 398.6524 109 1013.0000 137 17.0000 

26 536.9995 54 165.0000 82 56.0000 110 1020.9998 138 7.0000 

27 548.9998 55 180.0000 83 115.0000 111 1014.9996 139 7.0000 

28 548.9993 56 180.0000 84 115.0000 112 94.0000 140 26.0000 

In the case I study, the optimal dispatch solution obtained by HIWO is shown in Table 9. The 

optimal results of HIWO are compared to those of SDE [29], OIWO [32], HAAA [37], GWO [35], 

KGMO [41] and IWO, as shown in Table 10. The corrected optimal result of OIWO is shown in 
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italics. Compared to other algorithms in terms of minimum, average, maximum and standard 

deviation of costs in 50 runs, HIWO can obtain the cheapest dispatch solution. 

Table 10. Comparison of the optimal results of HIWO for the 140-generator system (Case I). 

Algorithms       ($)       ($)       ($)        

SDE [29] 1560236.85 NA NA NA 

OIWO [32] 1559712.2604 NA NA NA 

HAAA [37] 1559710.00 1559712.87 1559731.00 4.1371 

GWO [35] 1559953.18 1560132.93 1560228.40 1.024 

KGMO [41] 1583944.60 1583952.14 1583963.52 NA 

IWO 1564050.0027  1567185.2227  1571056.6280  1678.8488  

HIWO 1559709.5266  1559709.6956  1559709.8959  0.0856  

In the case II study, the optimal dispatch solution obtained by HIWO is shown in Table 11. The 

optimal results of HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], CBA [31], 

OIWO [32] and IWO, as shown in Table 12. Compared to other algorithms, HIWO can also obtain 

the cheapest dispatch solution in terms of minimum, average, maximum and standard deviation of 

costs. 

Table 11. Optimal power output of HIWO for the 160-generator system (Case II). 

Generators Pi Generators Pi Generators Pi Generators Pi Generators Pi 

1 218.6095 33 280.6560 65 279.6118 97 287.7203 129 431.0758 

2 209.2361 34 238.9676 66 238.5645 98 238.6988 130 275.8790 

3 279.6486 35 279.9554 67 287.7296 99 426.2750 131 219.6189 

4 240.3113 36 240.9831 68 241.2519 100 272.6741 132 210.4739 

5 280.0206 37 290.1069 69 427.7708 101 217.5647 133 281.6640 

6 238.4301 38 240.0425 70 272.9907 102 211.9593 134 238.9676 

7 288.2326 39 426.3102 71 218.5918 103 280.6578 135 276.5752 

8 239.5051 40 275.6392 72 212.7020 104 239.2363 136 239.3707 

9 425.6549 41 219.6195 73 281.6629 105 276.3263 137 287.7806 

10 275.6903 42 210.9690 74 238.9676 106 240.7144 138 238.5645 

11 217.5646 43 282.6711 75 279.3688 107 290.0715 139 430.7874 

12 212.4544 44 240.3113 76 237.6239 108 238.8332 140 275.8606 

13 280.6558 45 279.7868 77 289.9995 109 425.7918 141 218.6539 

14 238.6988 46 237.4895 78 239.9082 110 275.2705 142 210.7215 

15 279.9370 47 287.7274 79 425.2406 111 217.5671 143 281.6640 

16 240.7144 48 240.0425 80 276.0112 112 212.2069 144 239.3707 

17 287.6968 49 427.4497 81 218.5923 113 281.6664 145 276.3578 

18 239.7738 50 275.6817 82 212.2069 114 239.6394 146 239.6394 

19 427.4049 51 219.6197 83 282.7049 115 276.0940 147 287.7565 

20 275.6990 52 213.4447 84 237.7582 116 240.3113 148 239.3707 

21 217.5665 53 282.6717 85 279.7940 117 290.0972 149 426.3023 

Continued on next page 
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Generators Pi Generators Pi Generators Pi Generators Pi Generators Pi 

22 212.2069 54 237.8926 86 239.3707 118 239.5051 150 275.6371 

23 283.6805 55 276.2856 87 290.0916 119 429.4367 151 217.5647 

24 239.7738 56 239.5051 88 239.2363 120 275.6690 152 212.2069 

25 279.9011 57 287.6883 89 427.0504 121 217.5656 153 279.6493 

26 240.9831 58 238.5645 90 275.7937 122 210.2264 154 238.4301 

27 290.0737 59 429.9489 91 217.5643 123 280.6617 155 279.9078 

28 240.8488 60 275.5096 92 212.9496 124 239.7738 156 240.4457 

29 427.1007 61 218.5915 93 282.6732 125 275.9409 157 287.7385 

30 276.2995 62 212.9496 94 240.4457 126 240.1769 158 238.5645 

31 219.6189 63 282.6705 95 279.4854 127 287.6965 159 426.9110 

32 211.7117 64 239.9082 96 240.1769 128 238.4301 160 272.7775 

Table 12. Comparison of the optimal results for the 160-generator system ( Case II ). 

Algorithms       ($)       ($)       ($)        

ORCCRO [28] 10004.20 10004.21 10004.45 NA 

OIWO [32] 9981.9834 9982.991 9983.998 NA 

BBO [28] 10008.71 10009.16 10010.59 NA 

DE/BBO [28] 10007.05 10007.56 10010.26 NA 

CBA [31] 10002.8596 10006.3251 10045.2265 9.5811 

IWO 9984.8409  9985.5127  9986.1947  0.3252  

HIWO 9981.7867  9982.0010  9982.1922  0.0934  

5.5. Convergence tests 

To illustrate the convergence ability of HIWO for solving different-scale ED problems with 

various constraints, the convergence curves of HIWO and IWO on six test systems are drawn, as 

shown in Figure 2. It can be found from Figure 2 that HIWO can converge to the optimal areas in the 

six test systems, and the convergence speed of HIWO on the 15, 40, 80,110 and 140-generator power 

systems, is faster than that of IWO. Although the convergence speed of HIWO on the 160-generator 

power system is slower than that of IWO in the early evolutionary stage, it is faster than that of IWO 

in the later evolutionary stage. The reason is that the crossover and mutation decrease the fitness 

value of offspring weeds in 160-generator power system having lots of constraints, and then reduce 

the convergence speed in the early evolutionary stage, but increase the diversity of the population to 

jump out local optimization in the later stage. 

6. Conclusion 

In this paper, a hybrid HIWO algorithm combining IWO with GA is proposed to solve ED 

problems in power systems. The HIWO adopts IWO to explore the various regions in the solution 

space, while the crossover and mutation operations of GA are applied to improve the quality and 

diversity of solutions, thereby preventing the optimization from prematurity and enhancing the 

search capability. Moreover, an effective repair method is proposed to repair infeasible solutions to 



2790 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2775–2794. 

feasible solutions. The experimental results of the six test systems studies show that HIWO can 

obtain the cheapest dispatch solutions compared to other algorithms in the literature, and have a 

better optimization ability and faster convergence speed compared to the classical IWO. In summary, 

the proposed HIWO algorithm is an effective and promising approach for solving ED problems in 

different-scale power systems. 

 

(a) 15-generator power system       (b) 40-generator power system 

 

(c) 80-generator power system     (d) 110-generator power system 

 

(e) 140-generator power system     (f) 160-generator power system 

Figure 2. Convergence curves of HIWO and IWO on the six test systems. 
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