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Abstract: This study aims to investigate the mechanical properties of sandy pebble soil through 

theoretical deduction and finite element analysis. Based on the assumption of stress uniformity or 

strain uniformity, the analytical formulas for calculating the equivalent deformation modulus of 

pebble soil are derived through RVEs. To verify the accuracy of the formulas, a series of numerical 

experiments are conducted through ABAQUS. Results show that theoretical calculation values match 

numerical simulation results well and the analytical formulas are effective when the pebble content is 

0–60%. For pebble content lower than 20%, the equivalent deformation modulus could be described 

by “Stress Uniformity Model”. When content is 20%–60%, pebble soil is a transition state from 

“Stress Uniformity” to “Strain Uniformity”, for which the constitutive model could be expressed as a 

modified transition formula. This research is helpful for further investigation of mechanical 

properties of pebble soil. The theories developed in this study can be used in determining shield 

excavation parameters, and predicting the ground settlement caused by shield excavation. 
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1. Introduction 

Sandy pebble soils are mainly composed of pebbles, gravels, sand and clayey soil. Different 

from clays, rocks or other homogeneous solid materials, the structure of sandy pebble soil is discrete 

and the mechanical properties are rather complex. Sandy pebble soils distribute unevenly in the 

underground stratum. The permeability of sandy pebble soil is high and the self-stability is poor. 

Most pebbles are ellipsoidal shaped because of the long-term scouring of groundwater. The strength 

of a single pebble is high, so pebble soils can withstand a high compressive stress. On the contrary, 

pebble soil has very low resistance to tensile stress because its internal cohesive force is almost zero. 

Shear failure is the most common failure mode for sandy pebble soil [1]. 

The structure of sandy pebble soil is loose and easy to be disturbed, shield construction in this 

kind of soil layer may cause land subsidence and collapse easily [1]. For all engineering accidents, 

the most typical one is lagged settlement. During shield excavation, if the thrust of shield cutter-head 

is too large, it may cause the uplift of the ground. On the contrary, if the thrust is insufficient, it is 

easy to cause excessive excavation and form a soil cavity. With the movement of soil cavity to the 

ground, the lagged settlement will appear. In shield construction, deformation modulus plays an 

important role in correctly judging the stress and deformation of soil. Constitutive model of sandy 

pebble soil is significant for underground engineering, especially for shield construction. 

Deformation modulus is a basic mechanical property of sandy pebble soil. Currently, plenty of 

efforts have been devoted to modelling the equivalent elastic modulus of multiphase materials. For 

laminar composite, the basic theory includes “Reuss model” and “Voigt model” [2], but the 

application scope of these models is small because of the strict application conditions. For irregular 

inclusions, Eshelby [3,4] proposed the earliest theory for elliptical inhomogeneity subjected to 

uniform pressure, which is often named equivalent inclusion method (EIM). With EIM method, 

displacements, strains, stresses inside or outside pebbles can be described by a unique expression of 

Eshelby tensor equation. Based on this theory, Jin et al. [5,6] derived a novel expression of Eshelby 

tensor, which has been applied to solve the problem of stress concentration around elliptical 

inclusion. However, from a statistical point of view, the local inhomogeneity has little influence on 

the equivalent properties of pebble soil, so the derivation of specific formulas for stress or strain field 

around pebbles can be avoided [7]. With regard to the study of sandy pebble soil, Hu Min [8] 

proposed a constitutive model based on Eshelby tensors and Mori-Tanaka equivalent method. Ma 

and Gao [9] studied the influence of pebble distribution on equivalent elastic modulus of 

representative volume element (RVE) through finite element experiments. However, these models 

are suitable only for small deformation condition. Besides, the accuracy will drop when the pebble 

content is more than 50%. At all events, analysis of locally elastic constitutive phases requires a 

much higher computation cost compared with homogeneous structures, especially for random 

inclusion composites [10,11]. 

This paper focus on the equivalent modulus of pebble soil, which is related to the stability of 

pebble soil stratum and mechanical control of shield excavation. In this paper, RVE (Representative 

Volume Element) is selected as the research object, and the pebble is simplified as an elliptical 

particle. Based on the assumption of stress or strain uniformity, the analytical formulas for equivalent 

deformation modulus of pebble soil are derived. Through finite element method (FEM) analysis, the 

accuracy of equivalent modulus is confirmed by simulation of their elastic behavior under predefined 

load. 
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2. Basic constitutive models for composite materials  

In past decades, a substantial number of theoretical models for effective physical properties 

have been proposed. Some of them have been intended for highly specific applications, while others 

provide important theoretical guiding role [12]. Of them, the Series model and Parallel model are the 

simplest for two-phase systems. As the basic models, they are often used as benchmarks for 

validation of new models. They offer upper and lower boundaries for many properties of two-phase 

heterogonous materials, as proven by Wiener for effective conductivity [13]. In the field of 

thermodynamics, the Parallel model also serves as the first order approximation to the calculation of 

the coefficient of thermal expansion [14]. In the case of elastic modulus, the two models are often 

called Reuss model and Voigt model, respectively [2,15,16]. Here, we will make a brief discussion 

on the two models. It will be helpful for understanding the basic assumption of these theories, and 

the adapted models applied for sandy pebble soil. 

2.1. Series model (stress uniformity model) 

Series model is also named Reuss model [17], which is based on the hypothesis of stress 

uniformity. The basic assumption of this model is that the distribution of two materials is 

horizontally stacked and the external force is perpendicular to the surface. In this condition, stresses 

in two materials are uniformly distributed. If   represents the volume fraction of pebble, the 

equivalent elastic modulus of Reuss model is: 

1 2

1 1 1
1

E E E
   （ ）                                (1) 

where E1 and E2 are elastic modulus of soil and pebble, respectively. 

Reuss model is derived from the assumption of uniform stress under ideal layer. This model is 

suitable for the equivalent elastic modulus calculation of horizontal layered structures such as 

multi-layer soils and asphalt road structures. Reuss model is the essential base of stress uniformity 

model of pebble soil that will be discussed in section 3.1. 

2.2. Parallel model (strain uniformity model) 

Parallel model is also named Voigt model [17], which is based on the hypothesis of strain 

uniformity. The basic assumption is that the two materials are in a juxtaposition delamination, the 

strains in two materials are the same under a vertical load (to be exact, it is a displacement load). If   

represents the volume fraction of pebble, the equivalent elastic modulus of Voigt model is:  

1 21 +E E E  （ ）                                (2) 

Different from Reuss model, the layer direction of Voigt model is parallel to the force direction, 

and the strains are uniform in different materials under external load. Similar to Ruess model, the 

parallel model is also applied for particular cases, such as reinforced composite foundations and 

composite tensile members. This model is the essential base of strain uniformity model that will be 
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discussed in section 3.2. 

Both Reuss model and Voigt model are based on the assumption of ideal stratified conditions. 

They are only suitable for composite materials with ideal layers. We can see, if 0   or 1  , the 

two models have the same upper or lower limits, this is because they represent two extreme values. 

As the basic theory of other models, they provide the upper and lower boundaries for other theories 

and they could be used for judging the correctness of other models.  

With regard to sandy pebble soil, the distribution of different components might be complex, 

but in some cases, the assumption and derivation process are similar to these basic models. Based on 

the two theories, constitutive model for pebble soil will be discussed below. 

3. Constitutive models for sandy pebble soil 

Sandy pebble soil is a special composite material, or we can call it two-phase inclusive material. 

Pebbles are irregular inclusions, so the basic model in section 2 cannot describe sandy pebble soil 

accurately. Besides, with the increasing of pebble content, the mechanical properties will change 

greatly. However, under natural conditions most pebbles are ellipse shaped, which makes it possible 

to derive the equivalent formula through mathematical analysis. 

 

Figure 1. Section of sandy pebble soil and Representative Volume Element (RVE). 

For sandy pebble soil, the local stress or strain is not uniform since stress concentration exists 

on the interfacial surface between stone and soil. However, from a statistical point of view, the forces 

each pebble shared are related to their volumes. Within a specific area, if the loading area is large 

enough, the stress or strain can be considered as uniform. Figure1 presents a typical section of sandy 

pebble soil. To investigate the equivalent constitutive model of pebble soil, a Representative Volume 

Element（RVE）is selected from the section. In theoretical derivation, the mechanical properties of 

RVE could be considered the same as that of the main body [18,21]. Two kinds of theoretical 

derivations will be discussed in section 3.1 and 3.2, respectively. 

3.1. Stress Uniformity Model 

As shown in Figure 2a, the volume content of pebbles is very small (usually less than 20%). 

Under this condition, if the pebbles are randomly distributed, they will be surrounded by soil and 

keep separated from each other. When a vertical pressure is applied to the surface, the stress 
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distribution will be like Figure 2b. As we can see, there is a distinct stress transfer path along the 

vertical distribution of pebbles. Considering the local stress distribution in two directions, stress 

difference between soil and pebbles might exist in the x-axis direction. However, along the stress 

transfer path, the values of stress vary in a small range, especially in the upper and lower regions of 

each pebble. In Figure 2b we use “sub-uniform” to describe the state of “nearly uniform”. Take the 

area indicated by arrow as an example, in red area, the average stress is about 1.017MPa, for the 

orange area, the average stress is about 0.9375MPa. The error is 
1.017-0.9375

= 100%=4.67%
1.017

  , 

this is within the accuracy for our theoretical derivation. We can draw a conclusion here, under this 

condition, the stress in local area should be uniform or sub-uniform from a statistical perspective.  

Figure 2c shows the strain distribution of sandy pebble soil. This is another condition that will 

be discussed in section 3.2. As we can see, due to the difference of compression modulus, the strains 

in soil and pebbles are quite different. The strains in soil are approximately (1.7–3.0) × 10
-2

, whereas 

in pebbles is 0. 

 

Figure 2. Schematic illustration of stress uniformity model. (a): FEM model of sandy 

pebble soil (pebble content is 12.7% by volume). (b): Stress distribution of sandy pebble 

soil. (c): strain distribution of sandy pebble soil. 

Similar to the Reuss model in section 2.1, the basic assumption of stress uniformity model is the 

distribution of stress in local area, i.e. in RVE is homogeneous, which means the stress in pebble is 

the same as the stress in soil [18–20]. This assumption is applicable only if pebble content is much 

smaller than soil. In this condition, stress will transfer through soil matrix and the stress state of 

pebble is the same as surrounding soil. 
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Figure 3. Schematic illustration of stress uniformity derivation (a) and deformation 

character of RVE under uniform load (b). 

To derive the equivalent deformation modulus of this model, a simplified schematic diagram is 

presented in Figure 3a. In this model, RVE is represented by a square and the side length is 1, pebble 

is simplified by an ellipse, the major and minor axis of pebble are a  and b  respectively. Based on 

the assumption of stress uniformity, the stress distribution in RVE is uniform, whereas the strain at 

different area depends on the local elastic modulus. Here, the elastic modulus of soil and pebble are 

1E  and 2E , respectively. 

For each section of this RVE, the length of 'mm  is: 

2

' 2
2 1mm x

x
l l b

a
                                  (3) 

Under action of external pressure q , the strain in soil and pebble are respectively: 

1

1

q

E
                                        (4) 

2

2

q

E
                                        (5) 

The deformation of section L can be divided into 2 parts, one is the deformation in soil: 

 1 '

1

1 mm

q
l

E
                                     (6) 

Another is the deformation in pebble: 
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2 '

2

mm

q
l

E
                                   (7) 

The whole deformation of section L is: 

 1 2 ' '

1 2

1 mm mm

q q
l l

E E
                                (8) 

For different sections, the line deformation is: 

 
 1 2

1 2

1 2 1 1 2

1
x

x x x

ql E Eq q q
l l

E E E E E
  


                        (9) 

For RVE, the whole deformation is: 

 0.5 0.5
1 2

0.5 0.5
1 1 2

x

x

ql E Eq
dx dx

E E E
 

 

 
   

 
                      (10) 

The integral formula in (10) could be divided into 3 parts, for  0.5,x a    and  ,0.5x a , the 

length of xl  is 0, and the integral formula becomes: 

  0.5
1 2

0.5
1 1 1 2 1

a a
x

a a

ql E Eq q q
dx dx dx

E E E E E




 

 
    

 
                   (11) 

Substituting equation 3 back into equation 11 then result: 

 2 1 2

1 2

qE qab E E

E E




 
                          (12) 

Finally, the equivalent elastic modulus of stress uniformity model is: 

 
1 2

2 1 2/ 1

E Eq
E

E ab E E



  
  

 
                    (13) 

Under special conditions, if the pebble is simplified as a circle, formula (13) will become: 

 
1 2

2

2 1 2

E E
E

E r E E


 
                         (14) 

Based on two basic theory in section 2, we can make a simple validation of formula (13) and 

(14): the total area of RVE is 1, and ab 、 2r  represent the area of pebble, if the area of pebble is 
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0, then the formulas (13), (14) will be 1E E . Similarly, if the area of pebble is 1, then formulas (13), 

(14) will be 2E E . So we can conclude that equations correspond with the upper and lower limits 

of Reuss model and Voigt model. In three-dimensional model, RVE is a cube with ellipsoid pebble, it 

can be proved that the above calculation can also be adapted. 

We can make a further discussion on formula (13) and (14). As mentioned before, ab  and 

2r  represent the area of pebble, so the content of pebble is the principal factor for the equivalent 

modulus of RVE, the distribution and surface morphology of pebbles seem not so influential. This is 

because, in theory derivation process, the interfacial between soil and pebble particles is assumed to 

be consolidated and there is no relative movement between them. In fact, with the assumption of 

stress uniformity, the actual deformation of RVE is like Figure 3b. As we can see, the deformation 

distributions are quite different along x-axis, the center section (which is near the origin of x-axis) 

deforms smaller because of larger proportion of pebble, and pebble is almost non-deformed. For the 

ends of x-axis, with decreasing of pebble proportion, the deformation begins to increases.  

 

Figure 4. Extrusion effect of pebble soil under rigid deformation load. 

In practice, the deformation of sandy pebble soil is usually caused by building’s foundation, 

which is a rigid displacement load. Because of high compressibility, soil will be pushed into gaps 

between pebbles. As shown in Figure 4, with the uniform deformation from a compression surface, 

soil near the short axis of the pebble has a tendency to move downward and to the edges of both 

sides because of plastic deformation. This phenomenon can also be observed through ABAQUS 

model. In practice, the deformation response of soil is related to the rheological properties of soil 

matrix as well as the geometry of the contact surface between soil and pebbles [22]. 

3.2. Strain uniformity model 

Strain uniformity model is another condition. As shown in Figure 5a, when the soil contains 

more pebbles (usually more than 60% in volume), all pebbles will contact each other. In this condition, 
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soil matrix only acts as a filler to fill up the gaps between pebbles. As a result, the external force will be 

mainly borne by the pebble skeleton. 

 

Figure 5. Schematic illustration of strain uniformity model. (a): FEM model of sandy 

pebble soil. (b): Stress distribution of sandy pebble soil. (c): strain distribution of sandy 

pebble soil 

The stress distribution in FEM model is shown in Figure 5b. As we can see, the distribution is 

quite irregular. Stresses differ not only between soil and pebbles, but also in different position of 

individual pebbles and soil matrix. Moreover, for some areas where pebbles contact, obvious stress 

concentrations can also be seen. Concerning the strain distribution (Figure 5c), however, the strain 

distribution tends to be quite uniform for different position of individual pebbles (or soil matrix). In 

fact, with the increasing pebble content, more pebbles interlock together forming a whole structure 

and this entirety bears most of external force. As a result, the stress in soil matrix will be much smaller 

than that of pebbles, whereas strains in soil and pebbles tend to be uniform or sub-uniform. This 

prompts us that strain uniformity model will be more accurate in analyzing the equivalent deformation 

modulus of pebble soil in this condition. 

Similar to Voigt model in section 2.2, the basic assumption of strain uniformity model is that the 

strains in soil matrix and pebbles are homogeneous, or that the strains in the direction of external 

force in two phases are the same. Under strain uniformity condition, the stresses at different areas 

depend on the elastic modulus of local material. A RVE is also selected for derivation, in order to 

simplify the deduction process and make the final formula consistent with stress uniformity equation, 

we set the vertical direction as x axis, as shown in Figure 6a. Similarly, in theoretical derivation there 

should be no relative movement on the interface between two phases. 
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Figure 6. Schematic illustration of strain uniformity derivation (a) and deformation 

character of RVE under uniform load (b). 

In Figure 6a, we also create a section of 'mm , for different positons, the length of section 'mml  

is: 

2

' 2
2 1mm x

x
l l a

b
                              (15) 

Assuming that under the action of external pressure q  , the strain of this section is  . Then, 

the whole pressure on section 'mm  could be expressed as: 

 1 ' 2 ' 1 2 1 '1 (1 ) ( )mm mm mmF q E l E l E E E l                         (16) 

That is  

 1 2 1 '( ) mmq E E E l                              (17) 

namely 

1 2 1 '( ) mm

q

E E E l
 

 
                          (18) 

Assuming the length of 'mm  at different position is 'mm xl l , 

For RVE, the whole deformation is: 

0.5 0.5

x
0.5 0.5

1 2 1( ) x

q
dx dx

E E E l
 

 
 

                      (19) 

Elastic modulus within a range of small deformation is: 
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/1

/1

q q
E



  
                                (20) 

That is: 

1

E q


                                    (21) 

Substituting Equation 19 back into Equation 21 then results: 

0.5

0.5
1 2 1

1 1

( ) x

dx
E E E E l


                            (22) 

The integral formula in (22) could be divided into 3 parts, for  0.5,x a    and  ,0.5x a , 

0xl  , the integral formula becomes: 

0.5 0.5

x
0.5 0.5

1 1 2 1 1

1 1 1

( )

a a

a a
x

dx dx dx dx
E E E E l E




  
  

                   (23) 

Finally, the equivalent elastic modulus of strain uniformity model is: 

2 2

1

1

1

2 2
11

2 ln
1 1 2

m m E
E

Ea a

E m Em E


   
  

       
 

 
  

                  (24) 

2 12 ( )m b E E                               (25) 

Under special conditions, if the pebble is simplified as a circle, formula (24) will become: 

2 2

1

1

1

2 2
11

2 ln

1 1 2

m m E
E

Er r

E m Em E


   
  

    
   

 
 
  

                  (26) 

2 12 ( )m r E E                               (27) 

Formulas (24) and (26) are equivalent modulus of sandy pebble soil based on strain uniformity, 

and they represent elliptical pebbles and round pebbles respectively. Similar conclusion can be found 

in reference [9]. 

Here we will make a further discussion on the deformation behavior of RVE with strain 

uniformity model. In fact, with strain uniformity assumption, the deformation characteristic is like 
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Figure 6b. The strain on each section depends on the ratio of pebble on that section. For example, on 

the y axis section (transverse axis section), the strain is smallest because the line ratio of pebble is the 

length of its major axis. On the contrary, for the range of (b < –0.5) and (b > 0.5), the strain reaches 

its maximum value because the line ratio of pebble is 0. This could also be explained in 

mathematical way: 

In equation 18, for   at different position, it is: 

1 2 1( )
x

x

q

E E E l
 

 
                             (28) 

which means the strain at different position is a function of 
xl , with the increasing of 

xl  the 

strain will decrease in reciprocal form. This phenomenon can be shown more intuitively by FEM 

simulation. 

Strain uniformity model is effective only if the content of pebble is large (usually more than 60% 

in volume) because of the different compressibility. As we know, the pebbles can be regard as rigid 

body, whereas soil is much softer. If the content of pebble is too small, the pebbles will be suspended 

in the soil and the strains will be not uniform anymore. 

4. Numerical experiment and modified formula 

In practice, the composition of pebble soil is rather complex and the distribution of pebbles is 

uneven. It is difficult to obtain ideal soil samples with constant quality. Besides, sandy pebble soil is 

easily to be disturbed during sample collection. It is difficult to test the deformation modulus through 

laboratory experiment or in-situ test. The Finite Element Method (FEM) provides an effective way to 

solve this problem, with FEM program we can set the model size and boundary conditions according 

to the testing program, and ideal numerical models can be obtained through parameter setting. In 

addition, FEM test has a good repeatability and it can be used as a supplement to geotechnical test 

under special circumstances. In this part, a series of FEM models are established and the accuracy of 

the theoretical models will be verified. 

4.1. Numerical models and simulation results 

In this study, the ABAQUS was applied to determine the mechanical properties of sandy pebble 

soil. Before establishing FEM models, the size range and distribution of pebbles should be 

determined. According to the statistical results [9], the long axis of pebbles are usually smaller than 

10cm, the number of pebbles with different size are in normal distribution. Considering the size 

effect, many researches [23,25] recommended that pebbles smaller than 5 mm could be seen as equal 

to soil matrix. Consequently, the size range of pebbles was set to 0.5–10 cm. To be consistent with 

theoretical derivation, the major axes orientations were horizontally placed, and the positions of 

pebbles were set randomly similar to the distribution in practice. The mechanical parameters of 

pebble and soil matrix are shown in Table 1. For the scale of FEM model, Holtz [24] suggested that, 

the width of specimens should be 10 times the diameter of largest pebble. So, the size of FEM model 

was set as 50 cm × 100 cm. To make the simulation process correspond with triaxial compression 
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experiment in practice, the bottom of FEM models was set as fixed constraint, whereas both sides 

were set as free boundaries. Moreover, to be consistent with the condition of RVEs in theoretical 

deduction, the relative sliding between pebbles and soil was neglected. 

Table 1. The mechanical properties of materials. 

Materials Modulus of elasticity/MPa Poisson’s ratio 

Soil matrix 9.25 0.35 

Pebble 50000.00 0.15 

Figure 7 presents the FEM models with different pebble content established through ABAQUS. 

As a function of pebble content, the numerical testing results (marked with black solid lines) and 

theoretical calculation results are shown in Figure 8. Results show that when the content of pebbles is 

lower than 25%, formula of “Stress Uniformity Model” matches numerical experiment results well. 

On the contrary, when the content of pebble is more than 55%, the formula of “Strain Uniformity 

Model” matches numerical experiment results better. The mechanism can be explained by the basic 

assumption of two models. For state 1 in Figure 8, the state of pebbles corresponds to the stress 

uniformity assumption, whereas state 3 accords with the assumption of strain uniformity. In addition, it 

is not difficult to find that the values of stress uniformity are always lower than that of strain uniformity 

model. When pebble content is 0, three curves intersect at one point. It proved that two theories are 

correspond with Ruess model and Voigt model in section 2. 

 

Figure 7. Numerical experiment models. (a): 10% pebbles in volume. (b): 30% pebbles 

in volume. (c): 50% pebbles in volume. 

In FEM simulation, we just investigated the volume range of 0–60%. This is because, with the 

increasing pebble content the soil space will be smaller and smaller, leading to difficulties to generate 

more pebbles, this condition becomes more serious when pebble content is more than 60%. From 

another point of view, for pebble content more than 60%, the soil will become inclusions embedded 

in pebbles and the structure will be no longer pebble soil in concept. 
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Figure 8. Comparison between theoretical calculations and numerical experiments. 

4.2. Transition state between stress uniformity and strain uniformity 

A transition state between stress uniformity and strain uniformity was concerned in this 

investigation. Generally, when the content of pebbles reaches 20%, they begin to touch each other. 

Subsequently, with the increasing content of pebbles, they will overlap and form a skeleton structure 

at local areas, which leads to the coexistence of uniform stress area and uniform strain area, as shown 

in Figure 9a. This contact effect and heterogeneous distribution affect not only the distribution of 

local stress and strain field, but also the macro mechanical properties of pebble soil. FEM test also 

shows that this phenomenon has a great effect on the numerical simulation results. For specimens 

with similar pebble content, the equivalent deformation modulus will be higher if it has more contact 

ratio. 

 

Figure 9. Schematic illustration of transition state. (a): FEM model of sandy pebble soil. 

(b): Stress distribution of sandy pebble soil. (c): strain distribution of sandy pebble soil. 
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Figure 9b and c show the coexistence of stress uniformity and strain uniformity. For pebble 

isolated in soil matrix, the stress tends to be quite uniform. However, for contact area, strain seems to 

be more uniform. Many theories have been proposed to describe the influence of contact [26,27]. 

Some researchers [29,30] suggested that the stress distribution can be ignored in equivalent 

simulation from a macro perspective. According to reference [28], for equivalent description of 

mechanical property, the contact effect in large scale object could be considered as a function of 

contact area or pebble content. In this research, we focus on simulating the macroscopic properties of 

pebble soils, so the local stress calculation could be avoided, and the superposition effect of local 

areas could be simulated through equivalent analysis. FEM simulation results show that the ratio of 

contact area is proportional to the volume fraction of pebbles. Based on this relationship, we 

proposed an adapted formula to describe pebble soil under transition state: 

  strain stress

stress

-0.2

0.4
20% 60%

E E
E E


 


  （ ）                (29) 

Where 
stressE  represents the equation of 13, and 

astr inE  represent the equation of 26. 

For pebble content less than 20%, equation 13 is still effective, i.e.:  

 
1 2

2 1 2

( 20%)stress

E E
E E

E ab E E



  

 
                   (30) 

Figure 10 illustrates the numerical experiment value and adapted theoretical value. As we can 

see, the modified formula matches simulation results well. 

 

Figure 10. Schematic illustration of numerical experiment values and modified formula values. 

 

State 1 State 3 
State 2 
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4.3. Application of equivalent modulus in sandy pebble soil 

According to the parameters provided in reference [9], if the elastic modulus of pebble is 

50000.00 MPa and soil matrix is Esoil, the equivalent modulus of different pebble soils can be 

obtained through theoretical calculation. Figure 11 shows the variation of pebble soils with different 

soil matrix and pebble content. The starting point of each curve is the soil matrix with no pebbles, 

and the ordinate value is the elastic modulus of corresponding soil matrix. Results show that the 

mechanical properties of soil matrix have a great influence on the equivalent modulus of sandy 

pebble soil. With the increase of pebble volume fraction, the equivalent elastic modulus increases 

exponentially. 

 

Figure 11. Equivalent deformation modulus of pebble soils with different soil matrix and 

pebble content. 

5. Conclusion and outlook 

Pebble soil is a typical heterogeneous material with special physical and mechanical properties. 

The discrete characteristic of pebble soil seriously endangered shield construction and stability of 

underground stratum. Constitutive model plays an important role in modeling the mechanical 

properties of sandy pebble soil. This paper made an in-depth analysis on the basic assumption of 

Ruess model and Voigt model. Based on the two basic models, the equivalent deformation modulus 

of pebble soil is investigated through mathematical derivation. 

According to the stress or strain status of pebble soil, three conditions were suggested in this 

paper, and the theoretical formulas are deduced. For pebble content lower than 20%, pebbles will be 

surrounded by soil and the soil state could be described by “Stress Uniformity Model”. When pebble 

content is more than 60%, pebbles overlap to form a skeleton, which protects the soil from external 

forces. In this case “Strain Uniformity Model” will be more effective. When the content is 20%–60%, 

the pebble soil is a transition state from “Stress Uniformity” to “Strain Uniformity”. According to the 

touching effect, a modified formula is proposed based on the relationship between contact ratio and 
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pebble content. 

Considering the difficulties in geotechnical experiment, the finite element program ABAQUS 

was applied to establish numerical tests and verify the theoretical formulas. Results show that, 

theoretical values matched numerical simulation well. For different soil matrix, a graphic illustration 

of equivalent modulus of pebble soil was suggested, which is helpful in practice especially for thrust 

and land deformation control in shield construction. It is worth mentioning that, for specific soil 

matrix, the equivalent deformation modulus increases exponentially with increasing pebble content. 

Theories can be applied in predicting the equivalent deformation modulus of pebble soil. 

Considering the insufficiency in this paper, the following aspects need more research. Firstly, in 

order to be consistent with the theoretical deduction, pebbles and soil matrix in FEM models are 

merged together, i.e. there is no relative movement between them. However, in practice relative 

displacement is inevitable because of the different compressibility and interface slip. Secondly, in 

theoretical derivation and FEM experiments, the direction of pebbles’ main axis is horizontal. In 

practice, the main axis is variable, simulation of authentic pebble soil under nature condition is still 

needed. The mechanical properties and whether the formulas still effective also need more research. 

Last but not least, the transition state is very complex, in adapted formula the influence of local 

clusters was not considered enough, more efforts are still needed to investigate the status of pebble 

soil with different pebble content. 
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